

CAD-BASED DYNAMIC LAYOUT PLANNING

OF CONSTRUCTION SITES USING
GENETIC ALGORITHMS

by

HESHAM MAGED OSMAN

 A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial

Fulfillment of the Requirements of the Degree of

 MASTER OF SCIENCE

in

CIVIL ENGINEERING (STRUCTURES)

 FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

NOVEMBER 2002

 ii

CAD-BASED DYNAMIC LAYOUT PLANNING
OF CONSTRUCTION SITES USING

GENETIC ALGORITHMS

by

HESHAM MAGED OSMAN

 A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial

Fulfillment of the Requirements of the Degree of

 MASTER OF SCIENCE
in

CIVIL ENGINEERING (STRUCTURES)

Under the Supervision of

Dr. Moheeb El-Saeed Ibrahim
Professor of Construction Engineering

& Management
Cairo University

 Dr. Maged Ezzat Georgy
Assistant Professor,

Structural Engineering Department
Cairo University

 FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

NOVEMBER 2002

 iii

CAD-BASED DYNAMIC LAYOUT PLANNING
OF CONSTRUCTION SITES USING

GENETIC ALGORITHMS

by

HESHAM MAGED OSMAN

 A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial

Fulfillment of the Requirements of the Degree of

 MASTER OF SCIENCE

in

CIVIL ENGINEERING (STRUCTURES)

Approved by the Examining Committee

Prof. Dr. Moheeb El-Saeed Ibrahim, Thesis Main Advisor

Dr. Mahmoud Abdel-Salam Taha

Dr. Mohamed Abdel-Lateef Bakry

 FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

NOVEMBER 2002

 iv

T A B L E O F C O N T E N T S

LIST OF FIGURES VIII

LIST OF TABLES X

ACKNOWLWDGEMENTS XI

ABSTARCT XII

1 INTRODUCTION 1

1.1 BACKGROUND 1
1.2 PROBLEM STATEMENT 1
1.3 RESEARCH OBJECTIVES 3
1.4 METHODOLOGY 3
1.5 THESIS ORGANIZATION 4

2 LITERATURE REVIEW 5

2.1 DEFINITION 5
2.2 APPLICATIONS IN OTHER DOMAINS 5
2.2.1 INDUSTRIAL ENGINEERING 5
2.2.2 ELECTRICAL ENGINEERING 5
2.3 PROBLEM APPROACHES 6
2.3.1 STATIC LAYOUT PLANNING 6
2.3.2 DYNAMIC LAYOUT PLANNING 7
2.3.3 SPACE SCHEDULING 8
2.4 METHOD OF FACILITY ASSIGNMENT 9
2.5 PROBLEM SOLVING TECHNIQUES 9
2.5.1 HEURISTICS & EXPERT SYSTEMS 10
2.5.2 MATHEMATICAL TECHNIQUES 12
2.6 OPTIMIZATION 12
2.6.1 LINEAR PROGRAMMING 15
2.6.2 GENETIC ALGORITHMS 17
2.6.3 NEURAL NETWORKS 20
2.7 SUMMARY OF RESEARCH 21

 v

3 RESEARCH APPROACH & THEORETICAL BACKGROUND 22

3.1 SUITABILITY OF CAD PLATFORMS AND GENETIC ALGORITHMS 22
3.2 GENETIC ALGORITHMS 24
3.2.1 GA EXAMPLE 24
3.2.2 CONCEPT OF HYPERPLANE SAMPLING 27
3.2.3 THE SCHEMA THEOREM 28
3.2.4 GA ENCODING 29
3.2.5 SELECTION OF THE FITTEST 31
3.2.6 CROSSOVER 32
3.2.7 MUTATION 33
3.3 THE OBJECTIVE FUNCTION: RELATIVE WEIGHTS VS. COST DATA 34

4 SYSTEM DEVELOPMENT 36

4.1 SYSTEM STRUCTURE 36
4.2 SPACE IDENTIFICATION 38
4.2.1 IDENTIFICATION OF ENCLOSED SITE SPACE: 39
4.2.2 IDENTIFICATION OF FIXED FACILITIES AND OBSTACLES 39
4.3 GA STRING CODING 40
4.4 CONSTRAINT SATISFACTION 41
4.4.1 CHECKSITE MODULE: 42
4.4.2 CHECKOVERLAP MODULE 43
4.5 INTER-FACILITY COST MATRIX 44
4.6 OPTIMIZATION PROCEDURE 45
4.6.1 OBJECTIVE FUNCTION 45
4.6.2 INITIALIZATION OF POPULATION 46
4.6.3 GA GENERATIONS 47
4.6.4 CONVERGENCE CONDITION 50
4.6.5 DYNAMIC OPTIMIZATION 50
4.7 SOLUTION REPRESENTATION 53

5 AUTOMATED SYSTEM & ILLUSTRATED EXAMPLE 55

 vi

5.1 SYSTEM INPUT 55
5.2 SYSTEM OPTIMIZATION 58
5.3 SYSTEM OUTPUT 58
5.4 ILLUSTRATED EXAMPLE 59
5.4.1 SCHEDULE & TEMPORARY FACILITY DATA 59
5.4.2 SITE LAYOUT DATA: 60
5.4.3 FACILITY COST DATA 61
5.5 OPTIMIZATION RESULTS 63
5.5.1 CAD PRESENTATION 63
5.5.2 COMPARATIVE GRAPHICAL COST PRESENTATION 64

6 SYSTEM VALIDATION & CASE STUDY 66

6.1 CASE STUDY 66
6.1.1 PROJECT SCHEDULE DATA 67
6.1.2 PERMANENT FACILITIES DATA 67
6.1.3 SITE OBSTACLES 68
6.1.4 TEMPORARY FACILITIES 69
6.1.5 PROXIMITY MATRIX 70
6.2 AUTOMATED SYSTEM OUTPUT 71
6.2.1 STEP1: STATIC LAYOUT 71
6.2.2 STEP2: DYNAMIC LAYOUT 72
6.3 ACTUAL SITE LAYOUTS 75
6.4 COMPARATIVE ANALYSIS 77

7 SUMMARY & CONCLUSIONS 79

7.1 SUMMARY 79
7.2 CONCLUSIONS 80
7.3 RECOMMENDATIONS FOR FURTHER RESEARCH 81

8 REFERENCES 82

9 APPENDICES 85

 vii

APPENDIX A: OPTIMIZATION CODE 85
STATICOPT MODULE 85
DYNAOPT1 (CRITICAL PHASE APPROACH) 96
DYNA_OPT2 (MINI-MIN APPROACH) 103
APPENDIX B: SPACE IDENTIFICATION CODE 109
APPENDIX C: SOLUTION REPRESENTATION CODE 114

 viii

L I S T O F F I G U R E S
FIGURE 2-1 DIFFERENCE BETWEEN SPACE SCHEDULING AND DYNAMIC LAYOUT PLANNING

(TOMMELIEN & ZOUEIN, 1993)
FIGURE 2-2 PROCEDURE OF KNOWLEDGE ACQUISITION AND REPRESENTATION CHENG &

O’CONNOR (1996)
FIGURE 2-3 FUZZY SETS OF THE VARIABLE “PROXIMITY WEIGHTS” (ELBELTAGI & HEGAZY,

2001)
FIGURE 2-4 FUZZY SETS FOR THE INPUT VARIABLES (ELBELTAGI & HEGAZY, 2001)

FIGURE 2-5 SITE AND FACILITY REPRESENTATION IN THE EVOSITE MODEL (HEGAZY &

ELBELTAGI, 1999).
FIGURE 2-6 CLASSIFICATION OF SOME OF THE CONSTRUCTION SITE LAYOUT MODEL

FIGURE 3-1 GRAPH OF 105.1005.0 2 ++−= xxy

FIGURE 3-2 CUBE REPRESENTATION OF A 3 DIMENSIONAL HYPERPLANE

FIGURE 3-3 EXAMPLE OF A CHROMOSOME WITH A 10-BIT BINARY ENCODING

FIGURE 3-4 EXAMPLE OF A CHROMOSOME WITH A 10-BIT PERMUTATION ENCODING

FIGURE 3-5 EXAMPLE OF A CHROMOSOME WITH A 6-BIT VALUE ENCODING

FIGURE 3-6 COMPARISON BETWEEN RAW FITNESS AND RANKED FITNESS AFTER MAPPING ON A

ROULETTE WHEEL
FIGURE 3-7 EXAMPLE OF A SINGLE POINT CROSSOVER WITH A BINARY ENCODING

FIGURE 3-8 EXAMPLE OF A TWO-POINT CROSSOVER WITH A BINARY ENCODING

FIGURE 3-9 EXAMPLE OF A UNIFORM CROSSOVER WITH BINARY ENCODING

FIGURE 3-10 EXAMPLE OF 2-BIT INVERSION WITH BINARY ENCODING

FIGURE 3-11 EXAMPLE OF ORDER CHANGING WITH VALUE ENCODING

FIGURE 4-1 DETAILED SYSTEM ARCHITECTURE

FIGURE 4-2 DETAILS OF SPACE DISCRETIZATION

FIGURE 4-3 BOUNDING BOX OF A POLYGON

FIGURE 4-4 GA STRING ENCODING OF 2D SPACE

FIGURE 4-5 FUNCTIONALITY OF THE CHECKSITE MODULE

FIGURE 4-6 FUNCTIONALITY OF THE CHECKOVERLAP MODULE

FIGURE 4-7 EFFECT OF POPULATION SIZE ON OPTIMUM SOLUTION

FIGURE 4-8 GENETIC ALGORITHM FLOWCHART

FIGURE 4-9 MUTATION OPERATOR FLOWCHART

 ix

FIGURE 4-10 FLOWCHART FOR THE OPTIMIZATION PROCEDURE

FIGURE 4-11 CRITICAL PHASE APPROACH IN DYNAMIC OPTIMIZATION

FIGURE 4-12MINI-MIN APPROACH FOR DYNAMIC OPTIMIZATION

FIGURE 4-13 EFFECT OF THE DYNAMIC APPROACH USED ON THE NUMBER OF OPTIMIZATION

PROBLEMS SOLVED
FIGURE 5-1 SCHEDULE AND TEMPORARY FACILITY INPUT SCREEN

FIGURE 5-2 AUTOCAD™ INTERACTIVE CAPABILITIES FROM WITHIN THE PROGRAM

ENVIRONMENT
FIGURE 5-3 AUTOCAD™ VBA MACRO FOR SPACE DETECTION OF SITE LAYOUTS

FIGURE 5-4 INTER-FACILITY COST INPUT FROM WITHIN THE MSEXCEL™ ENVIRONMENT

FIGURE 5-5 STATIC OPTIMIZATION RESULTS LOADING SCREEN

FIGURE 5-6 DYNAMIC OPTIMIZATION RESULTS SCREEN (MINI-MIN APPROACH)

FIGURE 5-7 EVOLUTION OF SITE LAYOUT THROUGHOUT PROJECT PHASES

FIGURE 5-8 SYSTEM AUTOMATED DRAWING CAPABILITIES

FIGURE 5-9 AUTOMATED SYSTEM GENERATED LAYOUTS – MINI-MIN APPROACH

FIGURE 6-1 LAYOUT OF FIXED FACILITIES ON THE CONSTRUCTION SITE

FIGURE 6-2 ARRANGEMENT OF PERMANENT FACILITIES & OBSTACLES ON THE SWIMMING POOL

COMPLEX DURING DIFFERENT PROJECT PHASES
FIGURE 6-3 AUTOMATED SYSTEM ASSIGNMENT OF TEMPORARY FACILITIES (STATIC LAYOUT)

FIGURE 6-4 SYSTEM ASSIGNMENT OF TEMPORARY FACILITIES (DYNAMIC LAYOUT, MINI-MIN

APPROACH)
FIGURE 6-5 ACTUAL SITE LAYOUT, FIRST 15 MONTHS

FIGURE 6-6 ACTUAL SITE LAYOUT, LAST 9 MONTHS

 x

L I S T O F T A B L E S

TABLE 2-1 SUMMARIZATION OF OPTIMIZATION TECHNIQUES USED IN SOLVING SITE LAYOUT

PLANNING PROBLEM
TABLE 2-2 OBJECTIVE FUNCTIONS FORMULATED BY RESEARCHERS USING OPTIMIZATION

TECHNIQUES
TABLE 2-3 CLOSENESS RELATIONSHIP VALUES (HEGAZY & ELBELTAGI, 1999)

TABLE 3-1 COMPARISON BETWEEN NATURAL AND GA TERMINOLOGIES

TABLE 3-2 A GENETIC ALGORITHM BY HAND

TABLE 3-3 COMPARISON BETWEEN RAW SELECTION AND RANK SELECTION

TABLE 3-4 THE SIX VALUE CLOSENESS RELATIONSHIP VALUES USED IN INDUSTRIAL FACILITY

LAYOUT PLANNING
TABLE 4-1 DESCRIPTION OF THE MAIN DATA TYPES REQUIRED IN THE MODEL

TABLE 4-2 MAIN VARIABLES REQUIRED IN THE CONSTRAINT SATISFACTION PROCEDURE

TABLE 4-3 INTER-FACILITY COST MATRIX FOR 6 TEMPORARY FACILITIES AND 3 FIXED

FACILITIES
TABLE 5-1 SCHEDULE AND TEMPORARY FACILITY DATA

TABLE 5-2 INTER-FACILITY COST MATRIX FOR THE FOUR PROJECT PHASES

TABLE 5-3 FACILITY RELOCATION COST DATA

TABLE 5-4 LAYOUT COST DATA – MINI-MIN APPROACH

TABLE 6-1 PROJECT PHASES WITH A BRIEF DESCRIPTION OF THE MAIN CONSTRUCTION

OPERATIONS
TABLE 6-2 LISTING AND APPROXIMATE DIMENSIONS OF PERMANENT FACILITIES

TABLE 6-3 DIMENSIONS AND RELOCATION COSTS OF TEMPORARY FACILITIES

TABLE 6-4 SUMMARY OF THE GA-BASED OPTIMIZATION PROCESS FOR THE THREE PROJECT

PHASES
TABLE 6-5 SUMMARY OF LAYOUT COSTS AFTER DYNAMIC OPTIMIZATION (MINI-MIN

APPROACH)
TABLE 6-6 COMPARISON BETWEEN ACTUAL AND SYSTEM GENERATED LAYOUTS

TABLE 6-7 COMPARATIVE LAYOUT COSTS BETWEEN ACTUAL AND AUTOMATED SYSTEM

LAYOUT

 xi

A C K N O W L E D G E M E N T S

I would like to thank Professor Moheeb El-Saeed my main

advisor for his continuous encouragement, valuable ideas and lengthy

discussions. My deepest thanks and extreme gratitude are due to Dr.

Maged Georgy, my advisor. It goes without saying that this thesis

would have not reached this level if it were not for the immense efforts

and time spent throughout the course of this research.

Much thanks are due to Eng. Mohammed Saad, for his valuable

time and assistance in providing data and information necessary for

this research’s case study.

Last but not least, my greatest thanks go to my beloved family. I

cannot help but feel immense gratitude towards my parents for

encouraging and supporting me in all means possible throughout the

course of my life.

 xii

A B S T R A C T
One of the important project resources that has been overlooked during the

planning phases of most construction projects is site space. In some projects on-site

space can be as crucial a resource as the traditional construction resources (time, capital,

labor, equipment and material). In highly congested sites, space becomes a very scarce

resource that needs to be carefully planned and efficiently utilized. On the other hand, in

large sites having abundant space availability, the proper positioning of site facilities

with respect to each other will greatly influence material handling and travel costs.

In a broad sense, layout planning is concerned with the placement of temporary

facilities (e.g. Storage areas, fabrication yards, caravans, etc…) within the boundaries of

the construction site with the goal of attaining one or several layout objectives. Two

layout planning approaches are commonly found in the literature; namely static layout

planning and dynamic layout planning. A layout is termed “static” if effort put in

planning yields only one site layout that will span the entire project duration. Creating

layouts that change over time as construction progresses is termed dynamic layout

planning.

This research presents a fully automated computer system for performing the

site layout planning task at the dynamic level. The system integrates the powerful

graphical capabilities of CAD systems with the intricate search and optimization

abilities of genetic algorithms for the purpose of solving the site layout problem.

Modeling the continuously developing construction site is made possible via dynamic

site layout planning, thus creating several layouts that change over time as construction

progresses. Two approaches are proposed to deal with the dynamic layout problem,

namely the critical phase approach and the mini-min approach. These approaches aim to

overcome the shortcomings found in the traditional dynamic layout techniques.

The automated system is implemented via 6.0. The programmable features of

AutoCAD™ are utilized to capture the geometrical details of the site layout and to

represent the final solution graphically. A 4-phase project is used to demonstrate the

system’s capabilities. A 24,000 m2 swimming pool complex under construction is

chosen as a case study to validate the system’s performance. A comparison is performed

between the existing layout and that produced by the system. The system-generated

layout achieved savings of nearly 25% in total layout costs compared to the existing site

layout.

 1

1 INTRODUCTION

1.1 BACKGROUND

The effective and efficient management of construction resources is the essence

of success for any construction project. Traditionally, researchers and industry

professionals identify the five main construction resources to include, time, capital,

labor, equipment and material. Recently, attention has been given to information as

being a vital resource in construction operations.

One of the most important construction resources that has been for long

overlooked is space. Site space can – in some projects – be as crucial a resource as the

traditional construction resources mentioned. In highly congested sites, space becomes a

very scarce resource that needs to be carefully planned and efficiently utilized. On the

other hand, in large sites having abundant space availability, the positioning of site

facilities with respect to each other will greatly influence the efficiency of work flow.

Regardless of site dimensions and level of congestion, the need for careful

planning of construction site layouts is evident. In practice, the task of site layout is

usually performed through common sense and the adoption of past layouts to present

projects. A survey conducted in the U.K. in the late 90’s indicated that only 13% of

contractors use computer methods or expert systems to assist in the site layout planning

task (Markhomihelakis ,1997).

1.2 PROBLEM STATEMENT

The task of site layout consists of identifying the facilities needed to support

construction operations, determining their size and shape and positioning them within

the boundaries of the available on-site areas. Examples of these facilities include offices

and tool trailers, parking lots, warehouses, batch plants, maintenance areas, fabrication

yards or buildings, staging areas, and lay-down areas (Tommelien et al, 1992a).

Space is considered secondary to time and money because it is more difficult to

model and the payoffs from modeling are not readily apparent. First of all it is difficult

to represent and reason about space. Secondly it is difficult to precisely determine the

space required for conducting construction operations that are needed by resources such

 2

as material and equipment. Third, it is difficult to value the adequacy of a space to

accommodate a resource. Last, spatial variables are three dimensional, in contrast with

time and money which are scalar. All too often the costs associated with handling these

complexities are prohibitive, so model simplifications or abstractions must be

introduced at the expense of loosing interesting detail (Tommelien & Zouein 1993).

In the construction industry, the cost of site planning is typically charged to

project overhead and is not treated as a direct cost or reimbursable item. Also the

competitive bidding structure of construction and the bidding firm’s need to keep

overhead down during bidding process often gets in the way of providing project

managers adequate staff and time to plan site layouts early (Cheng & O’Connor 1996).

Neglecting site layout planning during the early planning stages can lead to

unsuitable layouts that need correction. Correcting a mistake costs much more than

preventing it in the first place. The emergence of an unsuitable layout must not always

occur during the early phases of a project, it is during the late phases (due to the vast

changes that have occurred) that a layout might seem incompetent of achieving the site

requirements at that time.

Considering the dynamic nature of construction projects and its direct reflection

on site requirements in general further complicate the layout process. Site facilities

constrain one another in the process of determining their final position. Gasoline or

natural gas containers must be kept a minimum distance away from buildings or oxygen

tanks. Physical resources (e.g., trailers) cannot occupy space that is occupied by other

physical resources, that is they cannot overlap. Constraints themselves vary over time.

A lay down area may provide space to store precast members while a structure is being

erected, and space to accommodate machinery later. Interactions between resources also

determine the quality of positions, which too can vary over time. A loader and filling

material interact during backfilling, so they must be positioned as close as possible to

each other to minimize travel time. Upon completion of this activity, the required

interaction stops. The loader will probably be assigned to a different activity and thus

relocated to function better (Zouein & Tommelien, 1999). This ever-changing nature of

construction sites has led to the emergence of what is known as dynamic layout

planning. This approach creates several layouts spanning the project duration so that

each unique layout will strive to achieve the site requirements set forth during the

layout’s life span.

 3

1.3 RESEARCH OBJECTIVES

The efforts put into this research aim to develop an automated system for

dynamic layout planning of construction sites at the 2D level. To achieve this, the

following sub-objectives are considered:

1- Investigate the potential for using genetic algorithms in solving the site layout

planning problem. The use of genetic algorithms as complex function optimizers has

been for long acknowledged. Recently some research in the site layout planning domain

has been focused on using these evolutionary techniques to solve the site layout

planning problem.

2- Formulate a CAD-based GA approach to perform the task of site layout

planning. Due to the geometric nature of the problem at hand, the research incorporates

a CAD input/output media to facilitate the use of the system. The approach used aims to

integrate the powerful graphical capabilities of CAD systems with the intricate search

and optimization abilities of genetic algorithms for the purpose of solving the site layout

problem.

3- Expand this approach to the dynamic site layout problem. The dynamic

aspects of site layout planning have not been thoroughly covered in the literature. The

CAD-based GA approach is extended to include the changes that take place in the

construction site throughout the project lifespan.

4- Develop an automated system for dynamic site layout planning. The research

aims to develop an integrated software package that implements the developed dynamic

CAD-based GA model. The CAD platform chosen is AutoCAD™ due to its widespread

use in the construction industry in Egypt.

5- Test and validate the system. A carefully selected case study is chosen to test

and validate the systems’ performance.

1.4 METHODOLOGY

The proposed system primarily consists of an optimization engine and a

geometric input / output interface. The link between the optimization engine and the

geometrical data contained in AutoCAD™ drawings has been made possible through

AutoCAD™ VisualBasic™ Applications. The programmable features of AutoCAD™

enable all site related geometrical data to be detected as an orthogonal 2-D grid. The

 4

optimization engine utilizes this grid in its execution.

To perform the optimization task, the proposed system utilizes genetic

algorithms as the main optimization engine. Due to the non-linearity of the objective

function to be optimized, the various constraints to be considered and dynamic nature of

the optimization problem, traditional operations research techniques were unsuitable.

Due to the special nature of the problem at hand, commercial GA software were not

used. Instead, a problem dependant genetic algorithm is developed to perform the

dynamic site layout planning task.

1.5 THESIS ORGANIZATION

This thesis is organized into 7 chapters. Chapter 2 provides a thorough review of

previous studies related to construction site layout planning and the applications of

genetic algorithms in construction. The research approach adopted and theoretical

background for this study is presented in chapter 3.

Chapter 4 presents functional details of the various components of the site layout

planning system as well as details concerning their integration to perform the required

task. Details of the physical structure of the program are provided in chapter 5 using an

illustrated example. In chapter 6, validation of the system is performed using a 20,000

m2 construction site as case study. Finally in chapter 7, conclusions and

recommendations for future enhancements are presented.

 5

2 LITERATURE REVIEW

2.1 DEFINITION

Many researchers have attempted to define the site layout planning process. One

of the more crisp and generic definitions was given by Tommelien et al (1992a).

“The task of site layout consists of identifying the facilities needed to

support construction operations, determining their size and shape and

positioning them within the boundaries of the available on-site areas.

Examples of these facilities include offices and tool trailers, parking lots,

warehouses, batch plants, maintenance areas, fabrication yards or

buildings, staging areas, and lay-down areas.”

2.2 APPLICATIONS IN OTHER DOMAINS

The construction site layout problem may be considered as a sub-domain of the

greater “Facility Layout Problem”. This problem is common in other specialization

areas besides its use in construction engineering. Facility layout has been utilized

extensively in the domains of industrial and electrical engineering.

2.2.1 Industrial Engineering

In Industrial Engineering, the facility layout problem is usually termed the plant

layout problem. It is concerned with the arrangement of physical facilities (departments,

machines) within a predetermined plant area. This arrangement is performed so as to

minimize the total material handling costs between departments within the plant

(Rosenblant, 1986).

2.2.2 Electrical Engineering

In electrical Engineering the facility layout problem is utilized in the physical

design of VLSI (very large scale integrated) microchips in a task named “macro-cell

layout generation”. In this task the circuit is partitioned and the components are grouped

into functional units, the macro cells. These cells can be described as rectangular blocks

with terminals (pins) along their borders. These terminals have to be connected by

signal nets, along which power or signals (e.g. clock ticks) are transmitted between the

 6

various units of the chip. A net can connect two or more terminals, and some nets must

be routed to pads at the outer border of the layout, since they are involved in the I/O of

the chip. The goal to attain in the layout process is the minimization of the total chip

area which is greatly influenced by the area between the cells occupied by the signal net

wiring (Schnecke & Vornberger, 1997).

2.3 PROBLEM APPROACHES

In the field of construction engineering, researchers have chosen various

approaches to deal with the layout planning problem. These approaches differ from one

another in the level of detail they provide and the extent to which they yield a well

round solution to the rather sophisticated problem of layout planning. The three

approaches are briefly described in the following section.

2.3.1 Static Layout Planning

Most construction resources require space on site. This is the case for materials

and equipment, support facilities (e.g., trailers or parking lots), and demarcated areas

(e.g., law down areas, roads, or work space), but also for obstacles (trees or existing

buildings). Allocating site space to resources so that they can be accessible and

functional during construction is a problem known as layout planning Zouein &

Tommelien (1999). A layout is termed “static” if effort put in planning yields only one

site layout that will span the entire project duration.

In almost all static layout planning models, assignment of temporary facilities

takes place such that:

1- Temporary facilities are assigned within the site boundaries.

2- Temporary facilities are assigned in positions that attain a certain or several

objectives

3- Temporary Facilities are assigned in such a manner that specific geometrical

constraints are attained.

Usually this layout will become obsolete after any significant progress in the

project, as the needs of construction sites change considerably from time to another

throughout different phases of construction.

Early research in the area of site layout planning was limited to static layout

problems. Performing the more sophisticated “dynamic layout planning” was hindered

 7

by the high computational capabilities that was unavailable in the late 80’s and early

90’s. Researchers acknowledged their models’ limitations and recommended future

research to consider the more generic “dynamic layout problem” (Tommelien et al.

1992b, Cheng & O’Connor 1996, Li & Love 1998, Elbeltagi,1999).

2.3.2 Dynamic Layout Planning

Creating layouts that change over time as construction progresses is termed

dynamic layout planning. The needs of construction sites change considerably from

time to another throughout different phases of construction.

1- As the project grows, more area is occupied by permanent facilities leaving

less space to position supporting facilities.

2- The types and quantities of material being delivered to the site change

considerably throughout the project. Thus, the areas needed for their storage change

accordingly. (Zouein & Tommelien, 1999)

3- In most projects, the demand for heavy equipment and on-site administrative

support facilities changes as construction progresses. This causes significant changes

from time to another in both the required site space to support these facilities and the

presumptive position of each relative to the others.

4- Access roads that are available during one stage of construction may not

necessarily be available during another stage.

The need for a dynamic model to represent site requirements is clearly

understood. Applications in construction engineering nonetheless lagged behind their

counterparts in other fields such as industrial engineering. For instance, Rosenblant

(1986) presented a mathematical model for dynamic plant layout where an optimization

technique named “dynamic programming” was utilized to mimic the dynamism of the

layout process. Tommelien & Zouein (1993) presented one of the earliest dynamic

models for construction site layout planning. A number of studies have followed since

then (Zouein & Tommelien 1999, Elbeltagi et al 2001).

Zouein & Tommelien (1999) presented a very comprehensive model for

dynamic layout planning for construction sites. They laid the basis for researches to

come. Some of the fundamental concepts introduced that constitute the basis of dynamic

modeling of construction sites are:

i) Primary Time Frames (PTF’s): They are the smallest time intervals

demarcated by the arrival or departure of site facilities. (i.e. during a PTF

 8

no facility arrives or leaves the site). By definition, PTF’s include only

those facilities that coexist on site in that time frame.

ii) Dynamic layout objective function: In addition to the tradition minimum

travel distance / cost objective, the relative cost of relocating a facility is

included in the objective function.

iii) Constraints: Were grouped into Hard and Soft constraints. Hard

constraints include non-overlap, minimum / maximum, orientation,

parallel / perpendicular and in-zone constraints.

The model they formulated utilized simple linear programming in solving the

layout problem.

Researchers in the area of dynamic layout of construction sites have

acknowledged the incompetence of dynamic modeling in solving all problems.

Dynamic layout can only assign a set of facilities that occupy the site during a certain

time period on a predetermined site area. If during any time frame there is no feasible

solution, the planner must either alter his schedule or reconsider the area assigned to

facilities. The more generic approach of “Space Scheduling” addresses problems of

these kind.

2.3.3 Space Scheduling

The first to acknowledge the broader approach of space scheduling in

construction were Tommelien & Zouein (1993). They defined space scheduling as “The

bi-directional interaction between scheduling and layout construction or improvement.”

The research they conducted in 1993 admitted to the need of formulating a space

scheduling model if comprehensive modeling was to be performed. Their research

stated that “schedule changes are crucial for coming up with feasible layouts when

insufficient space is available to accommodate all resources on site for any time

interval.”

It was not until 2001, when Zouein & Tommelien formulated an improvement

algorithm for limited space scheduling. This work was a continuation of the dynamic

layout planning solution method they presented in 1999. Their space scheduling model

came into action when it was impossible to construct a feasible layout for any time

interval. The model proposed two strategies to overcome this situation:

 9

SCHEDULING SPACE
SCHEDULING LAYOUT

SCHEDULING LAYOUTLAYOUT PLANNING
DYNAMIC

Figure 2-1 Difference between space scheduling and dynamic layout planning
(Tommelien & Zouein, 1993)

Strategy A: Delays an activity in the problematic time interval. Activities are

selected in order of decreasing total float.

Strategy B: Lowers resource level of activity and therefore lengthens its

duration. Activities are selected in order of decreasing total float.

To conclude, space scheduling can be considered to be a form of constrained

resource leveling, with the resource being site space.

2.4 METHOD OF FACILITY ASSIGNMENT

Another main difference between site layout planning models, is in the manner

the facilities are assigned on site. Two distinct assignment methods can be

characterized, namely facility to location assignment and facility to site assignment.

Facility to location, assigns a set of predefined facilities to a set of predefined

locations such that #of locations ≥ # of facilities. On the other hand, facility to site

assignment, assigns a set of predefined facilities to the entire space available on site.

Facility to location assignment neglects one very important aspect, that of size. All

locations are assumed to be able to fit all facilities. This assumption is weakened by the

discrepancies found between the sizes of most construction site facilities. Facility to site

assignment is considered more generic as it assumes that the planner has not yet settled

on the feasible locations for facility placement. Also, during this type of assignment,

many spatial constraints must be satisfied which poses an extra computational burden

on the model. In brief, facility to site assignment is considered the more generic case of

facility assignment.

2.5 PROBLEM SOLVING TECHNIQUES

Researchers have utilized many problem solving techniques in layout planning

ranging from purely mathematical models to knowledge based systems. Artificial

 10

intelligence and evolutionary algorithms have also been used in problem solving. Up till

now, researchers have not acknowledged a specific problem solving technique to be

more suitable than another. Techniques used can be broadly divided into two categories,

namely heuristical techniques and mathematical techniques.

2.5.1 Heuristics & Expert Systems

Early research in the area of layout planning was focused more heavily on

systems that provide guidelines or heuristics for assisting managers in layout planning.

Systems of this type are more dependant on manual rather that automated design

(Tommelien et al. 1992a).

One of the early innovative expert systems for construction site layout planning

was the SightPlan model presented by Tommelien et al. (1992b). SightPlan was a model

that mimics how people lay out construction sites and encodes the domain knowledge

they apply in this process. The model was implemented using common lisp.

SightPlan’s knowledge was modeled after two power plant project case studies.

Input required to the system include:

1- Major permanent facilities on site with their dimensions.

2- Access roads with their dimensions and location.

3- Dimensions of temporary facilities.

4- Constraints on the location of temporary facilities relative to permanent facilities.

5- Zones that partition the site into smaller areas.

One of the interesting findings during knowledge acquisition was that the A/E

and the construction manager each laid out part of the facilities on the case study

project, with the A/E layout preceding the CM layout.

It is the investigator’s opinion that the system is highly case specific due to the

model’s narrow scope of case studies used in excerpting knowledge. The model is

mostly applicable for industrial projects having under-constrained layouts.

Cheng & O’Connor (1996) developed an automated site layout system for

temporary facilities. Their system ArcSite integrated a database management system

(DBMS) and geographic information system (GIS). The main objective of the system is

to automate the planning tasks required for facility layout. This is performed through

the identification of areas suitable for assigning facilities in order to minimize

construction conflicts and improve project efficiency. The following four sub-

 11

objectives were achieved by developing the system:

1- Obtain the knowledge and procedures that project managers use in laying out

site facilities.

2- Model the experts’ knowledge and experience of site planning and express it in a

systematic form.

3- Define the dominant variables and develop an evaluation method to identify the

suitable location for the facility.

4- Develop a GIS based site layout system to replace manual methods.

The ArcSite system is different in the fact that it performs the site layout

planning process taking into account the possibility of incorporating temporary facilities

(TF) inside constructed permanent facilities (PF). The procedures developed in the

research to a acquire and represent site layout knowledge is classified into three phases:

1- Compiling the experts’ knowledge and experience for site layout.

2- Interpreting the knowledge into the knowledge base.

3- Translating the knowledge base into the ArcSite implementation forms.

Figure 2-2 Procedure of knowledge acquisition and representation
Cheng & O’Connor (1996)

Knowledge representation is complied into five categories of constraints:

1- Spatial: Calculates the area required for the facility

2- Distance: Defines the facility’s priority and proximity to the work sites.

3- Adjacency: Identifies if the facility is located next to the construction area,

another facility, access roads or gates.

4- Position: Position of the facility relative to any other facilities.

 12

5- Accessibility: Defines the accessibility of the area where the facility is located.

The system is implemented using 4 main software components:

1- CAD (MicroStation): To create site geometry

2- ARC tools: Conduct the facility layout analysis and design

3- Excel: Conducts the DBMS function such as adding tabular attributes, data

consolidation, database query and user interface.

4- ARC prompt: ArcSite allows the usr to suspend the user interface and exit to the

ARC prompt to use Arc/Info functions.

2.5.2 Mathematical Techniques

Most mathematical techniques involve the identification of one or more goals

that the layout should strive to achieve. Any of these goals is interpreted to what

mathematicians term "an objective function". This objective function is then optimized

under problem specific constraints via any common optimization technique. Some of

the techniques used by researchers in the site layout optimization problem are listed in

Table 2-1.

Table 2-1 Summarization of optimization techniques used in
solving site layout planning problem

2.6 OPTIMIZATION

Researchers that have used optimization techniques in site layout planning have

formulated many equations to be used as their optimization goal or objective function.

Table 2-2 summarizes the different objective functions formulated by researchers using

optimization techniques.

In almost all optimization approaches, in site layout planning, the layout goal to

be attained, takes the general form:

Min:[Inter-facility Transportation Costs]

This goal is translated to the objective function that takes the general form:

Technique Research
Linear Programming Zouein & Tommelien (1999)
Genetic Algorithms Li & Love (1998), Hegazy & Elbeltagi (1999)
Neural Networks Yeh (1995)

 13

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗∑ ∑

−

= +=

1

1 1
,,:

P

i

P

ij
jiji dWMin .. (2-1)

Where:

P= Total number of fixed and temporary facilities present.

jid , = Distance between facilities i and j

In the literature, the term jiW , represents one of the following:

1- Transportation cost data of some sort or

2- A relative proximity weight that reflects the required closeness between any two

facilities.

Practically, in the absence of data, the project manager would try to assign a

relative weight which represents his/her anticipated closeness required between any two

facilities. But the question is what exactly should this weight depend on? Is it only a

function of transportation costs or do other variables dictate its exact value? Even if

these variables are known, how do they interact and what is the extent of the

contribution of each to the value of the proximity weight?

Table 2-2 Objective functions formulated by researchers using optimization techniques

Objective function to minimize Research
Frequency of trips made by construction
personnel.

Li & Love (1998)

Total transportation costs of resources
between facilities.

Tam et al. (2001)
Cheung et al. (2002)

Cost of facility construction + Interactive
cost between facilities

Yeh (1995)

Proximity weight on an exponential scale Hegazy & Elbeltagi (1999)
Proximity weight + Relocation weight Zouein & Tommelien (1999)

Considering a single objective in layout planning overlooks the intricate nature

of construction sites. When planning a construction site any project manager wants to

achieve various objectives while simultaneously abiding with various constraints.

Researchers who introduced the idea of the proximity weight were highly aware

of this problem. They were also aware that other models that explicitly tried to

minimize costs of any sort required enormous amounts of cost related data. Data of this

sort may be unavailable or very hard to attain for the following two reasons:

 14

1. Site planning is performed in a very early planning phase. The exact scope of the

project may not be well defined.

2. Although organized construction corporations keep track of most relevant cost

data, the cost data required for site optimization may not be readily available.

For example, data on the cost of transportation of 1 unit of concrete per unit

distance is not the type of cost data contractors usually keep a record of.

In an attempt to fully describe the proximity weight, (Elbeltagi & Hegazy 2001)

proposed a fuzzy rule based system that quantifies this proximity weight based on three

variables. There work was an extension to their previous EvoSite model (Hegazy &

Elbeltagi 1999). The six level proximity weights (Table 2-3) were defined as fuzzy sets

as shown in Figure 2-3

Figure 2-3 Fuzzy sets of the variable “proximity weights” (Elbeltagi & Hegazy, 2001)

Based on construction experts opinion, three input variables we formed to

govern the proximity weight value. These input variables are:

1. Work flow (trips/day)

2. Safety / Environmental concerns (scale of 1 to 10)

3. User preference (scale of 1 to 10)

Figure 2-4 illustrates the fuzzy sets depicting each of these input variables.

Each of the three input variables was defined by three fuzzy sets, thus 33 = 27

rules were formulated linking each of these input variables to the proximity weight. For

 15

example, rule #3:

"If workflow is low, safety concerns are medium and user preference is low,

then the required proximity is unimportant."

The process involved in the system is known as fuzzy rule-based inferencing.

Figure 2-4 Fuzzy sets for the input variables (Elbeltagi & Hegazy, 2001)

2.6.1 Linear Programming

Linear programming is a class of mathematical programming models concerned

with the efficient allocation of limited resources to known activities with the objective

of meeting a desired goal (such as maximizing profit or minimizing cost). The distinct

 16

21

21

YYY
XXX

≤≤
≤≤

43

43

YYY
XXX

≤≤
≤≤

65

65

YYY
XXX

≤≤
≤≤

characteristics of linear programming models is that the function representing the

objective and the constraints are linear (Taha, 1971).

Despite its relative simplicity and prevalence in a vast range of engineering

optimization applications from its initial conception in the 1950’s, not many models

have directly utilized linear programming in site layout planning. Zouein & Tommelien

(1999) utilized a simple linear program model in their dynamic layout model. The

typical objective function to be minimized each time a facility is to placed on site is

simply:

∆ VFL = Inter-facility Transportation Cost + Facility Relocation Costs (2-2)

Which translates to the following mathematical equation:

() ()iiiiiiiiiii YYXXRYYXXWTVFL
tt

−+−+−+−×=∆
−−−− 1111 ... (2-3)

Where:

∆VFL: The change in the objective function due to the introduction facility i

Ti: The time resource i is present on site (Time of current time frame)

Wi: Proximity weight between resource i and resource i-1.

Xi-1: X coordinate of resource i-1.

Yi-1: Y coordinate of resource i-1.

Ri: Relocation weight of resource i.

Xti-1: X coordinate of resource i at previous time frame.

Yti-1: Y coordinate of resource i at previous time frame.

Xi: X coordinate or resource i at current time frame.

Yi: y coordinate or resource i at current time frame.

The optimization problem is characterized by having various constraints each

separated by an OR operator:

The solution algorithm includes two main imbedded sub-modules; the CSPA

(constraint satisfaction and propagation algorithm) and the PTFLCA (primary time

frame layout construction algorithm).The CSPA module determines the sets of feasible

positions for facilities in a given time frame. Upon assignment each facility is assigned

a SPP (set of possible positions). The SPP of facilities not yet assigned is influenced by

 17

the assignment of new facilities. On the other hand, the PTFLCA module performs the

assignment process with time frames in chronological order. It starts from the SPP’s

output by the CSPA for a specific time frame, then singles out a position for each

facility one at a time.

Until now the optimization seems quite simple. In fact this bare simplicity

obscures some implementation difficulties, mainly in the formulation of the constraints.

It is the investigators' opinion that the process of defining the SPP of a facility to

prevent overlap or constraint violation via a purely mathematical approach ignores

much of the capabilities of available graphically oriented softwares that can easily

detect overlap between geometrical entities or position them based on set constraints.

2.6.2 Genetic Algorithms

Genetic or evolutionary algorithms are search algorithms based on the

mechanics of natural selection and natural genetics. They combine survival of the fittest

among string structures yet randomized information exchange to form a search

algorithm with some of the innovative flair of human search. In every generation, a new

set of artificial creatures (strings) is created using bits and pieces of the fittest of the old;

an occasional new part is tried for good measure. While randomized, genetic algorithms

are no simple random walk. They efficiently exploit historical information to speculate

on new search points with expected improved performance (Goldberg, 1989).

Li & Love (1998) presented a genetic algorithm for facility allocation. The

algorithm presented was specific and limited because it optimally placed facilities in

predefined positions. The user simply specified locations where facilities could be

placed and the algorithm would assign facilities in their best locations so as to minimize

the total travel distance between facilities. The algorithm only addressed the static

layout problem. The solution generated was completely independent of the site layout

geometry and individual facility size or shape.

The objective of site-level facility layout is to minimize the total travelling

distance of site personnel between facilities. The total distance TD is defined as:

∑∑∑
= = =

=
n

i

n

x

n

j
ijxixi dfTD

1 1 1

δ .. (2-4)

Where:

N: Number of facilities

δij: permutation matrix variable

 18

fij: frequency of trips by personnel between facilities i and j (fij = fji)

dij: Distance between locations m and n

Selecting an appropriate representation for the solution is termed “coding” in the

GA solution. It is considered one of the most important steps in formulating an accurate

solution. The problem at hand is a combinatorial optimization problem. Many

approaches, like the permutation, binary and ordinal representations have been used for

these types of problems. In this study, the permutation type was used, the other

approaches being unsuitable. The string layout representation for 8 facilities is as

follows:

Facility 1 2 3 4 5 6 7 8

Location 5 3 1 7 8 2 4 6

Crossover is one of the main operators utilized in any GA to propagate a new

population from an old one. Of the most efficient operators developed is the edge

recombination operator (Li & Love, 1998). The edge recombination operator uses an

edge table to construct an offspring that inherit as much genetic information as possible

from the parent strings.

As we can see, the model developed by Li and Love is a purely mathematical

model that utilizes facility to location assignment and has its limitations; thus; its use in

the industry as a tool for site management is less likely.

Hegazy & Elbeltagi (1999) presented their EvoSite model for site layout

planning. Their work was much more comprehensive and generic than that performed

by Li and Love (1998). The model was novel in utilizing a simple but effective

spreadsheet representation of site geometry. In the proposed model, a facility is

represented as a group of unit areas that can take any user specified shape. The model

accepts any user specified site shape and incorporates a flexible GA procedure for the

optimum placement of facilities.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗∑ ∑

−

= +=

1

1 1
,,:

P

i

P

ij
jiji dRMin .. (2-6)

Where:

P= Total number of fixed and temporary facilities present.

jid , = Distance between facilities i and j

jiR , = A relative proximity weight that reflects the required closeness between

 19

facilities i and j.

Figure 2-5 Site and Facility representation in the EvoSite model (Hegazy & Elbeltagi,
1999).

The EvoSite model is a static layout planning model. The facilities have relative

proximity weights between each other, this represents the level of interaction between

facilities or the preference in having the facilities close or apart from each other. The

proximity weights used are qualitative proximity weights. Theses qualitative measures

are then mapped to a quantitative weight that can be used in optimization as shown in

Table 2-3. The six levels of desired closeness have been used by other researchers in the

facility layout problem. It is to be noted that there is no theoretical background for the

exact numerical values given to each closeness level.

Table 2-3 Closeness relationship values (Hegazy & Elbeltagi, 1999)

Desired relationship

between facilities

Proximity

weight

Absolutely necessary 65 = 7,776

Especially important 64 = 1,296

Important 63 = 216

Ordinary closeness 62 = 36

Unimportant 61 = 6

Undesirable 60 = 1

 20

The genetic algorithm used generated random solutions (strings) as any GA

would do. The solution was then evaluated for feasibility (for non-overlap between

facilities)and the non-feasible solutions were disregarded. The system had a relatively

high computation time. When the model was run with a population of 200 genes and

100 offspring, it took a 233 MHz processor nearly 150 minutes to solve.

Zouein et al (2002), formulated a genetic algorithm for solving the site layout

problem with unequal-size and constrained facilities. The objective function utilized

was similar to that described in Eq (2-5). Their genetic algorithm was highly problem

oriented, incorporating modified mutataion and crossover operators that suit the gentic

coding representing the problem at hand. Their research focused more on the

investigation of the modified GA than on developing an integrated site layout planning

system. The strengths and limitataions of their proposed GA was tested in the case of:

1. Loosely vs. tightly constrained layouts with equal levels of interactions

between facilities.

2. Loosely vs. tightly packed layouts with variable levels of interactions

between facilities.

3. Loosely vs. tightly constrained layouts.

2.6.3 Neural Networks

Yeh (1995) presented a novel research on the use of Annealed Neural Networks

for construction site layout. Yeh formulated the problem as a discrete combinatorial

optimization problem. This formulation is identical to that presented by Li & Love

(1998) in Eq (2-4). Similarly, the model aimed at assigning a set of predetermined

facilities on a set of predetermined locations while satisfying a set of layout constraints.

Thus the system's method of assignment is classified as a facility to location

assignment.

The annealed neural network proposed was a fusion between Hopfield neural

networks and simulated annealing. Hopfield neural networks have been used to solve a

wide variety of discrete combinatorial optimization problems. Its main drawback has

been its limited inability to escape local minima. Simulated annealing was also

proposed as a general technique to solve combinatorial optimization problems.

Simulated annealing is considered as a probalistic hill-climbing search algorithm which

 21

finds a global minimum by combining gradient decent with a random process. Although

simulated annealing has provided quality solutions in many practical problems such as

the traveling salesman problem, it requires unacceptably high computational times.

The annealed neural network proposed exhibits the rapid convergence of the

neural network while preserving the solution quality afforded by simulating annealing.

(Yeh, 1995).

2.7 SUMMARY OF RESEARCH

Studies in the field of site layout planning have commenced as early as the early

70’s. Research has evolved from the development of heuristic models and expert

systems to the formulation of analytical models having a precise optimization goal.

Various optimization tools have been used in site layout planning. Traditional

optimization tools like linear programming have given way to artificial intelligence

techniques like neural networks and genetic algorithms.

Figure 2-6 summarizes the latest research pertaining to site layout planning

based on the classification criteria discussed in this chapter. It is to be noted that, the

model presented in this research is a mathematical model that uses facility to site

assignment.

Facility to Site
Assignment

Facility to Location
Assignment

Cheng & O'Connor (1996)

Tommelein & Zouein (1993)

Heuristic
Techniques

Tommelein et al. (1992)

Mathematical
Techniques

Hegazy & Elbeltagi (1999)
Zouein & Tommelein (1999)

Cheung et al. (2002)
Tam et al. (2001)
Yeh (1995)
Li & Love (1998)

Zouein et al. (2002)

Figure 2-6 Classification of some of the construction site layout models

 22

3 RESEARCH APPROACH & THEORETICAL BACKGROUND

In this chapter, three main topics are discussed. The first section discusses the

suitability of using CAD platforms and genetic algorithms in an integrated system for

site layout planning. The second section presents the theoretical background behind

genetic algorithms. The final section compares between two representations for the

objective function used in site layout planning.

3.1 SUITABILITY OF CAD PLATFORMS AND GENETIC ALGORITHMS

Computer Aided Design platforms experienced great advances during the late

80’s. Their use in various engineering disciplines became inevitable. In the civil

engineering branch, CAD software started off in use in the design stage as a drafting

tool. Applications of CAD platforms in the construction stage lagged behind their

counterparts in the design stage. In the field of construction engineering, Mahoney &

Tatum (1994) reported the potential benefits of using CAD on construction site

operations. Applications included planning survey control, planning construction

sequence and method, analyzing concrete sequence and placements, designing

formwork for concrete and coordinating subcontractors. The researchers suggested that

CAD could be used to plan construction site layouts, as adoption of such systems allows

easy and accurate visualization of the relationship between the permanent structures and

temporary facilities on site.

The site layout planning problem is evidently graphical in nature. Site

boundaries, existing buildings on site, obstacles, and temporary site facilities all occupy

space and have distinct shape. Thus, the need to represent the relationship between all

aforementioned entities in some sort of graphical format is apparent. Tommelien &

Zouein (1993) were one of the earliest researchers that utilized CAD platforms. Their

MovePlan model was implemented in object oriented common lisp (MCL 2.0). Recent

research focused more on the use of artificial intelligence tools than on benefiting from

the graphical capabilities of CAD platforms. This research tries to integrate the

powerful graphical capabilities of CAD platforms with the evolutionary optimization

technique known as genetic algorithms.

In this research, genetic algorithms are used as function optimizers, although the

range of problems to which genetic algorithms have been applied is quite broad. (Chan

 23

et al, 1996). The use of GA’s as an optimization tool is dependant on the problem to be

solved. In many optimization methods we move gingerly from a single point in the

decision space to the next using some transition rule to determine the next point. This

point to point method is dangerous because it is a perfect prescription for locating false

peaks in multimodal search spaces. By contrast GA’s work from a rich database of

points simultaneously, climbing many peaks in parallel. GA’s belong to the class of

methods known as “weak methods” in the Artificial Intelligence community because it

makes relatively few assumptions about the problem that is being solved. GA’s do not

utilize gradient information. Thus, they are highly applicable to problems having non-

differentiable functions, as well as functions with multiple local optima. On the other

hand, if there exists a specialized optimization method for a specific problem, then

genetic algorithm may not be the best optimization tool for that application (Whitley,

1993).

Al-Tabtabi & Alex (1998) suggest that the use of GA in optimization is

appropriate in the following circumstances:

1- Conventional statistical & mathematical methods are inadequate.

2- The problem is very complex, because the possible solution space is too large to

analyze in finite time.

3- The additional information available to guide the search is absent or not sufficient, so

conventional methods are not practical.

4- The solution to the problem can be encoded in the form of strings and characters.

5- The problem is large and poorly understood.

6- There is an urgent need for near-optimal solutions to use as starting points for

conventional optimization methods.

Three of the aforementioned points make the utilization of GA in solving the site

layout problem very suitable. Firstly, when modeling a large construction site the

available solution space is immense. The larger the available areas for placement and

the greater number of facilities needed to be assigned the larger the feasible solution

space becomes. Secondly, the solution to the problem can be encoded in the form of

strings. This will be highlighted in chapter 4. Thirdly, finding a comprehensive solution

to the site layout problem is not as trivial as minimizing an objective function.

Conditions on construction sites involve far more constraints, variables and

uncertainties than those taken into consideration in most mathematical approaches for

problem solving. Practically, the difference between optimum and near optimum

 24

solution is not that important, as even the optimum solution may require slight

enhancements dictated by unforeseen site conditions.

3.2 GENETIC ALGORITHMS

Genetic algorithms were first investigated by John Holland (1975) at the

University of Michigan. Further studies were carried out by his students DeJong (1975)

and Goldberg (1989).

In the very broad sense genetic algorithms or GA’s, are search algorithms based

on the mechanics of natural selection and natural genetics. They combine survival of the

fittest among string structures with seemingly randomized information exchange to

form a search algorithm with some of the innovative flair of human search. In every

generation, a new set of artificial creatures (strings) is created using bits and pieces of

the fittest of the old; an occasional new part is tried for good measure. While

randomized, genetic algorithms are no simple random walk. They efficiently exploit

historical information to speculate on new search points with expected improved

performance (Goldberg, 1989).

The parallelism between GA’s and biological evolution and natural selection is

evident. Goldberg (1989) summarized this parallel nature in Table 3-1.

Table 3-1 Comparison between natural and GA terminologies

Natural Terminology GA Terminology

Chromosome String

Gene Feature, character, detector

Allele Feature value

Locus String position

Genotype Structure

Phenotype Parameter set

Epistatsis Non-linearity

3.2.1 GA example

The best way to introduce the concepts of genetic algorithms is through an

example of a GA in action. We will illustrate in this example the two principles of

 25

coding and selection.

Suppose we are interested in finding the maximum value of the function

105.1005.0 2 ++−= xxy over the range 2550 ≤≤ x as illustrated in Figure 3-1. The

first aspect to consider about a GA is its encoding, that is the transformation of the

solution to a unique chromosome like structure. For simplicity we will use an 8 string

binary coding to represent the solution space. Take for example the string 11001100,

the binary representation for the decimal number 230.

The binary number is translated into its decimal equivalent as follows:

128 64 32 16 8 4 2 1

1 1 0 0 1 1 0 0

Coding:

= 128+64+8+4 = 230

0

20

40

60

80

100

120

140

0 50 100 150 200 250

X

Y

Figure 3-1 Graph of 105.1005.0 2 ++−= xxy

Any GA follows the shown simple algorithm (Chan et al. ,1996)
Begin

Generate a new population of solutions

While terminating condition is not met DO

 Evaluate the solutions

 Select the better solutions

 Recombine solutions using genetic operators

END

 Initially a GA must start with a randomized initial population of solutions.

 26

Suppose we will randomly choose 10 initial solutions. For each solution or string the

GA evaluates its objective function. In column (5) we evaluate the probability of

selection in the next population such that a solution’s probability to be selected is

directly proportional to the value of its objective function. Pselect is sometimes referred to

as the solution’s relative fitness. In column (6) the expected count for the current

solution i is calculated by multiplying pselect by the number of solutions N, while in

column (7) the actual count is calculated by rounding off column (6). The selection is

made such that fitter solutions have a higher probability of being reselected. On the

other hand, bad solutions are eliminated from the population. It is in this manner that

GA’s mimic the process of natural selection and survival of the fittest.

Table 3-2 A genetic algorithm by hand

As it can be seen, the objective function is evaluated several times during any

one generation. Thus the evaluation process must be relatively fast. As the members of

the population reproduce, their offspring must be evaluated. If it takes 1 hour to perform

an evaluation, then it takes over 1 year to perform 10,000 evaluations. This is

approximately 50 generations for a population of only 200 strings.

After the selection process the solutions are recombined using the common

Solution # String X y = f(x)
pselect =

fi / ∑f

Countexp =

pselect * N
Count act=

(1) (2) (3) (4) (5) (6) (7)

1 00111001 57 79 0.11 1.1 1

2 00011110 31 52 0.073 0.73 1

3 11101111 223 95 0.132 1.3 1

4 00110001 49 71 0.099 0.99 1

5 00001001 9 23 0.032 0.32 0

6 00000110 6 19 0.02 0.2 0

7 11010101 213 103 0.144 1.44 1

8 10010110 150 122 0.17 1.7 2

9 00011010 26 45 0.06 0.6 1

10 01011111 95 107 0.15 1.5 2

Sum 717 1 10 10

 27

genetic operators, namely crossover and mutation. They will be discussed in further

detail later in this chapter.

3.2.2 Concept of hyperplane sampling

The question most people tend to ask at this point is, Why does any of this

work? How would such a random search technique produce anything useful? John

Holland, the founder of genetic algorithms developed several arguments to explain how

GA’s can result in complex and robust search by sampling hyperplane partitions of a

search space.

Perhaps the best way to understand how a GA can sample hyperplane partitions

is to consider a simple 3-dimensional space as illustrated in Figure 3-2. Assume we

have a problem encoding with just 3 bits and each bit can take on either a 0 or 1 value.

GA’s that utilize binary encoding are known as canonical genetic algorithms. This can

be represented as a simple cube with the string 000 at the origin. The 8 corners of the

cube represent the 23 possible encodings or solutions. It can be noticed that the front

plane of the cube contains all the points that begin with a 0. If an “*” symbol is used as

a ‘don’t care’ or wild card match symbol, then this plane can also be represented by the

string 0**. Strings that contain * are referred to as schemata. Each schemata

corresponds to a hyperplane in the search space. The order of the hyperplane refers to

the number of actual bit values that appear in its schemata. Thus, 1** is order-1 while

*011****1 is order-4.

000 001

101

010

100

110

011

111

Figure 3-2 Cube representation of a 3 dimensional hyperplane

Let us inspect our cube example more closely. How many schema does a single

solution belong to? Generally speaking for any string encoding of length L and coding

alphabet n. Number of schema = nL -1 . In our example any solution belongs to 23-1=8

 28

schemata. Take the point 001, it belongs 3 order-1 schema (**1, 0**, *0*), 3 order-2

schema (0*1, *01, 00*) and 1 order-3 schemata 001 which is the point itself. It is to be

noted that the order-1 schema represent three faces of the cube while the order-2 schema

represent the three edges of the cube.

During the evaluation of any population of solutions in a GA far more

hyperplanes are sampled than the number of strings contained in the population.

This mention of hyperplanes and schemata leads us to the concept of implicit

parallelism. Implicit parallelism implies that many hyperplane competitions are

simultaneously solved in parallel during the evaluation of a population. The theory

suggests that through the process of reproduction and recombination the schemata of

competing hyperplanes increase or decrease their representation in the population

according to the relative fitness of the strings that lie in those hyperplane partitions.

Thus even though a GA never explicitly evaluates any particular hyperplane partition, it

should change the distribution of string copies as if it had. This idea is formalized

through the following equation.

f
tHftHMtHM),(),()',(= ... (3-1)

Where:

M(H,t) = The number of strings sampling a hyperplane H at the current generation t

M(H,t’) = The number of strings sampling a hyperplane H at the current generation t

after selection but before crossover.

f(H,t) = The average evaluation of the sample of strings in partition H in the current

population

3.2.3 The Schema Theorem

A foundation has now been laid to develop the fundamental theorem of genetic

algorithms. The schema theorem (Holland, 1975) provides a lower bound on the change

in the sampling rate for a single hyperplane from generation t to generation t+1. From

Eq.(3-1) we want to consider the effects of crossover as the next generation is created

from the intermediate one. We consider that crossover is performed probabilistically

with probability Pc. The portion that does not undergo crossover is unchanged. When

crossover does occur we must account for the losses due to its disruptive effects.

 29

⎥
⎦

⎤
⎢
⎣

⎡
+−+−=+ gainslosses

f
tHftHMP

f
tHftHMPtHM cc)1(),(),(),(),()1()1,(................. (3-2)

The term “losses” refers to those disruptions in the schema representing the

hyperplane H, produced by crossover . But crossover is not always disruptive to the

schema. For example consider the schema 110*****. If crossover between the two

strings 11010100 and 00010011 occurs after the second bit, their offspring will be

11010011 and 00010100. The schema 110***** is still preserved in the first offspring.

A conservative approach is to ignore all gains, considering any crossover operation to

be disruptive.

⎥
⎦

⎤
⎢
⎣

⎡
−+−≥+)1(),(),(),(),()1()1,(disruption

f
tHftHMP

f
tHftHMPtHM cc (3-3)

We might wish to consider one exception. If two strings that both sample H are

recombined then no disruptions occur. Disruption is therefore given by:

),(1(
1
)(tHP

L
H

−
−

∆ ... (3-4)

Where:

∆(H) : The defining length associated with 1-point crossover

L : String length

P(H,t) = The proportional representation of H in the population (=M(H,t) / N)

Dividing both side of Eq. (3-2) by the population size “N” to transform the expression

in terms of P(H,t) instead of M(H,t).

⎥⎦
⎤

⎢⎣
⎡ −

−
∆

−≥+)),(1(
1
)(1),(),()1,(tHP

L
HP

f
tHftHPtHP c ... (3-5)

Till now our version of the schema theorem does not account for mutation. Let

o(H) be a function that defines the order of the hyperplane H. Pm is the probability of

mutation, where the mutation operator always flips the string. The probability that

mutation affects the schema H is (1-Pm)o(H) . This leads to the general expression of the

schema theorem.

)()1()),(1(
1
)(1),(),()1,(Ho

mc PtHP
L

HP
f

tHftHPtHP −⎥⎦
⎤

⎢⎣
⎡ −

−
∆

−≥+ (3-6)

3.2.4 GA encoding

Usually there are only two main components of most genetic algorithms that are

problem dependant, the problem encoding and the evaluation function. The encoding

 30

scheme of any GA is the essence of its success. Goldberg (1989) presented two main

principles for choosing GA encoding:

1) Principal of meaningful building blocks:

“the user should select a coding so that short, low order schemata are relevant to

the underlying problem and relatively unrelated to schemata over other fixed

positions”

2) Principal of meaningful alphabets:

“The user should select the smallest alphabet that permits a natural expression of

the problem”

Some GA encodings, that have been successfully used in practice are the binary,

permutation and value encoding. Each type is discussed in detail below.

1. Binary Encoding: The first works of GA’s used this type of encoding. Each

chromosome assumes either the value of 1 or 0. Binary encoding gives many possible

chromosomes even with a small number of alleles. On the other hand, this encoding is

often not natural for many problems and sometimes corrections must be made after

crossover and/or mutation.

Chromosome A 1 1 0 1 0 0 0 1 0 0

Chromosome B 0 1 1 1 1 0 1 0 1 1

Figure 3-3 Example of a chromosome with a 10-bit binary encoding

2. Permutation Encoding: Every chromosome is a string of numbers, which represents

numbers in a sequence. This type of encoding is only useful for ordering problems.

Chromosome A 1 4 2 9 0 3 5 8 7 6

Chromosome B 8 7 9 2 6 4 5 0 1 3

Figure 3-4 Example of a chromosome with a 10-bit permutation encoding

3. Value Encoding: Direct value encoding can be used in problems where complicated

values such as real numbers are used. Use of binary encoding for this type of problems

would be very difficult. Values of the alleles can be anything related to the problem,

whole numbers, real number, characters, or even objects.

 31

Chromosome A 1.23 6.75 9.31 0.73 5.52 7.11

Chromosome B A C B C B D

Chromosome C (up) (down) (left) (up) (right) (down)

Figure 3-5 Example of a chromosome with a 6-bit value encoding

3.2.5 Selection of the fittest

Selection of the fittest is the cornerstone of the operation of the GA. From a

broader point of view it can be considered as the process of creating an intermediate

population. It is this intermediate population that undergoes the genetic operations of

crossover and mutation. There are two distinct methods of performing the selection

process, namely roulette wheel selection and rank selection.

1. Roulette wheel selection: The population is mapped onto a roulette wheel, where

each individual is represented by a space that proportionally corresponds to its fitness.

By repeatedly spinning the roulette wheel, individuals are chosen using “stochastic

sampling with replacement”.

A selection process that will more closely match the expected fitness value is

“remainder stochastic sampling”. For each string i where fi / favg is greater than 1.0, the

integer portion of this number indicates how many copies of that string will be copied to

the intermediate population. All strings (including those with fi / favg < 1.0) are then

chosen with a probability corresponding to the fractional probability of fi / favg. For

example, a string with fi / favg = 2.3 is chosen twice and then receives a 0.3 chance of

placing a third copy.

Remainder stochastic sampling is most efficiently implemented using a method

known as “stochastic universal sampling”. Assume that the population is laid out in

random order as in a pie graph, where each individual is assigned space on the pie graph

in proportion to fitness. Next an outer roulette wheel is placed around the pie with N

equally spaced pointers. A single spin of the roulette wheel will now simultaneously

pick all X members of the intermediate population. The resulting selection is also

unbiased.

2. Rank selection: Roulette wheel selection may cause the population to prematurely

converge to a non-optimum solution. This situation occurs when the population consists

of few chromosomes having a very high fitness value compared to the remainder of the

population. These fit chromosomes will have a high probability of selection compared

 32

to other unfit members. The reproduced population will inevitably be dominated by the

fit members, causing potentially rich genetic information to be lost from the population.

 An alternative selection process can be used. Instead of representing the

chromosomes as spaces corresponding to their relative fitness, chromosomes are gives a

ranked fitness. The worst will have a fitness of 1, second worst 2 and so on, the best

chromosome will have a fitness of N (number of chromosomes in the population).

Consider the 6 chromosomes having the fitness values shown in Table 3-3.

Table 3-3 Comparison between Raw selection and Rank selection

Raw Selection Rank Selection
Chromosome Fitness Relative

Fitness
Fitness Relative

Fitness
1 100 0.55 6 0.29
2 25 0.14 5 0.24
3 20 0.11 4 0.19
4 20 0.11 3 0.14
5 10 0.055 2 0.09
6 5 0.027 1 0.05

1

2

3

4
5 6

1

6
5

4

3 2

Before Ranking (Raw Fitness) After Ranking (Ranked Fitness)

Figure 3-6 Comparison between Raw fitness and Ranked fitness after mapping on a
roulette wheel

After selection has been carried out the construction of the intermediate

population is complete and recombination (crossover – mutation) can occur.

3.2.6 Crossover

Crossover can very simply be defined as a process in which the newly

reproduced strings are randomly coupled, and each couple of the string partially

 33

exchanges information. There are various methods for performing crossover.

1. Single point crossover: One crossover point is randomly selected. String form the

beginning of the chromosome to the crossover point is copied from one parent; the rest

is copied from the second parent.

Parent A 1 1 0 1 0 0 Offspring 1 1 1 0 1 1 0

Parent B 0 1 1 1 1 0 Offspring 2 0 1 1 1 0 0

Figure 3-7 Example of a single point crossover with a binary encoding

2. Two-point crossover: Two crossover points are randomly selected. This method

copies string from the first parent, starting from the beginning of the chromosome to the

first crossover point and from the second crossover point to the end of the chromosome.

The remainder is copied form the second parent.

Parent A 1 1 0 1 0 0 Offspring 1 1 1 1 1 0 0

Parent B 0 1 1 1 1 0 Offspring 2 0 1 0 1 1 0

Figure 3-8 Example of a Two-point crossover with a binary encoding

3. Uniform crossover: Bits are randomly selected from both parents creating the

offspring.

Parent A 1 1 0 1 0 0 Offspring 1 1 1 0 1 0 0

Parent B 0 1 1 1 1 0 Offspring 2 0 1 1 1 1 0

Figure 3-9 Example of a uniform crossover with binary encoding

3.2.7 Mutation

The main motivation for using mutation is to prevent the permanent loss of any

particular allele. After several generations it is possible that selection will drive all

alleles in some position to a single value. If this happens without the genetic algorithm

converging to a satisfactory solution then the algorithm has prematurely converged.

This may particularly be a problem if one is working with a small population. Without a

Crossover Point

2nd Crossover Point1st Crossover Point

 34

mutation operator, there is no possibility for reintroducing he missing bit value

(Whitley, 1993).

Generally speaking, mutation involves the random alteration of a bit value in the

chromosome. The probability of mutation occurrence is usually small compared to

crossover. Mutation probabilities are usually in the range of (0.005 - 0.01), while

crossover probabilities are usually in the range of (0.4 - 0.8). Two methods for

performing mutation will be discussed below.

1- Bit inversion: Performed only with binary encoding. A randomly selected bit (or bits)

is inverted from 0 to 1 or visa versa.

1 0 1 1 1 0 Mutation 1 0 0 1 1 1

Figure 3-10 Example of 2-bit inversion with binary encoding

2- Order changing: Two alleles are randomly selected and exchanged.

8 6 3 2 9 6 Mutation 3 6 8 2 9 6

Figure 3-11 Example of order changing with value encoding

3.3 THE OBJECTIVE FUNCTION: RELATIVE WEIGHTS VS. COST DATA

In almost all optimization approaches, when performing static layout, the

objective function to be minimized, takes the general form:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗∑ ∑

−

= +=

1

1 1
,,:

P

i

P

ij
jiji dWMin ... (3-7)

Where:

P= Total number of fixed and temporary facilities present.
t

jid , = Distance between facilities i and j

In the literature, the term jiW , represents one of the following:

1- Transportation cost data of some sort or

2- A relative proximity weight that reflects the required closeness between any two

facilities.

 In all optimization problems the clear identification of a goal to attain is

essential. Thus, the first representation has the clear objective of minimizing total

transportation costs between site facilities. The objective is not as apparent when using

 35

the relative weight representation. With the second representation one might argue,

“What exactly are we trying to achieve?”

Several scales have been adopted in order to facilitate the verbal representation

of the proximity weight. One of the common scales used in industrial facility layout

planning is shown in figure-. In the previous chapter we outlined how these weights

were quantified using a fuzzy rule based system (Elbeltagi & Hegazy 2001). The main

advantage of using the relative weight representation is the great difficulty in obtaining

accurate inter-facility transportation cost data. Using a relative proximity weight may be

much easier for the site planner to provide. One of the common proximity weight

representations used in industrial facility layout planning is shown in Table 3-4. (Askin

& Standrige, 1993)

Table 3-4 The six value closeness relationship values used in industrial facility layout
planning

Desired relationship

between facilities

Proximity

weight

Absolutely necessary (A) 81

Especially important (E) 37

Important (I) 9

Ordinary closeness (O) 3

Unimportant (U) 1

Undesirable (X) 0

On the other hand, when performing dynamic layout, the objective function

takes the general form:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗∑∑

= =

P

i

P

j
jiji dWMin

1 1
,,: + Relocation Cost of Facility

Relocation costs of facilities are more easily quantifiable than inter-facility

transportation costs. Formulating a relative relocation weight to be used with the

proximity weight is quite complex. In this research, the objective function to be

minimized takes the general form:

Layout Cost = Transportation Cost (T.C.) + Relocation Cost (R.C.)

 36

4 SYSTEM DEVELOPMENT

This chapter provides details of the automated CAD-based GA system used for

the dynamic layout planning of construction sites. The chapter begins with an overview

of the system structure as a whole. Afterwards the various modules comprising the

system are thoroughly explained. These include the space detection module, the

constraint satisfaction module and the GA-based optimization procedure. The coding

for all modules is provided in the appendices of this thesis.

4.1 SYSTEM STRUCTURE

The automated site layout planning system is comprised of three main

components:

1- An input facility that incorporates various types of data needed for the layout

planning task.

2- An optimization engine based on the concepts of genetic algorithms.

3- An output facility that utilizes the programmable features of the CAD

platform of choice.

The automated system utilizes vast amounts of data. Data used in the system can

be grouped into four major categories (Table 4-1), namely, schedule data, temporary

facility data, site geometrical data and facility cost data.

Table 4-1 Description of the main data types required in the model

Data Description

Schedule data Main project phases. Phases are grouped based on

temporary facility requirements.

Temporary facility data Temporary facility requirements in each phase in addition

to the expected sizes of these temporary facilities.

Site geometrical data CAD drawings representing the layout of fixed facilities in

each project phase.

Facility cost data Inter-facility transportation costs for each phase in addition

to the expected cost for relocating temporary facilities.

 37

Figure 4-1 Detailed system architecture

Relocation costs of temporary facilities

Project milestone data

Temporary
facility

requirements

F2
F3
F4
F5
F6
F7

F1 F2 F3 F4 F5 F6

200

100

100

1 200 1 500 1 1

10011500

1 100 1

11

1001

20

Transportation costs between facilities

Static layout of

temporary facilities

Dynamic layout of

temporary facilities

Temporary Facilities
assigned in optimal positions

Temporary facilities
assigned based solely on

transportation costs

CAD files depicting site
boundaries, location of permanent
structures and obstacles at different

project milestones

Reloc. Cost
1000F1

F3
F2

F6
F5
F4

25000

70000
250

10000
10

 38

Genetic algorithms are used to perform the optimization process, which

proceeds in two stages. Firstly, static layout is performed and each phase is considered

completely separate. Secondly, dynamic layout is performed taking layout continuity

into consideration. Following the optimization process, the model delivers a series of

CAD drawings each depicting a particular construction phase with all temporary

facilities placed in their optimal positions. The detailed system architecture is illustrated

in figure 4-2. The figure shows where the system process the different types of data

described in table 4-1.

4.2 SPACE IDENTIFICATION

The functionality of the optimization engine largely depends on identifying the

specifics of the CAD drawing (i.e., site boundaries, permanent facilities, and obstacles).

Accurately identifying the available space on site for assigning the temporary facilities

is essential in order to yield a feasible solution. Available space on site is detected

through the algorithm explained hereafter. The main concept in space detection is that

of space discretization, that is the division of space into an orthogonal two-dimensional

grid. This grid is then coded, each grid cell having a unique (X,Y) coordinate as

illustrated in Figure 4-1. Regardless of the site geometry, the system is able to capture

all geometric data lying within the site boundaries, after which removal of space

occupied by permanent facilities occurs.

Site Boundary

Virtual site mesh

Facilities occupying space

Occupied grid spaces

X

Y

(0,0)

Figure 4-2 Details of space discretization

 39

The available space on site is detected using the capabilities of the CAD platform

of choice. In the widely used AutoCAD™, a macro can be employed to perform this

function. Generally, two steps must be accomplished, first the site boundaries are

identified, second fixed facilities and obstacles occupying space are identified.

4.2.1 Identification of enclosed site space:

In order to perform this task the user must identify the site boundaries (must be

an AutoCAD™ LWpolyline) and any point lying inside the site boundaries. Performing

this task proceeds as follows:

1. Using the rectilinear coordinates of the site boundary’s vertices, the CAD

macro identifies the edges of the site boundary as a set of equations:

2. Using a point inside the boundary, the CAD macro identifies the edges of the

site boundary as a set of inequalities:

3. By toggling through coordinates of all points inside the site boundary’s

“Bounding Box” (Figure 4-3), the macro chooses only those points that

satisfy all linear inequalities simultaneously.

4. Feasible grid squares are stored in 2 arrays: AvailableX() and

AvailableY () such that any point “i” has coordinates (AvailableX(i),

AvailableY(i))

4.2.2 Identification of fixed facilities and obstacles

Till this stage no account has been made for obstacles or fixed facilities.

Obstacles are defined as site facilities with fixed positions having no closeness

relationship with other facilities. Fixed facilities on the other hand have fixed positions

but maintain closeness relationship with other facilities. (Hegazy & Elbeltagi 1999). In

order to perform this task the user must identify all obstacles and fixed facilities present

on site (must be an AutoCAD™ LWpolyline). Performing this task proceeds as follows:

1- Grid spaces occupied by these obstacles are removed from the arrays

AvailableX and AvailableY.

2- Grid spaces occupied by these fixed facilities are removed from the

arrays AvailableX and AvailableY. The coordinates of their centroid

are stored for future use in the optimization procedure.

11 bxay += 22 bxay +=33 bxay += nn bxay +=

11 bxay +≤ 22 bxay +≥33 bxay +≥ nn bxay +≥

 40

After these two sub-tasks are accomplished, available site space, obstacles and

fixed facilities are translated into a set of X,Y coordinates. These coordinates will be

utilized in the optimization procedure during the layout of the temporary facilities.

Site Boundary

Bounding Box

Figure 4-3 Bounding box of a polygon

4.3 GA STRING CODING

The optimization procedure itself depends primarily on GA optimization. As

discussed in chapter 3, the coding of a solution to a string is one of the most important

aspects of success for GA optimization. The coding scheme of any GA is the essence of

its success. The coding scheme used in the presented model is a modified version of that

adopted by Hegazy & Elbeltagi (1999). As their model depended largely on utilizing a

set of grid cells to represent site space; each grid cell was uniquely coded based on the

location of the row and column in which the cell is located. Site facilities were then

referenced via these developed codes (figure 2-5). The model by Hegazy & Elbeltagi

(1999) was implemented using MS-Excel.

In this research the case is quite different. The main dependency on geometrical

data is by space detection through the CAD platform. It was seen previously that

available space is represented by a set of X and Y coordinates. Therefore there is no

need for the unique coding of grid spaces, as each grid space in uniquely identified by a

set of two numbers (i.e., the X and Y coordinates). The coding of a certain solution

representing the assignment of 4 temporary facilities is illustrated in Figure 4-4.

It is to be noted that the temporary facilities are arranged in descending order of

size. That is: F1 > F2 > F3 > F4 > ….> Fn. The reason for this pre-sorting will be

explained in the following section.

Although the position of fixed facilities affects the value of the objective

 41

function, they are not represented in the string as their positions are fixed making their

allele values in the chromosome constants.

F1

F4

F2

(0,0)

(4,8)

(15,14)

(2,10)

Reference point

Facility

X
Y

F1 F2 F4F3
4
8

0
0

2
10

15
14

F3
Solution encoding

Figure 4-4 GA string encoding of 2D space

4.4 CONSTRAINT SATISFACTION

Geometrical constraints are vital in the layout process. It is of utmost importance

that temporary facilities be placed (1) Inside our site boundaries and (2) In such a

manner that no overlap occurs between any two temporary facilities or between

temporary facilities and fixed facilities.

To achieve the satisfaction of geometrical constraints, two main modules are

utilized, namely “CheckSite” and “CheckOverlap”. These modules rely on 5 main

variables in their operation as shown in Table 4-2.

The constraint satisfaction algorithm is applied on each facility in ascending

string position (ie. F1 , F2, F3…).
For each Temporary Facility

CheckSite(Xmin, Ymin, FacilityX, FacilityY)

CheckOverlap(Xmin, Ymin, FacilityX, FacilityY)

Next Facility

Where:

Xmin and Ymin are gene values for current facility (coordinates of bottom left

corner of facility) and FacilityX and FacilityY are the dimensions of the

 42

temporary facility in the X and Y directions respectively.

Table 4-2 Main variables required in the constraint satisfaction procedure

Variable Name Description

AvailableX() Available X-coordinates for assigning temporary facilities

AvailableY() Available Y-coordinates for assigning temporary facilities

OccupiedX() Space currently occupied by temporary facility

OccupiedY() Space currently occupied by temporary facility

ReservedPTS Number of grid units currently occupied by temporary

facilities

It is now clear why it is very important that facilities be sorted in descending

order of size from F1 to Fn, as placing small facilities early on site may not leave

sufficient room for other larger facilities to be placed later on. Other researchers have

used different heuristics to guide their order of assignment. Zouein & Tommelien

(1999) choose the facilities based on their relative interaction with other facilities as

represented by the sum of their proximity weights. In tight congested sites, using this

heuristic alone may lead to infeasible site layouts. Primarily because small facilities –

having high proximity weights with other facilities – may be assigned to spacious areas

that are more suited to place other larger facilities. Starting the assignment procedure in

descending order or facility size ensures that this premature solution infeasibility does

not occur.

4.4.1 CheckSite module:

This module is a built-in function that makes sure that any temporary facility (1)

lies inside the site boundaries and (2) does not overlap with any fixed facility or site

obstacle.

This function requires as input 4 variables; [Xmin, Ymin, FacilityX and

FacilityY]. It provides a Boolean true/false output. In its operation it toggles through all

grid coordinate occupied by the facility and compares them with the arrays AvailableX

and AvailableY.
If any (X,Y) of facility ⊄ Available(X,Y) then CheckSite =

False

Else CheckSite = True

 43

Temporary facilities

Fixed facilities

CheckSite = False

Site Boundary

CheckSite = False

Temporary facilities

Site Boundary Fixed facilities

Fixed facilities

Temporary facilities

CheckSite = True

Site Boundary

Figure 4-5 Functionality of the Checksite module

4.4.2 CheckOverlap module

This module is a built-in function that performs two sequential tasks.

a- Makes sure that the facility being checked does not occupy space already

being reserved for another facility that has been assigned on site.
If any (X,Y) of facility ⊂ Occupied(X,Y) then CheckOverlap =

False

Else CheckOverlap = True

b- If no overlap occurs space is reserved for the facility

For ∀ (X,Y) of facility, Occupied(X,Y) = Facility(X,Y)

 44

Temporary facilities

CheckOverlap = False

Temporary facilities

CheckOverlap = True

F3

F1

F3

F1

Fixed facilitiesSite Boundary

F2

Assignment of F3

Site Boundary

F2

Fixed facilities

Figure 4-6 Functionality of the CheckOverlap module

4.5 INTER-FACILITY COST MATRIX

The inter-facility transportation cost matrix contains the most important

optimization relevant data. Using these numbers, the optimization procedure will

assign facilities close to or far from one another. The cost data is represented in a

lower triangular matrix as shown in Table 4-3 for 6 temporary facilities and 3 fixed

facilities. As shown in the table, no inter-facility costs data exists for fixed-to-fixed

facilities.

Table 4-3 Inter-facility cost matrix for 6 temporary facilities and 3 fixed facilities

F1
F2 W12
F3 W13 W23
F4 W14 W24 W34
F5 W15 W25 W35 W45
F6 W16 W26 W36 W46 W56
F7 W17 W27 W37 W47 W57 W67
F8 W18 W28 W38 W48 W58 W68 N/A
F9 W19 W29 W39 W49 W59 W69 N/A N/A
 F1 F2 F3 F4 F5 F6 F7 F8 F9

Temporary Facilities Fixed Facilities

Te
m

po
ra

ry

Fa
ci

lit
ie

s
Fi

xe
d

Fa
ci

lit
ie

s

 45

4.6 OPTIMIZATION PROCEDURE

The GA-based optimization procedure utilized is a steady state GA generation

that utilizes single-point crossover and a modified mutation operator. Details of the

objective function to be optimized and the GA procedure are fully described in the

following section. The flowchart for the GA is illustrated in Figure 4-8.

4.6.1 Objective function

The objective function that is evaluated in the optimization process is a modified

version of that adopted by Zouein & Tommelien (1999). The objective function to be

minimized is:

Layout Cost = Transportation Cost (T.C.) + Relocation Cost (R.C.)

∑ ∑
−

= +=

∗=
1

1 1
,,..

P

i

P

ij

t
ji

t
ji dWCT ... (4-1)

∑
=

−∗=
P

i

tt
i

t
i dRCR

1

)1(.. ... (4-2)

Where:

P = Total number of fixed and temporary facilities present.
t
jiW , = Transportation costs / unit distance between facility i and j during the

current phase t
t

jid , = Distance between facilities i and j during the current phase t

t
iR = Cost of relocating facility i during the current phase t

tt
id)1(− = Distance that facility i has moved from phase t-1 to phase t

In the newly developed model the term R.C. depicting the relocation cost has

been slightly modified. Generally, relocation cost of a construction facility can be

represented by the following equation:

R.C. = Fixed Cost + Variable Cost... (4-3)

Where the fixed cost represents those costs spent on dismantling, re-installment,

delay and providing an alternative facility. Variable costs are usually attributed to

hauling, and are a direct function of hauling distance. In construction site planning, the

cost of relocating a facility is not greatly dependant on the distance of relocation but on

 46

whether relocation has taken place or not. When considering most construction related

facilities, fixed costs are far larger than variable costs. Accordingly, the following

representation for relocation cost can be used:

∑
=

−∗=
P

i

tt
ii OcRCR

1

)1(.. ... (4-4)

Where iOc is a binary variable that takes only 0 or 1

If facility i has been relocated from phase (t-1) to phase t, then 1)1(=− tt
iOc

If no relocation has occurred 0)1(=− tt
iOc

4.6.2 Initialization of Population

Any GA procedure starts with an initial population of solutions. The number of

initial solutions generated influences the GA. It is known that increasing the population

size has the following effects on the GA:

1- Tremendously increases the time required for generating a new population.

2- Causes a very slow convergence rate.

3- Causes the GA to reach more optimum solutions.

Figure 4-7 Effect of population size on optimum solution (Hegazy & Elbeltagi, 1999)

In order to assist the GA in its blind search, a slight enhancement has been

proposed. Instead of working with a very large population throughout the GA, the initial

population is selected as the best ‘n’ solutions from an initial pool of ‘N’ solutions

 47

where n < N. Before running the GA, both the initial pool “N” and the required

population size “n”. Thus the GA benefits from the presence of a large initial population

that assists its random search without paying the large computational penalty posed by

dealing with a large population at each generation.

4.6.3 GA Generations

The generation process proposed in this research is a slight modification of that

used by Hegazy & Elbeltagi (1999). Traditional GA’s move from generation(i) to

generation(i+1) via the generation of a new population. The approach proposed by

Hegazy & Elbeltagi (1999) moved from one generation to the other via the introduction

of two new offspring that would replace the worst two solutions in the population. In

case the new offspring were not better than the worst solutions, they were discarded and

two other offspring were chosen.

Elimination of the worst offspring meant that as each new solutions are

introduced, the population as a whole would improve. It also meant a chance for

randomly bred offspring to even outperform the best solution in the population.

Generation of new offspring involves the 3 traditional genetic operators:

1- Replication

Traditional roulette wheel selection is performed based on the fitness value for

individual solutions. Two random solutions are chosen to replace the worst two

solutions in the population. There is no need to check for the feasibility of the solutions,

as no modifications were performed (crossover, mutation).

2- Crossover:

The same selection procedure is applied to select the parents that will be crossed.

Simple single-point crossover was used so as to minimize the disruption of the

schemata.

4 20 0 14 2 8 4 20 24 16 4 7

12 2 6 10 22 9 12 2 2 14 8 15

15 5 24 16 4 7 15 5 0 14 2 8

0 8 2 14 8 15 0 8 6 10 22 9

Crossover point

 48

Selection of best "n" solutions
as the initial population

Select best solution in population as
the optimum solution

Replace worst 2
strings with

selected strings

Replace worst
2 strings with

selected strings

Solution better
than worst
solution?

Yes

No

No

Yes

Is solution
feasible ?

Reached
termination
condition of
algorithm ?

Random point
crossover.

Generate 2 strings

Crossover Replication

Roulette wheel
selection of 2 strings

Choose genetic
operator

Replace best
solution with

mutated string

No

Mutation

Apply random
mutation operator

Select best solution
in population

Geometrical
Constraints

Evaluate objective
function for each solution

Generation of pool
population for choice

"N"

Yes

Is solution
feasible ?

Solution better
than worst
solution?

Yes

Yes

No

No

Figure 4-8 Genetic Algorithm Flowchart

 49

After the crossing two checks are performed on the offspring:

1- Constraint satisfaction: To verify the feasibility of the new solutions.

2- Objective function improvement: To verify that the new solutions are not

worse that those being replaced.

3- Mutation:

Mutation is used mainly to break current stagnation in improvement by

introducing new genetic information into the population. It was noticed during the

development of the system, that performing the GA without mutation led to solutions

that required slight refinements to reach more optimum solutions. These refinements

usually involved very small movements of one or more facilities in a specific direction.

Have all possible
mutations been

tried ?

Select next best
solution in population

Yes

Solution better
than worst
solution?

Replace best
solution with

mutated string

Yes

Yes

Is solution
feasible ?

Select best solution
in population

Apply random
mutation operator

No

No

Figure 4-9 Mutation Operator Flowchart

A modified mutation operator is developed in this research to attain the required

function. The mutation operator randomly choose the following:

1- The facility to be moved.

2- Whether the movement should be in the X or Y direction.

3- Whether the movement should be in the +ve or –ve direction.

And then applies a movement of 1 unit to the facility chosen and in the direction

chosen. Similarly, the new solution is checked for constraint satisfaction and objective

function improvement. If violated, the mutation procedure is repeated. The mutation

operator flowchart is shown in Figure 4-9.

 50

4.6.4 Convergence Condition

In any GA the generation process must proceed until a certain termination

condition is reached. Researchers have used various convergence conditions:

1- Until no further improvement in the population occurs (Al-Tabtabi & Alex,

1998)

2- Until all offspring in the population are replaced (Hegazy & Elbeltagi, 1999)

3- Until there is very little variation within the population itself.

In our system, the generation process continues until the following convergence

condition is reached:

 ∆ < Convergence

Where

Max
MinMax −

=∆

Convergence: User specified tolerance (usually 5-10%).

Min: minimum solution in current population

Max: Maximum solution in current population

4.6.5 Dynamic Optimization

Until now, all discussion of the optimization process was only for a single phase

in the project. The layout process itself is dynamic in nature, thus the optimization

process must also reflect this dynamics. The optimization process begins with the static

optimization of all phases based solely on transportation costs. It treats each phase as if

it were a completely separate phase with no interaction with preceding or succeeding

phases. After static optimization of all layouts are complete, one of two dynamic

optimization techniques are followed. The two techniques are called the critical phase

approach and the mini-min approach (Figure 4-10).

In the past, researchers who have tried to tackle the problem of dynamic site

layout planning have proceeded in chronological order (Zouein & Tommelien, 1999).

This approach has its drawbacks. The main weakness lies in the fact that facilities that

are assigned positions in early phases may:

1- Be placed in positions that will subsequently be occupied by permanent

facilities, thus they will be forced to be relocated.

2- Be placed in positions that minimize transportation costs during early phases

but in subsequent phases be in unfavorably far positions from other facilities.

 51

As mentioned before, two approaches are employed to mitigate these costs of

early assignment of facilities in positions that may seem favorable in early phases, but

could turn out very costly in phases to come.

Figure 4-10 Flowchart for the optimization procedure

I- Critical Phase Approach

It is evident that the choice of the first phase to be the initial phase (where no

relocation costs are calculated) may not necessarily yield the most optimum

transportation + relocation cost for all phases combined. The key to finding the

optimum solution for all phases lies in identifying an initial phase whose layout will be

solely dependant on the transportation cost. Dynamic optimization should proceed in

forward chronological order for succeeding phases and backward chronological order

for preceding phases as illustrated in Figure 4-11.

This approach is based on the prevalence of a phase in the project having several

on- site temporary facilities, a lot of ongoing site movement and a relatively long time

span. Thus during this critical phase, transportation costs are more likely to be much

higher than other phases. During planning, extra care should be provided to this phase.

Performing facility layout based solely on transportation costs in phases other than the

critical phase may lead to facilities being placed in a position that is not optimum during

this critical phase. Transportation costs in this critical phase could greatly boost. The

overall transportation costs for all phases could be far from optimum.

The critical phase approach highlights the importance of this critical phase. The

approach selects the phase having the highest transportation costs (previously obtained

from static optimization) as being the initial phase. Dynamic optimization proceeds in

Transportation Costs Static Optimization

Dynamic OptimizationTransportation Costs +
Relocation Costs

Critical Phase
Approach

Mini-Min
Approach

 52

backward chronological order for all phases preceding the critical phase and in forward

chronological order for all phases succeeding the critical phase. It is to be noted that this

approach does not necessarily give the most optimum solution. It is merely suggested as

an enhancement to approaches that begin the layout process with the first phase in the

project sequence.

Backward chronological order

Travel Cost = 18,200

Forward chronological order

33,100

Optimization of each TF seperatly
based on both transportation &

relocation costs (dynamic layout)

(The more critical phase)
Maximum Travel Cost

22,400 56,600

Figure 4-11 Critical phase approach in dynamic optimization

II- Mini-Min Approach

Due to the fact that the critical phase approach does not necessarily yield the

most optimum solution, the Mini-Min approach is introduced. The main weakness in

the critical phase approach is that the phase having the largest transportation cost might

not necessarily be the initial phase. This approach is a slight enhancement of its critical

phase counterpart.

The Mini-Min approach considers all possibilities for choosing the critical

phase. It performs the dynamic optimization of all phases Nphase times, Nphase being the

number of phases. It calculates the total costs for all phases Nphase times and chooses the

trial having the least cost as the Minimum-Minimum solution. The Figure 4-12 illustrates

this process for a four-phase project.

 53

Initial Phase

Dynamic Optimization

Total Cost (T+R) for all phases

130,100

Dynamic Optimization

125,600

Dynamic Optimization

132,200

141,800

Dynamic Optimization

Dynamic Optimization

Dynamic Optimization

Mini - Min Solution

Results from
static layout

Results from
static layout

Initial Phase

Results from
static layout

Initial Phase

Results from
static layout

Initial Phase

Figure 4-12Mini-Min approach for dynamic optimization

It may seem that the Mini-Min approach performs the dynamic optimization

problem far too many times and that this may be computationally exhaustive. In fact, it

is. For a project comprised of Nphase phases, our system is required to solve Nphase
2

optimization problems. But as we shall see in chapter 6 of this thesis, running the

system on PC’s of regular speed is computationally possible, though may require large

running times.

Figure 4-13 compares the number of optimization problems required to be

solved for the two approaches.

4.7 SOLUTION REPRESENTATION

Regardless of the dynamic optimization technique used, the optimum solution

must be represented in a user-comprehendible form. The final step in our system is the

physical representation of the optimum solution.

The system, via the drawfacility module automatically opens all AutoCAD

drawings and draws the temporary facilities in their optimum positions as depicted by

the genetic algorithm. Having the output in graphical form allows the planner to easily

 54

visualize the relationship between the permanent structures and temporary facilities on

site. Graphical solution representation proceeds as follows
For all project phases

 Open CAD file representing current phase

 For all temporary facilities in phase

 Draw temporary facility in optimum postion

 Next temporary facility

 Close CAD file

Next project phase

p p j

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10

Number of phases

N
um

be
r o

f o
pt

im
iz

at
io

n
pr

ob
le

m
s

so
lv

ed

Critical phase approach Mini-Min approach

Figure 4-13 Effect of the dynamic approach used on the number of optimization
problems solved

 55

5 AUTOMATED SYSTEM & ILLUSTRATED EXAMPLE

In this chapter the automated system, EDSLP (Evolutionary Dynamic Site

Layout Planner) is presented along with an illustrated example that demonstrates the

various features of the automated system. The system has been implemented via MS

VisualBasic™ 6.0. The CAD interface has been made possible through the

programmable features of AutoCAD™ in the VBA environment. Code for the various

modules can be found in the appendices of this thesis.

5.1 SYSTEM INPUT

The previous chapter discussed the types of data required as input to the system.

Data can broadly be grouped into four categories namely, schedule data, temporary

facility data, site geometrical data and facility cost data.

In the automated system, schedule data and temporary facility data are input

simultaneously as shown in Figure 5-1. On each screen, the phase name, start date and

end date are entered. For each phase, a list of all required temporary facilities and their

anticipated dimensions is entered. Input continues until all project phases are entered.

Figure 5-1 Schedule and temporary facility input screen

Meanwhile, site geometrical data input is made possible via the VisualBasic™ -

 56

AutoCAD™ referencing capabilities. The automated system is capable of opening

existing CAD drawings and reading the site layouts found in these drawings. The

system detects the available site space, the fixed facilities present and any site obstacles.

Hence, the available space for temporary facility placement is deduced.

CAD drawings for each phase should be appropriately prepared before the

automated system process them. For each phase an individual drawing depicting the site

geometry, fixed facilities and obstacles is required. The task of space detection

completely takes place from within the CAD environment. Figure 5-2 shows the

AutoCAD™ interactive capabilities present from within the automated system. Figure

5-3 shows the procedure for space detection operating from within the AutoCAD™

environment.

Figure 5-2 AutoCAD™ interactive capabilities from within the program environment

Facility cost data is comprised of:

1- Inter-facility transportation cost data: Input is through Excel environment in order to

utilize the ready made cell divisions to mimic the required inter-facility matrix. (Figure

5-4)

2- Facility relocation cost data: A separate input screen is available from within the

system's environment.

 57

Figure 5-3 AutoCAD™ VBA macro for space detection of site layouts

Figure 5-4 Inter-facility cost input from within the MSExcel™ environment

 58

5.2 SYSTEM OPTIMIZATION

The optimization procedure progresses in two stages.

Stage-1: Static Optimization of individual phases taking only transportation costs into

consideration.

Stage-2: Dynamic Optimization of all phases taking transportation as well as relocation

costs into consideration.

The automated system offers two alternatives for performing the optimization process.

1- Start a new optimization performing Step-1 followed by Step-2.

2- Load the results of a previous static optimization and use it to conduct dynamic

optimization.

Figure 5-5 Static optimization results loading screen

5.3 SYSTEM OUTPUT

The system provides two distinct forms of output, namely graphical output and a

cost summary. Graphical output is represented via automated assignment of temporary

facilities in the AutoCAD™ environment (Figure 5-8). A summary for the total layout

costs (transportation costs + relocation costs) can be presented and automated charting

capabilities via MSExcel™ is available through the optimization results screen Figure

5-6.

 59

Figure 5-6 Dynamic optimization results screen (Mini-Min approach)

5.4 ILLUSTRATED EXAMPLE

The following example of a 4-phase project is used to demonstrate the system

capabilities and evaluate the output. The illustrative project is comprised of a – 15,000

m2 - residential compound of 4 villas, a swimming pool, in addition to the necessary

infrastructure. The project is scheduled to be completed in 12 months. The first phase

lasts for 2 months and involves the construction of the necessary infrastructure for the

compound. The second phase involves the construction of the large, southern villas and

lasts for 5 months. During the third phase of the project, construction operations mainly

take place in the northern section of the site where the smaller villas are being

constructed. This phase lasts for 3 months. The fourth phase of the project starts on the

11th month of the project and involves the construction of a swimming pool in the center

of the compound. The evolution of the site layout is shown in Figure 5-7.

5.4.1 Schedule & Temporary facility data

To sustain the required construction operations, 7 temporary facilities are

required. Not all temporary facilities will be required throughout the project (Table 5-1).

When infrastructure works are underway, only the caravans and the electromechanical

warehouse are required. During phases 2 and 3, all temporary facilities are required. The

 60

aggregate storage area can be dismantled during the last phase, when no major concrete

works will be underway.

Table 5-1 Schedule and temporary facility data

Phase1
Infrastructure

Phase2
South

Phase3
North

Phase4
Swimming

pool Temporary Facility Dimensions
(m)

2 months 5 months 3 months 2 months
Administrative Caravans 10x8

Engineer’s Caravans 10x5
Steel Fabrication Yard 14x14

Concrete Mixer 10x10
Aggregate Storage 12x6
Electromechanical

Warehouse 12x6

Wood Warehouse 10x10

5.4.2 Site Layout Data:

P-1

P-2 P-4

P-3

P-5

Gate

Phase 1: Infrastructure
Villa - 10 Gate Villa - 11

Phase 2: South

Villa - 10

Villa - 13

Gate Villa - 11

Phase 3: North

Villa - 12

Villa - 10

Villa - 13

Gate Villa - 11

Phase 4: Swimming pool

Swimmig Pool

Villa - 12

Figure 5-7 Evolution of site layout throughout project phases

 61

5.4.3 Facility cost data

1- Transportation cost data

The inter-facility cost matrices for facilities present during all project phases are

illustrated in Table 5-2.

Inter-facility cost matrix – Phase 1

Caravan 1 0
Caravan 2 0 37
P-1 81 0 37
P-2 81 0 37 0
P-3 81 0 37 0 0
P-4 81 0 37 0 0 0
P-5 81 0 37 0 0 0 0
Gate 37 81 9 0 0 0 0 0

El
ec

. W
ar

eh
ou

se

C
ar

av
an

 1

C
ar

av
an

 2

P-
1

P-
2

P-
3

P-
4

P-
5

Inter-facility cost matrix – Phase 2

Wood Warehouse 0
Steel fabrication yard 0 0
Agg. Storage 0 0 0
Caravan 1 0 0 0 0
Caravan 2 0 0 0 0 37
Mixer 0 0 0 81 0 0
Villa - 10 37 81 81 0 3 37 81
Villa - 11 37 81 81 0 3 37 81 0
Gate 37 37 9 37 81 9 0 0 0

El
ec

. W
ar

eh
ou

se

W
oo

d
W

ar
eh

ou
se

St
ee

l f
ab

ric
at

io
n

ya
rd

A
gg

. S
to

ra
ge

C
ar

av
an

 1

C
ar

av
an

 2

M
ix

er

V
ill

a
- 1

0

V
ill

a
- 1

1

Table 5-2 Inter-facility cost matrix for the four project phases

 62

Inter-facility cost matrix – Phase 3

Wood Warehouse 0
Steel fabrication yard 0 0
Agg. Storage 0 0 0
Caravan 1 0 0 0 0
Caravan 2 0 0 0 0 37
Mixer 0 0 0 81 0 0
Villa - 10 0 0 0 0 0 0 0
Villa - 11 0 0 0 0 0 0 0 0
Villa - 12 37 81 81 0 3 37 81 0 0
Villa - 13 37 81 81 0 3 37 81 0 0 0
Gate 37 37 9 37 81 9 0 0 0 0 0

 El
ec

. W
ar

eh
ou

se

W
oo

d
W

ar
eh

ou
se

St
ee

l f
ab

ric
at

io
n

ya
rd

A
gg

. S
to

ra
ge

C
ar

av
an

 1

C
ar

av
an

 2

M
ix

er

V
ill

a
- 1

0

V
ill

a
- 1

1

V
ill

a
- 1

2

V
ill

a
- 1

3

Inter-facility cost matrix – Phase 4

Wood Warehouse 0
Steel fabrication yard 0 0
Caravan 1 0 0 0
Caravan 2 0 0 0 37
Mixer 0 0 0 0 0
Villa - 10 0 0 0 0 0 0
Villa - 11 0 0 0 0 0 0 0
Villa - 12 0 0 0 0 0 0 0 0
Villa - 13 0 0 0 0 0 0 0 0 0
Swimming Pool 81 81 81 3 37 37 0 0 0 0
Gate 37 37 9 81 9 0 0 0 0 0 0

El
ec

. W
ar

eh
ou

se

W
oo

d
W

ar
eh

ou
se

St
ee

l f
ab

ric
at

io
n

ya
rd

C
ar

av
an

 1

C
ar

av
an

 2

M
ix

er

V
ill

a
- 1

0

V
ill

a
- 1

1

V
ill

a
- 1

2

V
ill

a
- 1

3

Sw
im

m
in

g
Po

ol

Table 5-2 Inter-facility cost matrix for the four project phases (continued)

 63

2- Relocation cost data

Table 5-3 Facility Relocation Cost Data

Temporary Facility Relocation Cost
Administrative Caravans 5000
Engineer’s Caravans 5000
Steel Fabrication Yard 1000
Concrete Mixer 300
Aggregate Storage 1000
Electromechanical Warehouse 2500
Wood Warehouse 2000

5.5 OPTIMIZATION RESULTS

The output capabilities of the automated system are exemplified through the

optimization results of the illustrated example presented in the preceding section. The

system enables optimization results to be presented in various forms.

5.5.1 CAD presentation

The most obvious form of output is that in which data was input, CAD

drawings. The automated system is capable of opening project drawings and placing

temporary facilities in their optimal positions.

Figure 5-8 System automated drawing capabilities

 64

5.5.2 Comparative graphical cost presentation

The system provides automated charting capabilities to be used for comparative

analysis of cost related data. Table 5-4 compares the total layout costs associated with

each initial phase. It is evident that choosing phase-4 as the initial phase yields the

Minimum-Minimum solution.

Elec. Warehouse

Caravans

Steel
fabrication

Agg. Storage

Wood
WarehouseCaravans

Elec. Warehouse

Mixer

Wood
Warehouse

Caravans

Agg. Storage

Elec. Warehouse

Steel
fabrication

Mixer

Steel
fabrication

Elec. Warehouse

Caravans

Wood
Warehouse

Swimmig Pool

Mixer

Phase 1: Infrastructure Phase 2: South

Phase 4: Swimming poolPhase 3: North

Figure 5-9 Automated system generated layouts – Mini-Min approach

Table 5-4 Layout cost data – Mini-Min approach

 65

Initial Phase Summary of layout costs

Ph
as

e-
1

Phase Transportation
Cost

Relocation
Costs

Total Costs

Phase-1 25993 0 25993
Phase-2 69964 2500 72464
Phase-3 63690 4300 67990
Phase-4 12367 8000 20367

Total Costs 172013 14800 186813

Ph
as

e-
2

Phase Transportation
Cost

Relocation
Costs

Total Costs

Phase-1 31043 2500 33543
Phase-2 72012 0 72012
Phase-3 72178 3300 75478
Phase-4 10999 8300 19299

Total Costs 186233 14100 200333

Ph
as

e-
3

Phase Transportation
Cost

Relocation
Costs

Total Costs

Phase-1 29396 2500 31896
Phase-2 98012 6800 104812
Phase-3 62174 0 62174
Phase-4 16874 3300 20174

Total Costs 206456 12600 219056

Ph
as

e-
4

Phase Transportation
Cost

Relocation
Costs

Total Costs

Phase-1 28678 0 28678
Phase-2 73835 4300 78135
Phase-3 62578 4300 66878
Phase-4 11839 0 11839

Total Costs 176929 8600 185529

 66

6 SYSTEM VALIDATION & CASE STUDY

In this chapter the performance of the automated system is validated via a

construction project with 24,000 m2 site area. Based on the results, a comparison

between the existing layouts and the layouts created by the system is conducted and

comparisons are drawn

6.1 CASE STUDY

The selected project is a major swimming pool complex with several auxiliary

buildings. The site is part of the new Heliopolois club in El-Shorouk city, Egypt. The

contract for the complex was awarded for 14 million LE . Due to the immense size of

the club’s ground and facilities, it was divided into three main packages, the swimming

pool complex, the social building, and the sports grounds. Each was awarded to a

separate contractor. Each of the contractors occupies a portion of the club’s site where

his work is executed. All contractors independently sustain their construction sites and

no sharing of facilities occurs between them.

Children's Pool

Diving Pool

Recreational Pool

Olympic Pool

Changing rooms

Site GateSite Gate

Hardscape
Area

N
Site Boundary

Figure 6-1 Layout of fixed facilities on the construction site

The case study focuses only on the swimming pool complex and considers it a

completely independent site. The site layout showing all fixed facilities present is

 67

shown in Figure 6-1.

During the project planning phases, the site layout was created by the project

management group. Extensive effort was placed in the layout development which was

thereafter approved by the engineer. The layout was developed solely using past

experience and no formal approach was exploited.

During a site visit the following information was collected:

1- The project schedule.

2- The actual layout of the temporary facilities on site.

3- Inter-facility closeness relationships.

4- Facility relocation costs.

6.1.1 Project Schedule data

After thorough analysis of the project schedule and method statement, three distinct

phases could be identified as shown in Table 6-1.

Table 6-1 Project phases with a brief description of the main construction operations

Phase Duration
(months)

Available
Site Space

(m2)
Description

Phase 1 11 14632 m2 Work is started in the Olympic and

diving pools. Only the north section of

the recreational pool has commenced to

allow the concrete pump to reach the

east walls of the Olympic pool

Phase 2 7 11676 m2 Work is started in the changing rooms

building and the south section of the

recreational pool. Work in the children's

pool and the hardscape area has not yet

begun.

Phase 3 6 9408 m2 Work in all 6 permanent structures of

the project is underway.

6.1.2 Permanent Facilities data

The swimming pool complex is comprised of six main permanent structures as

well as the site gate. An underground basement occupies a large portion of the Olympic

and diving pools. Table 6-2 illustrates permanent facilities and their dimensions.

 68

Table 6-2 Listing and approximate dimensions of permanent facilities

Permanent facility Approx. Dimension (m)
Diving Pool 56 x 48

Olympic Pool 86 x 48
Children’s Pool 52 x 26

Recreational Pool 90 x 48
Changing Rooms 38 x 20
Hardscape Area 38 x 24

Site Gate 3 x 3

6.1.3 Site Obstacles

An access road covering the site was considered as an obstacle. During the first

phase, an area south of the recreational pool was reserved to allow the concrete pump to

pour the east wall of the olympic pool. The arrangement of permanent facilities and site

obstacles within the site boundaries during the three project phases is shown in Figure

6-2 At maximum site congestion (third phase), the permanent facilities and site

obstacles occupy nearly 15000 m2 of the site. The remaining 9000 m2 is left for

assigning the temporary facilities.

Diving Pool

Recreational Pool

Olympic Pool

Access Road

Site Boundary

Site GateSite Gate

N

Concrete
Pump

staging

Phase 1

Figure 6-2 Arrangement of permanent facilities & obstacles on the swimming pool
complex during different project phases

 69

Diving Pool

Recreational Pool

Olympic Pool

Changing rooms

Access Road

Site GateSite Gate

N

Phase 2

Site Boundary

Children's Pool

Diving Pool

Recreational Pool

Olympic Pool

Changing rooms

Access Road

Site GateSite Gate

Hardscape
Area

N

Phase 3

Site Boundary

Figure 6-2 Arrangement of permanent facilities & obstacles on the swimming pool
complex during different project phases (continued)

6.1.4 Temporary Facilities

The temporary facilities found on the site can be divided into four main

categories:

1- Storage Areas: General storage Area, Steel storage

 70

2- Staff Facilities: Caravans, Toilets, Prayer area, Parking

3- Supporting Facilities: Water Tanks, Generators

4- Fabrication Areas: Steel fabrication yard

The temporary facilities needed to sustain the construction requirements, their

dimensions and relocation costs are shown in Table 6-3

Table 6-3 Dimensions and relocation costs of temporary facilities

Temporary Facility Dimension
(m)

Relocation Cost
(LE)

Storage Area 42 x 20 2400
2 Administrative Caravans 10 x 3 1150

2 Engineer’s Caravans 10 x 3 1150
Parking Area 12 x 4 150

Toilets 10 x 3 800
Steel fabrication yard 10 x 18 450

Steel storage 10 x 12 250
Generators 2 x 2 150

6.1.5 Proximity Matrix

An inter-facility proximity matrix was provided by the project manager during a

short interview. This matrix was transformed into its quantitative equivalents before

input to the system. (Table 3-4).

Steel fabrication yard U
Steel Storage U A
Car Parking U X X

Adm Caravan 1 U X X U
Adm Caravan 2 U X X I A
Eng Caravan 1 U X X I E E
Eng Caravan 2 U X X I E E A

Diving Pool A I E E X X I I
Olympic Pool A I E E X X I I N/A

Children's Pool E U I I X X I I N/A N/A
Recreational Pool E U I I X X I I N/A N/A N/A
Changing rooms E U I I X X I I N/A N/A N/A N/A
HardScape Area I U I I X X I I N/A N/A N/A N/A N/A

Gate I I X A A A E E N/A N/A N/A N/A N/A N/A

St
or

ag
e

A
re

a

St
ee

l f
ab

ric
at

io
n

ya
rd

St
ee

l S
to

ra
ge

C
ar

 P
ar

ki
ng

A
dm

 C
ar

av
an

 1

A
dm

 C
ar

av
an

 2

En
g

C
ar

av
an

 1

En
g

C
ar

av
an

 2

D
iv

in
g

Po
ol

O
ly

m
pi

c
Po

ol

C
hi

ld
re

n'
s

Po
ol

R
ec

re
at

io
na

l P
oo

l

C
ha

ng
in

g
ro

om
s

H
ar

dS
ca

pe
 A

re
a

 71

6.2 AUTOMATED SYSTEM OUTPUT

6.2.1 Step1: Static Layout

The system performed the GA-based optimization of the three project phases in

a total of 92 minutes running on a Pentium-3 800 MHz processor. A termination

condition of ∆ = 5% was used. Table 6-4 summarizes the static optimization results.

The following genetic parameters were used:

Pmutation = 0.05
Pcrossover = 0.7
Population size = 250

Table 6-4 Summary of the GA-based optimization process for the three project phases

 Run-Time
(minutes)

Number of GA
generations

Optimum Transportation
costs (LE)

Phase-1 43 1,664 13,141
Phase-2 22 558 8,142
Phase-3 27 1,168 8,726

The generated layouts based solely on inter-facility transportation costs are

shown in Figure . It is noted that till this step the system deals with each layout as if it

were a totally independent optimization problem. It is the dynamic optimization process

that integrates the relocation costs of facilities from one phase to the next, creating the

required chronological continuity between project phases.

Steel
Storage

Steel
fabrication

Storage Area

Generator

Eng Carav.

Car Parking

Toilets
Adm Caravans

Phase 1

Figure 6-3 Automated system assignment of temporary facilities (Static Layout)

 72

Steel
Storage

Steel
fabrication

Storage Area

Generator

Eng Carav.
Car Parking

Toilets
Adm Caravans

Phase 2

Storage Area

Eng Carav.

Car Parking
Toilets

Adm Caravans

Steel
fabrication

Steel
Storage

Generator

Phase 3

Figure 6-3 Automated system assignment of temporary facilities -Static Layout
(continued)

6.2.2 Step2: Dynamic Layout

The second step is performing the optimization process taking into consideration

the relocation costs of facilities from one layout to the next. As shown in Table

 73

6-5Table 6-4, the maximum transportation costs occur during Phase-1 of the project.

Total transportation and relocation costs are dependant on the choice of the initial phase.

The results, shown in Table 6-5, demonstrate the transportation and relocation

costs for all project phases when each of the project phases is taken is the initial phase.

When Phase-1 is taken as the initial phase for dynamic layout planning, the

optimization process yields the highest values for both transportation and relocation

costs. Adopting the critical phase approach, Phase-1 would be taken as the initial,

critical phase and layouts would be constructed in forward chronological order.

Adopting the Mini-Min approach will consider all possible combinations for choosing

the initial phase and then choose the combination that yields the lowest total

transportation and relocation costs. In this case, choosing Phase-2 as the initial phase.

Table 6-5 Summary of layout costs after dynamic optimization (Mini-Min approach)

Initial Phase Summary of layout costs

Ph
as

e-
1

Phase Transportation

Cost (LE)

Relocation

Costs (LE)

Total Costs

(LE)

Phase-1 13,141 0 13,141

Phase-2 9,315 2,550 11,865

Phase-3 8,875 3,100 11,975

Total Costs 31,331 5,650 36,981

Ph
as

e-
2

Phase Transportation

Cost (LE)

Relocation

Costs (LE)

Total Costs

(LE)

Phase-1 11,856 0 11,856

Phase-2 8,142 0 8,142

Phase-3 8,871 850 9,721

Total Costs 28,870 850 29,720

Ph
as

e-
3

Phase Transportation

Cost (LE)

Relocation

Costs (LE)

Total Costs

(LE)

Phase-1 11,770 700 12,470

Phase-2 9,015 0 9,015

Phase-3 8,727 0 8,727

Total Costs 29,512 700 30,212

 74

Steel
Storage

Steel
fabrication

Storage Area

Generator

Eng Carav.
Car Parking

Toilets
Adm Caravans

Phase 1

Steel
Storage

Steel
fabrication

Storage Area

Generator

Eng Carav.
Car Parking

Toilets
Adm Caravans

Phase 2

Figure 6-4 System assignment of temporary facilities (Dynamic Layout, Mini-Min
approach)

 75

Storage Area

Eng Carav.
Car Parking

Toilets
Adm Caravans

Steel
fabrication

Steel
Storage

Generator

Phase 3

Figure 6-4 System assignment of temporary facilities (Dynamic Layout, Mini-Min
approach), continued

The Mini-Min solution was attained when taking Phase-2 as the initial phase,

yielding a total layout cost of 29,720 LE. The three layouts are depicted in Figure 6-4. It

is noted that no relocation costs occur from Phase-2 to Phase-1, that is the layouts are

identical during the first 18 months of the project. The third phase did undergo the

relocation of the steel fabrication yards, the steel storage area and the generator.

6.3 ACTUAL SITE LAYOUTS

During a brief site interview, the project manager made clear the following facts

pertaining to the site layout:

1. Site constraints forced the schedule to proceed in a certain order. The south

section of the recreational pool was postponed until the east wall of the olympic

pool was poured. The concrete pump’s boom could not reach the east wall

otherwise (Figure 6-2).

2. The engineer’s caravans were placed in place of the hardscape area. Work in the

hardscape area was scheduled to begin on the 18th month of the project. The

caravans were to be relocated during that time.

3. During the 15th month of the project the engineer issued a change order. The west

edge of the olympic and diving pools were shifted 6m to the west. This forced the

 76

contractor to move the administrative caravans and car parking so as not to

obstruct this shift. The storage area decreased in size due to this shift.

4. The contractor decided to relocate the engineer’s caravans on the 15th instead of

the scheduled 18th month date so as to minimize site disruption caused by several

facility relocations.

Figure 6-5 Actual site layout, first 15 months

Actual layouts adopted during the project differed to some extent from the

system generated layouts: The site layout plan was intended to undergo only one

change. The engineering caravans were to be moved during the last six months of the

project to make room for the hardscape area. This change did occur, but ahead of

schedule. During the 15th month, the owner issued a change order increasing the

premises of the Olympic and diving pools by six meters to the west. The contractor was

forced to relocate the 2 administrative caravans and the car parking. The contractor was

reimbursed for the relocation. At the same time, and so as not to disrupt the layout any

further, it was decided to relocate the engineer's caravans and make room for the

hardscape area which was to undergo construction in only three months time.

Diving Pool

Recreational Pool

Olympic Pool

Changing rooms

Eng Caravans

Parking
Storage Area

Steel
Storage

Steel
Fabrication

Adm Caravans
Toilets

 77

Figure 6-6 Actual site layout, last 9 months

6.4 COMPARATIVE ANALYSIS

The automated system dealt with the three main phases but yielded only two

distinct layouts. One layout spanned the first and second phases, while the second

layout spanned the last phase. A brief comparison between the assignment of temporary

facilities in the actual and the system generated layouts is shown in Table 6-6. Total

layout costs for the actual and the system generated layouts is shown in Table 6-7.

Table 6-6 Comparison between actual and system generated layouts

Temporary Facility Comment

Storage Area Assignment of the storage area was identical in both

layouts. This consistency is mainly due to the large size of

the facility and thus the unavailability of various site

locations to be placed in.

Diving Pool

Recreational Pool

Olympic Pool

Changing rooms

Adm Caravans
Eng Caravans

Parking

Storage Area

Children's Pool

Hardscape
Area

Steel
Storage

Steel
Fabrication

Toilets

 78

Steel fabrication yard &

Steel storage area

In the actual layout, no relocation occurred. In the

system’s layout, they were assigned in place of the

children’s pool during the first two phases as no

construction had yet begun. During the last phase they

had to be relocated. They were relocated south of the

diving pool, which was the same position the contractor

had assigned them in. This indicates a partial consistency

between the generated layout and the actual layout.

Engineer’s Caravans In the actual layout, the caravans underwent relocation

from the hardscape area to an area west of the diving

pool. In the generated layout, no relocation occurred and

the caravans were assigned west of the diving pool

throughout the project. Although during the last phase the

caravans were placed west of the diving pool in both

layouts, their exact assignment did differ by

approximately 4 meters.

Administrative Caravans Both layouts assigned the administrative caravans west of

the diving pools. Their exact assignment did differ by

approximately 7 meters.

Parking Area In the actual layout the car parking underwent relocation

upon issue of the change order. In the generated layout,

no relocation occurred. Both layouts assigned the parking

west of the diving pool although their exact assignments

did differ by 1 meter in the first two phases and 10 meters

in the last phase.

Table 6-7 Comparative layout costs between actual and automated system layout

 Actual Layout Generated Layout

Transportation costs (LE) 35,600 28,870

Relocation costs (LE) 4,750 850

Total Layout Cost (LE) 40,350 29,720

 79

7 SUMMARY & CONCLUSIONS

7.1 SUMMARY

This research investigates the use of genetic algorithms in construction site

layout planning. Although genetic algorithms have been previously utilized by other

researchers in solving the site layout planning problem, this research aims to create an

integrated CAD-based GA automated computer system for site layout planning. The

system utilizes genetic algorithms (GA’s), as function optimizers, in determining the

temporary facility location according to the graphical information depicted in a CAD

environment.

Due to the special nature of the problem at hand, a problem oriented GA

procedure was developed in order to suit site layout planning problem. The developed

GA uses steady state generation with a modified mutation operator. Due to the evident

graphical nature of the problem, the GA was integrated with a CAD platform. The CAD

environment is utilized in space detection of the site layout and in the satisfaction of

geometrical constraints dictated by the facility assignment problem.

The system addresses the changing nature of construction sites via performing

dynamic site layout planning. Two dynamic optimization approaches have been

suggested to overcome the shortcomings found in the traditional dynamic layout

techniques. The integrated system has been implemented via MS VisualBasic™ 6.0.

The CAD interface has been made possible through the programmable features of

AutoCAD™ in the VBA environment. The automated system EDSLP (Evolutionary

Dynamic Site Layout Planning System) incorporates various data input facilities, a GA-

based optimization engine and a CAD output facility.

In order to validate the performance of the system, it was tested on an actual

24,000 m2 construction site. The system produced a site layout that accomplished nearly

a 25% saving in total layout cost compared to the layout actually adopted.

 80

7.2 CONCLUSIONS

1- Genetic algorithms can be satisfactorily used to solve the site layout problem:

When tested with an actual case study the EDSLP system yielded highly

optimum solutions with nearly 25% savings in total layout cost. Run times are

feasible and reasonable compared to other genetic algorithms taking into

account the iterative dynamic optimization approach used.

2- The integration between CAD platforms and genetic algorithms was successful

in performing the site layout optimization process: Overall, the integrated

system managed to benefit from the intricate search and optimization abilities of

genetic algorithms and at the same time utilize the powerful graphical

capabilities of CAD systems. Optimization results were very satisfactory as

previously mentioned. Geometrical constraints dictated by the site geometry

were strictly followed by the CAD platform as no overlap or out-of-boundary

assignment of temporary facilities occurred.

3- The two suggested approaches for performing the dynamic layout process

overcome the shortcomings found in previous models: Both the Critical Phase

approach and the Mini-Min approach for dynamic layout aim to mitigate costs

of assignment of facilities in positions that may seem favorable in early phases,

but could turn out very costly in phases to come. Traditional chronological

dynamic layout is proven to yield non-optimal solutions throughout the project

phases.

4- Assigning facilities based solely on transportation & relocation costs neglects

other secondary objectives: This was found when comparing the system

generated layout with that created by the project manager. Although the system's

layout scored higher than the adopted layout, the project manager considered the

layout to create some minor local site congestions. Thus it can be concluded that

other secondary objectives should be taken into consideration when performing

site layout planning. These objectives include but are not limited to minimizing

local site congestion and promoting safe working environments.

 81

7.3 RECOMMENDATIONS FOR FURTHER RESEARCH

1- Formulate a comprehensive objective function that accounts for secondary,

intangible objectives in addition to the main objective: Assigning facilities based

solely on transportation & relocation costs neglects other secondary objectives

as mentioned. Thus, a comprehensive multi-objective objective function should

be formulated that takes all influencing factors into consideration according to

their relative importance.

2- Provide the system with a knowledge-based facility identification module: This

module will estimate the number of required temporary facilities and the

dimension of each temporary facility. This estimation will be based on project

related data such as: the type of construction activities involved, the number of

personnel present on site, the amounts of material to be stored, required

equipment, etc…

3- Enhance the system to be able to deal with actual travel distances between

facilities instead of rectilinear distances: The present system utilizes rectilinear

distances between facilities. These distances may not necessarily represent the

realistic distances to travel inside the site. Especially in congested sites,

maneuvering around facilities may be required during travel. Using CAD

features, actual travel distances around facilities can be correctly estimated.

4- Enhance the system to be able to deal with irregular facility shapes instead of

rectangular shapes: The present system is able to deal with irregular site

boundaries but can only identify rectangular facility shapes. Although most

temporary construction facilities tend to have rectangular shapes, permanent

facilities may assume any irregular shape. Enhancing the system to be able to

recognize irregular facilities will further increase its practicality for use.

5- Develop a system is capable of dealing with three dimensional spatial aspects.

(3-D site layout planning): The present system performs site layout planning at

the 2-D level. Some projects (eg. High-rise buildings built on congested sites)

require temporary support facilities to be placed inside the building whilst

construction. Enhancing the system to deal with the third dimension will make it

more suitable for these types of projects, further increasing its practicality for

use.

 82

8 REFERENCES

Al-Tabtabi, H. and Alex, A. (1998). “An evolutionary approach to the capital budgeting

of construction projects.” Cost Engineering, AACE, 40(10), 28-34

Chan, W.T., Chaua, D.K., Kannan, G. (1996). “Construction resource scheduling with

genetic algorithms” Journal of Construction Engineering & Management, ASCE, 122(2),

125-132

Cheng, M.Y. and O’Connor, J.T. (1996). “ArcSite: Enhanced GIS for construction site

layout” Journal of Construction Engineering & Management, ASCE, 122(4), 329-336

Cheung, S.-O., Thomas Kin-Lun Tong, Tam, C.-M. (2001) “Site pre-cast yard layout

arrangement through genetic algorithms” Automation in Construction , 11(1), 35-46.

Elbeltagi, E. (1999) "Construction Site Planning" Ph.D. dissertation. Faculty of

Engineering, El-Mansoura University, El-Mansoura, Egypt.

Elbeltagi, E. and Hegazy, T. (2001) “A hybrid AI-Based system for site layout planning

in construction” Computer-Aided Civil and Infrastructure Engineering, Blackwell

Publishers ,16(2), 79-93

Goldberg (1989), “Genetic Algorithms in Search, Optimization and machine learning” ,

Addison-Wesley Publishing

Hegazy, T. and Elbeltagi, E. (1999). “EvoSite: Evolution based model for site layout

planning” Journal of Computing in Civil Engineering, ASCE, 13(3), 198-206

Hegazy, T. and Elbeltagi, E. (2000). “Simplified spreadsheet solutions: A model for site

layout planning” Cost Engineering, AACE, 42(1), 24-30

Heng Li and Love, P.E. (1998). “Site level facilities using genetic algorithms” Journal of

Computing in Civil Engineering, ASCE, 12(4), 227-231

Mahoney, J.J. and Tatum, C.B. (1994). "Construction site applications of CAD" Journal

of Construction Engineering & Management, ASCE, 120(3), 617-631

Markhomihelakis, A. (1997). "Site layout planning and its relevance to safety

 83

management and quality assurance". Msc dissertation. University of Manchester Institute

of Science & Technology.

Rosenblant, M.J. (1986). “The dynamics of plant layout” Management Science, 32(1),

76-86

Schnecke, V. and Vornberger, O. (1997) “Hybrid genetic algorithms for constrained

placement problems” IEEE transactions on evolutionary computation, 1(4), 266-277.

Taha (1971), “Operations Research, an Introduction”, Macmillan Publishing Company

Tam, C.M. ,Tong, T.K. and Chan, W.K. (2001). “Genetic algorithm for optimizing

supply locations around tower crane” Journal of Construction Engineering &

Management, ASCE, 127(4), 315-321

Tam, C.M. ,Tong, T.K., Lueng, A. and Chiu, G. (2002) "Site layout planning using

nonstructural fuzzy decision support system" Journal of Construction Engineering &

Management, ASCE, 128(3), 220-231.

Tommelien, I.D., Levit, R.E., and Hayes-Roth, B. (1992a). “Site-layout modeling: how

can artificial intelligence help?” Journal of Construction Engineering & Management,

ASCE, 118(3), 594-611

Tommelien, I.D., Levit, R.E., and Hayes-Roth, B. (1992b). “SitePlan model for site

layout” Journal of Construction Engineering & Management, ASCE, 118(4), 749-766

Tommelien, I.D. and Zouein, P.P. (1993). “Interactive dynamic layout planning” Journal

of Construction Engineering & Management, ASCE, 119(2), 266-287

Whitley, D. (1993). “A genetic algorithm tutorial” Tech. Rep. CS-93-103, Colorado

State University, Fort Collins, Colorado.

Yeh, I-Cheng “Construction-site layout using annealed neural network” Journal of

Computing in Civil Engineering, ASCE, 9(3), 201-208

Zouein, P.P. and Tommelien, I.D. (2001). “Improvement algorithm for limited space

scheduling” Journal of Construction Engineering & Management, ASCE, 127(2), 116-

 84

124

Zouein, P.P. and Tommelien, I.D. (1999). “Dynamic layout planning using a hybrid

incremental solution method” Journal of Construction Engineering & Management,

ASCE, 125(6), 400-408

Zouein, P.P., Harmanani, H. and Hajar, A. (2002)."A genetic algorithm for solving the

site layout problem with unequal size and constrained facilities" Journal of Computing in

Civil Engineering, ASCE, 16(2), 143-151

 85

9 APPENDICES

APPENDIX A: OPTIMIZATION CODE

StaticOpt module

Const Maxpool = 1000
Const Maxpop = 1000
Const Maxstring = 10 'Also maximum number of facilities
Const Maxpoints = 10000 'Maximum number of grid squares

'GA Data
Public Type Individual
 ChromosomeX(Maxstring) As Byte
 ChromosomeY(Maxstring) As Byte
 ObjectiveFunc As Single
 Fitness As Single
End Type

Public Type Population
 TypePop As Individual
End Type

Public NewPop(2) As Population
Public PoolPop(Maxpool) As Population
Public CurrentPop(Maxpop) As Population
Public Current_SOF As Single

Public Popsize As Byte 'Integer global variables
Public Pcross As Single, Pmutation As Single 'Real global
varibles
Dim Action As String 'What has occured (crossover, mutation,
etc..)
Public Parent1 As Byte, Parent2 As Byte 'Parents that were
selected
Public Nmutation As Integer, Ncross As Integer, Ngener As
Integer 'Integer Statistics
Public Maximum As Single, Maximum2 As Single, Minimum As Single,
Average As Single 'Population statistics
Public MaxSolution As Byte, MaxSolution2 As Byte, MinSolution As
Byte
Public MinObjFunc(10) As Single
Public RelocationCost(10) As Integer
Public OptSol(10, 10, 2) As Byte
Public Percent_Occ(10) As Single
Public RunTime(10) As Single

'Optimization Data
Public Delta As Single, Convergence As Single
Public InitalChoice As Integer 'Initial pool of choice

 86

Public A As Integer, B As Byte 'Transformation of Obj Func to
Fitness

Public CG_X(25) As Single
Public CG_Y(25) As Single
Public Prox(10, 20, 20) As Single 'Proximity Matrix
Public Reloc(10, 10) As Single 'Relocation Weights

'Facility & Activity Data
'Maximum of 10 phases and 10 temporary facilities per phase

Public Fac_Name(10, 10) As String
Public Fac_Length(10, 10) As Integer
Public Fac_width(10, 10) As Integer
Public Phase_Name(10) As String
Public Phase_num As Byte
Public NumTemp(10) As Byte, NumFixed(10) As Byte
Public TotalNumber(10) As Byte 'Sum of temporary and fixed
facilities
Public Start(10) As Byte
Public Finish(10) As Byte
Public PhaseLength(10) As Byte
Public PFac_Name(10, 10) As String
Public PCentroid(10, 10, 2) As Integer
Public Phase As Integer 'The phase number currently being
optimized
'Geometrical Data
Public NumofPoints(10) As Integer

Public AvailableX(10, Maxpoints) As Byte
Public AvailableY(10, Maxpoints) As Byte
Public OccupiedX(10, Maxpoints) As Byte
Public OccupiedY(10, Maxpoints) As Byte
Public ReservedPts As Integer

Sub StaticOptimization()
'Optimization Procedure
Dim S As Variant, F As Variant

S = Timer
Chromosome
ObjectiveFunc
PopSort
Initialize

Do
Sort 'done
Generate
Statistics
OutputData
frmOpmz2.ProgressBar1.Value = 400 * Delta ^ 2 - 400 * Delta +
100
Loop Until Delta < Convergence / 100
frmOpmz2.ProgressBar1.Value = 90
RefineSolution
SaveResults

 87

MinObjFunc(Phase) = Minimum * PhaseLength(Phase)
frmOpmz2.ProgressBar1.Value = 100
frmOpmz2.Action_lbl = "Opimization Complete"
F = Timer
RunTime(Phase) = F - S
frmOpmz2.Time_lbl.Caption = RunTime(Phase)
End Sub

Private Sub Chromosome()
Dim random As Integer
Dim j As Byte, N As Integer
frmOpmz2.Action_lbl.Caption = "Initializing first population"
ReservedPts = 1
row = 0
For N = 1 To InitalChoice
For j = 1 To NumTemp(Phase)
10 Randomize
 random = Int((Rnd * NumofPoints(Phase)) + 1)
 PoolPop(N).TypePop.ChromosomeX(j) = AvailableX(Phase,
random)
 PoolPop(N).TypePop.ChromosomeY(j) = AvailableY(Phase,
random)
 'Check to make sure facility fits on site:
 If CheckSite(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 10
 'Check for no overlap, reserving places for placed
facilities:
 If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 10
Next j
EmptyOccupied
frmOpmz2.ProgressBar1.Value = (N / InitalChoice) * 100
frmOpmz2.Refresh
Next N
End Sub

Public Function CheckSite(Xmin As Byte, Ymin As Byte, X As
Integer, Y As Integer) As Boolean
Dim X1 As Byte, Y1 As Byte, i As Integer
For X1 = Xmin To Xmin + X - 1
 For Y1 = Ymin To Ymin + Y - 1
 For i = 1 To NumofPoints(Phase)
 If X1 = AvailableX(Phase, i) And Y1 = AvailableY(Phase,
i) Then GoTo 5
 Next i
 CheckSite = False
 GoTo 10
5 Next Y1
Next X1
CheckSite = True
10 End Function

 88

Public Function CheckOverlap(Xmin As Byte, Ymin As Byte, X As
Integer, Y As Integer) As Boolean
Dim X1 As Byte, Y1 As Byte, i As Integer
For X1 = Xmin To Xmin + X - 1
 For Y1 = Ymin To Ymin + Y - 1
 For i = 1 To ReservedPts
 If X1 = OccupiedX(Phase, i) And Y1 = OccupiedY(Phase,
i) Then
 CheckOverlap = False
 GoTo 10
 End If
 Next i
 Next Y1
Next X1
CheckOverlap = True
'Reserve space for placed facility:
For X1 = Xmin To Xmin + X - 1
 For Y1 = Ymin To Ymin + Y - 1
 OccupiedX(Phase, ReservedPts) = X1
 OccupiedY(Phase, ReservedPts) = Y1
 ReservedPts = ReservedPts + 1
 Next Y1
Next X1
10 End Function

Public Sub EmptyOccupied()
Dim i As Integer
For i = 1 To ReservedPts
 OccupiedX(Phase, i) = 0
 OccupiedY(Phase, i) = 0
Next i
ReservedPts = 1
End Sub

Public Sub PopSort()
Dim Min As Single
Dim i As Integer
Dim j As Integer
Dim Flag As Integer
For i = 1 To Popsize
 Min = 100000000
 For j = 1 To InitalChoice
 If PoolPop(j).TypePop.ObjectiveFunc < Min Then
 Flag = j
 Min = PoolPop(j).TypePop.ObjectiveFunc
 End If
 Next j
 For j = 1 To NumTemp(Phase)
 CurrentPop(i).TypePop.ChromosomeX(j) =
PoolPop(Flag).TypePop.ChromosomeX(j)
 CurrentPop(i).TypePop.ChromosomeY(j) =
PoolPop(Flag).TypePop.ChromosomeY(j)

 89

 CurrentPop(i).TypePop.ObjectiveFunc =
PoolPop(Flag).TypePop.ObjectiveFunc
 Next j
 CurrentPop(i).TypePop.Fitness = (A /
PoolPop(Flag).TypePop.ObjectiveFunc) ^ B
 PoolPop(Flag).TypePop.ObjectiveFunc = 100000000
Next i
End Sub

Private Sub ObjectiveFunc()
Dim i As Byte, j As Byte, k As Byte
Dim N As Integer
Dim ObjFunc As Single
Dim d(20, 20) As Single
For N = 1 To InitalChoice
 'Centroid Position
 For i = 1 To NumTemp(Phase)
 CG_X(i) = PoolPop(N).TypePop.ChromosomeX(i) +
Fac_Length(Phase, i) / 2
 CG_Y(i) = PoolPop(N).TypePop.ChromosomeY(i) +
Fac_width(Phase, i) / 2
 Next i
 j = 1
 For i = 1 + NumTemp(Phase) To TotalNumber(Phase)
 CG_X(i) = PCentroid(Phase, j, 1)
 CG_Y(i) = PCentroid(Phase, j, 2)
 j = j + 1
 Next i
 'objective function
 ObjFunc = 0
 k = 2
 For i = 1 To TotalNumber(Phase)
 For j = k To TotalNumber(Phase)
 d(i, j) = Distance(CG_X(i), CG_Y(i), CG_X(j),
CG_Y(j))
 ObjFunc = ObjFunc + d(i, j) * Prox(Phase, i, j)
 Next j
 k = k + 1
 Next i
 PoolPop(N).TypePop.ObjectiveFunc = ObjFunc
Next N
End Sub

Public Function Distance(X1 As Single, Y1 As Single, X2 As
Single, Y2 As Single) As Single
Distance = ((X1 - X2) ^ 2 + (Y1 - Y2) ^ 2) ^ 0.5
End Function

Public Sub Sort()
Dim i As Byte
Dim Max As Single, Min As Single
Max = CurrentPop(10).TypePop.ObjectiveFunc
Min = CurrentPop(10).TypePop.ObjectiveFunc

 90

For i = 1 To Popsize
 If CurrentPop(i).TypePop.ObjectiveFunc < Min Then
 Min = CurrentPop(i).TypePop.ObjectiveFunc
 MinSolution = i
 End If
 If CurrentPop(i).TypePop.ObjectiveFunc > Max Then
 Maximum2 = Max
 Max = CurrentPop(i).TypePop.ObjectiveFunc
 MaxSolution2 = MaxSolution
 MaxSolution = i
 End If
Next i
Maximum = Max
Minimum = Min
End Sub

Public Sub Generate()
'This procedure generates a random offspring.
Dim i As Byte, j As Byte, k As Byte
Dim TempX As Integer, TempY As Integer
Dim jcross As Integer
Dim mate1, mate2 As Integer
Dim X As Single

'generates new offspring from oldpop
CurrentSOF
Select Case Flip(Pcross, Pmutation)
Case 1
Nmutation = Nmutation + 1
Action = "Mutation"
Mutation
Case 2
'crossover here
Ncross = Ncross + 1
Action = "Crossover"
Crossover
Case 3
 ' No crossover, just roulette wheel selection
Action = "Copy Parents"
CopyParents
End Select
End Sub

Public Sub Mutation()
Dim lop As Integer, h As Integer
Dim Best As Single
Dim m As Byte, T As Byte, d As Byte, j As Byte
lop = 0
 m = MinSolution 'The best solution so far
 Best = CurrentPop(m).TypePop.Fitness
 For T = 1 To NumTemp(Phase)
 For h = -1 To 1 Step 2
 For d = 0 To 1
 Select Case d

 91

 'Change in the X direction
 Case 0
 On Error Resume Next
 CurrentPop(m).TypePop.ChromosomeX(T) =
CurrentPop(m).TypePop.ChromosomeX(T) + h
 ObjectiveFunction (m)
 'Check that the objective function has improved
 If CurrentPop(m).TypePop.Fitness < Best Then
 'The new offspring are not better than the worst
population member
 CurrentPop(m).TypePop.ChromosomeX(T) =
CurrentPop(m).TypePop.ChromosomeX(T) - h
 ObjectiveFunction (m)
 GoTo 5
 End If
 'CHECK MUTATION IS FEASIBLE
 EmptyOccupied
 For j = 1 To NumTemp(Phase)
 If CheckSite(CurrentPop(m).TypePop.ChromosomeX(j),
CurrentPop(m).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then
 CurrentPop(m).TypePop.ChromosomeX(T) =
CurrentPop(m).TypePop.ChromosomeX(T) - h
 GoTo 5
 End If

 If CheckOverlap(CurrentPop(m).TypePop.ChromosomeX(j),
CurrentPop(m).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then
 CurrentPop(m).TypePop.ChromosomeX(T) =
CurrentPop(m).TypePop.ChromosomeX(T) - h
 GoTo 5
 End If
 Next j
 GoTo 10
 'Change in the Y direction
 Case 1
 On Error Resume Next
 CurrentPop(m).TypePop.ChromosomeY(T) =
CurrentPop(m).TypePop.ChromosomeY(T) + h
 ObjectiveFunction (m)
 'Check that the objective function has improved
 If CurrentPop(m).TypePop.Fitness < Best Then
 'The new offspring are not better than the worst
population member
 CurrentPop(m).TypePop.ChromosomeY(T) =
CurrentPop(m).TypePop.ChromosomeY(T) - h
 ObjectiveFunction (m)
 GoTo 5
 End If
 'CHECK MUTATION IS FEASIBLE
 EmptyOccupied
 For j = 1 To NumTemp(Phase)
 If CheckSite(CurrentPop(m).TypePop.ChromosomeX(j),
CurrentPop(m).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then

 92

 CurrentPop(m).TypePop.ChromosomeY(T) =
CurrentPop(m).TypePop.ChromosomeY(T) - h
 GoTo 5
 End If
 If CheckOverlap(CurrentPop(m).TypePop.ChromosomeX(j),
CurrentPop(m).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then
 CurrentPop(m).TypePop.ChromosomeY(T) =
CurrentPop(m).TypePop.ChromosomeY(T) - h
 GoTo 5
 End If
 Next j
 GoTo 10
 End Select
5 Next d
 Next h
 Next T
10 End Sub

Public Sub Crossover()
Dim i As Byte, j As Byte, k As Byte
Dim temp1(Maxstring) As Byte, temp2(Maxstring) As Byte,
temp3(Maxstring) As Byte, temp4(Maxstring) As Byte
Dim TempX As Byte, TempY As Byte
Dim jcross As Integer
Dim mate1, mate2 As Integer
Dim Worst As Single 'Worst fitness so far
'i and k are the chromosome number to replace
i = MaxSolution
k = MaxSolution2
Worst = Maximum2
10 mate1 = SelectChrom(Popsize, Current_SOF)
 mate2 = SelectChrom(Popsize, Current_SOF)
 Randomize
 jcross = Int(((NumTemp(Phase) - 1) * Rnd) + 1)
 '1st half of exchange
 For j = 1 To jcross
 NewPop(1).TypePop.ChromosomeX(j) =
CurrentPop(mate1).TypePop.ChromosomeX(j)
 NewPop(1).TypePop.ChromosomeY(j) =
CurrentPop(mate1).TypePop.ChromosomeY(j)
 NewPop(2).TypePop.ChromosomeX(j) =
CurrentPop(mate2).TypePop.ChromosomeX(j)
 NewPop(2).TypePop.ChromosomeY(j) =
CurrentPop(mate2).TypePop.ChromosomeY(j)
 Next j
 '2nd half of exchange
 For j = jcross + 1 To NumTemp(Phase)
 TempX = CurrentPop(mate1).TypePop.ChromosomeX(j)
 TempY = CurrentPop(mate1).TypePop.ChromosomeY(j)
 NewPop(1).TypePop.ChromosomeX(j) =
CurrentPop(mate2).TypePop.ChromosomeX(j)
 NewPop(1).TypePop.ChromosomeY(j) =
CurrentPop(mate2).TypePop.ChromosomeY(j)
 NewPop(2).TypePop.ChromosomeX(j) = TempX

 93

 NewPop(2).TypePop.ChromosomeY(j) = TempY
 Next j
 'Check that solution is feasible
 EmptyOccupied
 For j = 1 To NumTemp(Phase)
 If CheckSite(NewPop(1).TypePop.ChromosomeX(j),
NewPop(1).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 10
 If CheckOverlap(NewPop(1).TypePop.ChromosomeX(j),
NewPop(1).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 10
 Next j
 EmptyOccupied
 For j = 1 To NumTemp(Phase)
 If CheckSite(NewPop(2).TypePop.ChromosomeX(j),
NewPop(2).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 10
 If CheckOverlap(NewPop(2).TypePop.ChromosomeX(j),
NewPop(2).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 10
 Next j
 'Place Newpop in place of Oldpop
 For j = 1 To NumTemp(Phase)
 temp1(j) = CurrentPop(i).TypePop.ChromosomeX(j)
 temp2(j) = CurrentPop(i).TypePop.ChromosomeY(j)
 temp3(j) = CurrentPop(k).TypePop.ChromosomeX(j)
 temp4(j) = CurrentPop(k).TypePop.ChromosomeY(j)
 CurrentPop(i).TypePop.ChromosomeX(j) =
NewPop(1).TypePop.ChromosomeX(j)
 CurrentPop(i).TypePop.ChromosomeY(j) =
NewPop(1).TypePop.ChromosomeY(j)
 CurrentPop(k).TypePop.ChromosomeX(j) =
NewPop(2).TypePop.ChromosomeX(j)
 CurrentPop(k).TypePop.ChromosomeY(j) =
NewPop(2).TypePop.ChromosomeY(j)
 Next j
 'Place new offspring on the spreadsheet
 ObjectiveFunction (i)
 ObjectiveFunction (k)
 'Check that the objective function has improved
 If CurrentPop(i).TypePop.ObjectiveFunc > Worst Or
CurrentPop(k).TypePop.ObjectiveFunc > Worst Then
 'The new offspring are not better than the worst population
member
 For j = 1 To NumTemp(Phase)
 CurrentPop(i).TypePop.ChromosomeX(j) = temp1(j)
 CurrentPop(i).TypePop.ChromosomeY(j) = temp2(j)
 CurrentPop(k).TypePop.ChromosomeX(j) = temp3(j)
 CurrentPop(k).TypePop.ChromosomeY(j) = temp4(j)
 Next j
 ObjectiveFunction (i)
 ObjectiveFunction (k)
 GoTo 10
 End If
Parent1 = mate1
Parent2 = mate2

 94

ObjectiveFunction (i)
ObjectiveFunction (k)
End Sub

Public Sub CopyParents()
Dim i As Byte, j As Byte, k As Byte
Dim mate1, mate2 As Integer
'i and k are the chromosome number to replace
i = MaxSolution
k = MaxSolution2
 mate1 = SelectChrom(Popsize, Current_SOF)
 mate2 = SelectChrom(Popsize, Current_SOF)
 For j = 1 To NumTemp(Phase)
 CurrentPop(i).TypePop.ChromosomeX(j) =
CurrentPop(mate1).TypePop.ChromosomeX(j)
 CurrentPop(i).TypePop.ChromosomeY(j) =
CurrentPop(mate1).TypePop.ChromosomeY(j)
 CurrentPop(k).TypePop.ChromosomeX(j) =
CurrentPop(mate2).TypePop.ChromosomeX(j)
 CurrentPop(k).TypePop.ChromosomeY(j) =
CurrentPop(mate2).TypePop.ChromosomeY(j)
 Next j
 'Place new offspring on the spreadsheet
Parent1 = mate1
Parent2 = mate2
ObjectiveFunction (i)
ObjectiveFunction (k)
End Sub

Public Function SelectChrom(Popsize As Byte, Current_SOF As
Single) As Byte
'This function selects a chromosome based on roulette wheel
selection
'Note: currentpop is the population to select from
Dim rand, partsum As Single
Dim j As Byte
partsum = 0
j = 0
Randomize
rand = Rnd * Current_SOF
Do
 j = j + 1
 partsum = partsum + CurrentPop(j).TypePop.Fitness
Loop Until partsum >= rand Or j = Popsize
SelectChrom = j
End Function

Private Sub Statistics()
Dim i As Byte
Dim Max As Single, Min As Single, Total As Single
Max = 0
Min = 100000000
Total = 0

 95

For i = 1 To Popsize
 If CurrentPop(i).TypePop.ObjectiveFunc < Min Then
 Min = CurrentPop(i).TypePop.ObjectiveFunc
 MinSolution = i
 End If
 If CurrentPop(i).TypePop.ObjectiveFunc > Max Then
 Max = CurrentPop(i).TypePop.ObjectiveFunc
 MaxSolution = i
 End If
 Total = Total + CurrentPop(i).TypePop.ObjectiveFunc
Next i
Average = Total / Popsize
Maximum = Max
Minimum = Min
Delta = (Maximum - Minimum) / Maximum
Ngener = Ngener + 1
End Sub
Sub OutputData()
Dim i As Byte
frmOpmz2.Min_lbl.Caption = Minimum 'Min
frmOpmz2.Avg_lbl.Caption = Average 'Avg
frmOpmz2.Ncross_lbl.Caption = Ncross 'Number of crossovers
frmOpmz2.Nmut_lbl.Caption = Nmutation 'number of mutations
frmOpmz2.Gnr_lbl.Caption = Ngener 'number of generations
frmOpmz2.Refresh
End Sub

Public Function Flip(ProbCr As Single, ProbMu As Single) As Byte
Randomize
If Rnd < ProbMu Then
Flip = 1 'Mutation
ElseIf Rnd < ProbCr Then
Flip = 2 'Crossover
Else
Flip = 3 'Neither
End If
End Function

Public Sub ObjectiveFunction(StringNum As Byte)
Dim i As Byte, j As Byte, k As Byte
Dim ObjFunc As Single
Dim d(20, 20) As Single
 'Centroid Position
 For i = 1 To NumTemp(Phase)
 CG_X(i) = CurrentPop(StringNum).TypePop.ChromosomeX(i) +
Fac_Length(Phase, i) / 2
 CG_Y(i) = CurrentPop(StringNum).TypePop.ChromosomeY(i) +
Fac_width(Phase, i) / 2
 Next i
 j = 1
 For i = 1 + NumTemp(Phase) To TotalNumber(Phase)
 CG_X(i) = PCentroid(Phase, j, 1)
 CG_Y(i) = PCentroid(Phase, j, 2)
 j = j + 1
 Next i

 96

 'objective function
 ObjFunc = 0
 k = 2
 For i = 1 To TotalNumber(Phase)
 For j = k To TotalNumber(Phase)
 d(i, j) = Distance(CG_X(i), CG_Y(i), CG_X(j),
CG_Y(j))
 ObjFunc = ObjFunc + d(i, j) * Prox(Phase, i, j)
 Next j
 k = k + 1
 Next i
 CurrentPop(StringNum).TypePop.ObjectiveFunc = ObjFunc
 CurrentPop(StringNum).TypePop.Fitness = (A / ObjFunc) ^ B
End Sub

Public Sub CurrentSOF()
Dim i As Byte
Current_SOF = 0
For i = 1 To Popsize
 Current_SOF = Current_SOF + CurrentPop(i).TypePop.Fitness
Next i
End Sub

Sub Initialize()
frmOpmz2.Action_lbl.Caption = "Running GA"
Nmutation = 0
Ncross = 0
Ngener = 0
End Sub

Private Sub RefineSolution()
Dim i As Byte
frmOpmz2.Action_lbl.Caption = "Refining Solution"
For i = 1 To 20
 Mutation
 Statistics
 OutputData
Next i
End Sub

Private Sub SaveResults()
Dim i As Byte
For i = 1 To NumTemp(Phase)
 OptSol(Phase, i, 1) =
CurrentPop(MinSolution).TypePop.ChromosomeX(i)
 OptSol(Phase, i, 2) =
CurrentPop(MinSolution).TypePop.ChromosomeY(i)
Next i
End Sub

DynaOpt1 (critical phase approach)

 97

Const Maxpop = 8000
Const Maxstring = 10 'Also maximum number of facilities
Const Maxpoints = 10000 'Maximum number of grid squares
'A variable that specifies wether a facility is present in a
previous phase or not
Dim PR(10, 10) As Byte
Dim AmountofReloc(Maxpop) As Integer
Public TypeofOpt As Byte 'Indicates which type of optimization
is performed
Public CrPhase As Byte 'The most critical phase
Public Stp As Integer 'value indicates wether we are moving in
forward or backward order

Sub FacPresence()
Dim i As Integer, j As Byte, k As Byte
'Backward Order
 For i = CrPhase - 1 To 1 Step -1
 For j = 1 To NumTemp(i)
 For k = 1 To NumTemp(i + 1)
 If Fac_Name(i + 1, k) = Fac_Name(i, j) Then
 PR(i, j) = k
 GoTo 10
 End If
 Next k
10 Next j
 Next i
'Forward order
For i = CrPhase + 1 To Phase_num
 For j = 1 To NumTemp(i)
 For k = 1 To NumTemp(i - 1)
 If Fac_Name(i - 1, k) = Fac_Name(i, j) Then
 PR(i, j) = k
 GoTo 20
 End If
 Next k
20 Next j
 Next i
End Sub

Sub DynamicOptimization1()
Dim m As Variant
FacPresence
'Backward
frmOpmz4.Progress_lbl = "Backward Chronological Order"
If CrPhase = 1 Then GoTo 10
For Phase = CrPhase - 1 To 1 Step -1
 Stp = -1
 frmOpmz4.Phase_lbl.Caption = Phase_Name(Phase)
 frmOpmz4.Dur_lbl.Caption = Finish(Phase) - Start(Phase)
 DynamicPro
 frmOpmz4.ProgressBar2.Value = frmOpmz4.ProgressBar2.Value +
(100 / Phase_num - 1)
 frmOpmz4.List3.AddItem frmOpmz4.List1.List(0)
 frmOpmz4.List1.RemoveItem (0)

 98

Next Phase
'Forward
10 If CrPhase = Phase_num Then GoTo 20
frmOpmz4.Progress_lbl = "Forward Chronological Order"
For Phase = CrPhase + 1 To Phase_num

 frmOpmz4.Phase_lbl.Caption = Phase_Name(Phase)
 frmOpmz4.Dur_lbl.Caption = PhaseLength(Phase)
 Stp = 1
 DynamicPro
 frmOpmz4.ProgressBar2.Value = frmOpmz4.ProgressBar2.Value +
(100 / Phase_num - 1)
 frmOpmz4.List3.AddItem frmOpmz4.List2.List(0)
 frmOpmz4.List2.RemoveItem (0)
Next Phase
20 End Sub

Private Sub DynamicPro()
'Optimization Procedure
Dim S As Variant, F As Variant
S = Timer
Chromosome 'done
ObjectiveFunc
PopSort
Initialize
Do
Sort 'done
Generate
Statistics
OutputData
frmOpmz4.ProgressBar1.Value = 400 * Delta ^ 2 - 400 * Delta +
100
Loop Until Delta < Convergence / 100
frmOpmz4.ProgressBar1.Value = 90
RefineSolution
SaveResults
frmOpmz4.ProgressBar1.Value = 100
frmOpmz4.Action_lbl = "Opimization Complete"
F = Timer
RunTime(Phase) = F - S
frmOpmz4.Time_lbl.Caption = RunTime(Phase)
End Sub

Private Sub Chromosome()
Dim random As Integer
Dim j As Byte, N As Integer
frmOpmz4.Action_lbl.Caption = "Initializing first population"
ReservedPts = 1
row = 0
For N = 1 To InitalChoice
For j = 1 To NumTemp(Phase)
If PR(Phase, j) = 0 Then 'New facility
10 Randomize
 random = Int((Rnd * NumofPoints(Phase)) + 1)

 99

 PoolPop(N).TypePop.ChromosomeX(j) = AvailableX(Phase,
random)
 PoolPop(N).TypePop.ChromosomeY(j) = AvailableY(Phase,
random)
 'Check to make sure facility fits on site:
 If CheckSite(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 10
 'Check for no overlap, reserving places for placed
facilities:
 If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 10
Else 'Facility was present in previous phase
 Randomize
 If Rnd > 0.5 Then 'Facility will be placed in its same
position
 i = PR(Phase, j)
 PoolPop(N).TypePop.ChromosomeX(j) = OptSol(Phase - Stp,
i, 1)
 PoolPop(N).TypePop.ChromosomeY(j) = OptSol(Phase - Stp,
i, 2)
 'Check to make sure facility fits on site:
 If CheckSite(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 20
 'Check for no overlap, reserving places for placed
facilities:
 If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 20
 Else
 'Facility is placed in random order
20 Randomize
 random = Int((Rnd * NumofPoints(Phase)) + 1)
 PoolPop(N).TypePop.ChromosomeX(j) = AvailableX(Phase,
random)
 PoolPop(N).TypePop.ChromosomeY(j) = AvailableY(Phase,
random)
 'Check to make sure facility fits on site:
 If CheckSite(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 20
 'Check for no overlap, reserving places for placed
facilities:
 If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 20
 End If
End If
Next j
EmptyOccupied
frmOpmz4.ProgressBar1.Value = (N / InitalChoice) * 100
frmOpmz4.Refresh
Next N
End Sub

 100

Private Sub PopSort()
Dim Min As Single
Dim i As Integer
Dim j As Integer
Dim Flag As Integer
For i = 1 To Popsize
 Min = 1000000
 For j = 1 To InitalChoice
 If PoolPop(j).TypePop.ObjectiveFunc < Min Then
 Flag = j
 Min = PoolPop(j).TypePop.ObjectiveFunc
 End If
 Next j
 For j = 1 To NumTemp(Phase)
 CurrentPop(i).TypePop.ChromosomeX(j) =
PoolPop(Flag).TypePop.ChromosomeX(j)
 CurrentPop(i).TypePop.ChromosomeY(j) =
PoolPop(Flag).TypePop.ChromosomeY(j)
 CurrentPop(i).TypePop.ObjectiveFunc =
PoolPop(Flag).TypePop.ObjectiveFunc
 Next j
 CurrentPop(i).TypePop.Fitness = (A /
PoolPop(Flag).TypePop.ObjectiveFunc) ^ B
 PoolPop(Flag).TypePop.ObjectiveFunc = 1000000
Next i
End Sub

Private Sub ObjectiveFunc()
Dim i As Byte, j As Byte, k As Byte
Dim N As Integer
Dim ObjFunc As Single
Dim d(20, 20) As Single
For N = 1 To InitalChoice
 'Centroid Position
 For i = 1 To NumTemp(Phase)
 CG_X(i) = PoolPop(N).TypePop.ChromosomeX(i) +
Fac_Length(Phase, i) / 2
 CG_Y(i) = PoolPop(N).TypePop.ChromosomeY(i) +
Fac_width(Phase, i) / 2
 Next i
 j = 1
 For i = 1 + NumTemp(Phase) To TotalNumber(Phase)
 CG_X(i) = PCentroid(Phase, j, 1)
 CG_Y(i) = PCentroid(Phase, j, 2)
 j = j + 1
 Next i
 'objective function
 ObjFunc = 0
 k = 2
 For i = 1 To TotalNumber(Phase)
 For j = k To TotalNumber(Phase)

 101

 d(i, j) = Distance(CG_X(i), CG_Y(i), CG_X(j),
CG_Y(j))
 ObjFunc = ObjFunc + d(i, j) * Prox(Phase, i, j)
 Next j
 k = k + 1
 Next i
 For i = 1 To NumTemp(Phase)
 j = PR(Phase, i)
 If j = 0 Then GoTo 10
 If PoolPop(N).TypePop.ChromosomeX(i) <> OptSol(Phase -
Stp, j, 1) Or PoolPop(N).TypePop.ChromosomeY(i) <> OptSol(Phase
- Stp, j, 2) Then
 ObjFunc = ObjFunc + Reloc(Phase, i)
 End If
10 Next i
 PoolPop(N).TypePop.ObjectiveFunc = ObjFunc
Next N
End Sub

Private Sub Sort()
Dim i As Byte
Dim Max As Single, Min As Single
Max = CurrentPop(10).TypePop.ObjectiveFunc
Min = CurrentPop(10).TypePop.ObjectiveFunc
For i = 1 To Popsize
 If CurrentPop(i).TypePop.ObjectiveFunc < Min Then
 Min = CurrentPop(i).TypePop.ObjectiveFunc
 MinSolution = i
 End If
 If CurrentPop(i).TypePop.ObjectiveFunc > Max Then
 Maximum2 = Max
 Max = CurrentPop(i).TypePop.ObjectiveFunc
 MaxSolution2 = MaxSolution
 MaxSolution = i
 End If
Next i
Maximum = Max
Minimum = Min
End Sub

Private Sub Statistics()
Dim i As Byte
Dim Max As Single, Min As Single, Total As Single
Max = 0
Min = 100000000
Total = 0
For i = 1 To Popsize
 If CurrentPop(i).TypePop.ObjectiveFunc < Min Then
 Min = CurrentPop(i).TypePop.ObjectiveFunc
 MinSolution = i
 End If
 If CurrentPop(i).TypePop.ObjectiveFunc > Max Then
 Max = CurrentPop(i).TypePop.ObjectiveFunc

 102

 MaxSolution = i
 End If
 Total = Total + CurrentPop(i).TypePop.ObjectiveFunc
Next i
Average = Total / Popsize
Maximum = Max
Minimum = Min
Delta = (Maximum - Minimum) / Maximum
Ngener = Ngener + 1
End Sub
Sub OutputData()
Dim i As Byte
frmOpmz4.Min_lbl.Caption = Minimum 'Min
frmOpmz4.Avg_lbl.Caption = Average 'Avg
frmOpmz4.Ncross_lbl.Caption = Ncross 'Number of crossovers
frmOpmz4.Nmut_lbl.Caption = Nmutation 'number of mutations
frmOpmz4.Gnr_lbl.Caption = Ngener 'number of generations
frmOpmz4.Refresh
End Sub

Public Sub ObjectiveFunction(StringNum As Byte)
Dim i As Byte, j As Byte, k As Byte
Dim ObjFunc As Single
Dim d(20, 20) As Single
AmountofReloc(StringNum) = 0
 'Centroid Position
 For i = 1 To NumTemp(Phase)
 CG_X(i) = CurrentPop(StringNum).TypePop.ChromosomeX(i) +
Fac_Length(Phase, i) / 2
 CG_Y(i) = CurrentPop(StringNum).TypePop.ChromosomeY(i) +
Fac_width(Phase, i) / 2
 Next i
 j = 1
 For i = 1 + NumTemp(Phase) To TotalNumber(Phase)
 CG_X(i) = PCentroid(Phase, j, 1)
 CG_Y(i) = PCentroid(Phase, j, 2)
 j = j + 1
 Next i
 'objective function
 ObjFunc = 0
 k = 2
 For i = 1 To TotalNumber(Phase)
 For j = k To TotalNumber(Phase)
 d(i, j) = Distance(CG_X(i), CG_Y(i), CG_X(j),
CG_Y(j))
 ObjFunc = ObjFunc + d(i, j) * Prox(Phase, i, j)
 Next j
 k = k + 1
 Next i
 For i = 1 To NumTemp(Phase)
 j = PR(Phase, i)
 If j = 0 Then GoTo 10
 If CurrentPop(StringNum).TypePop.ChromosomeX(i) <>
OptSol(Phase - Stp, j, 1) Or

 103

CurrentPop(StringNum).TypePop.ChromosomeY(i) <> OptSol(Phase -
Stp, j, 2) Then
 ObjFunc = ObjFunc + Reloc(Phase, i)
 AmountofReloc(StringNum) = AmountofReloc(StringNum)
+ Reloc(Phase, i)
 End If
10 Next i
 CurrentPop(StringNum).TypePop.ObjectiveFunc = ObjFunc
 CurrentPop(StringNum).TypePop.Fitness = (A / ObjFunc) ^ B
End Sub

Sub Initialize()
frmOpmz4.Action_lbl.Caption = "Running GA"
Nmutation = 0
Ncross = 0
Ngener = 0
End Sub

Private Sub RefineSolution()
Dim i As Byte
frmOpmz4.Action_lbl.Caption = "Refining Solution"
For i = 1 To 20
 Mutation
 Statistics
 OutputData
Next i
End Sub

Private Sub SaveResults()
Dim i As Byte
For i = 1 To NumTemp(Phase)
 OptSol(Phase, i, 1) =
CurrentPop(MinSolution).TypePop.ChromosomeX(i)
 OptSol(Phase, i, 2) =
CurrentPop(MinSolution).TypePop.ChromosomeY(i)
Next i
MinObjFunc(Phase) = Minimum * PhaseLength(Phase)
RelocationCost(Phase) = AmountofReloc(MinSolution)
End Sub

Dyna_Opt2 (Mini-Min approach)

Const Maxpop = 1000
Const Maxstring = 10 'Also maximum number of facilities
Const Maxpoints = 10000 'Maximum number of grid squares
'A variable that specifies wether a facility is present in a
previous phase or not
Dim PR(10, 10) As Byte
Dim AmountofReloc(Maxpop) As Integer
Public OptSol2(10, 10, 10, 2) As Byte 'for 2nd type of
optimization
Public RelocationCost2(10, 10) As Integer, RelocationCost3(10)

 104

Public TotalCost2(10, 10) As Single, TotalCost3(10) As Single

Sub FacPresence()
Dim i As Integer, j As Byte, k As Byte
'Backward Order
 For i = CrPhase - 1 To 1 Step -1
 For j = 1 To NumTemp(i)
 For k = 1 To NumTemp(i + 1)
 If Fac_Name(i + 1, k) = Fac_Name(i, j) Then
 PR(i, j) = k
 GoTo 10
 End If
 Next k
10 Next j
 Next i
'Forward order
For i = CrPhase + 1 To Phase_num
 For j = 1 To NumTemp(i)
 For k = 1 To NumTemp(i - 1)
 If Fac_Name(i - 1, k) = Fac_Name(i, j) Then
 PR(i, j) = k
 GoTo 20
 End If
 Next k
20 Next j
 Next i
End Sub

Sub DynamicOptimization2()
Dim m As Variant
OptSolChange
For CrPhase = 1 To Phase_num
 Unload frmOpmz5
 frmOpmz5.Show
 FacPresence
 'Backward
 frmOpmz5.Progress_lbl = "Backward Chronological Order"
 If CrPhase = 1 Then GoTo 5
 For Phase = CrPhase - 1 To 1 Step -1
 Stp = -1
 frmOpmz5.Phase_lbl.Caption = Phase_Name(Phase)
 frmOpmz5.Dur_lbl.Caption = Finish(Phase) - Start(Phase)
 DynamicPro
 frmOpmz5.ProgressBar2.Value =
frmOpmz5.ProgressBar2.Value + (100 / Phase_num - 1)
 frmOpmz5.List3.AddItem frmOpmz5.List1.List(0)
 frmOpmz5.List1.RemoveItem (0)
 Next Phase
 'Forward
5 If CrPhase = Phase_num Then GoTo 15
 frmOpmz5.Progress_lbl = "Forward Chronological Order"
 For Phase = CrPhase + 1 To Phase_num
 frmOpmz5.Phase_lbl.Caption = Phase_Name(Phase)
 frmOpmz5.Dur_lbl.Caption = PhaseLength(Phase)

 105

 Stp = 1
 DynamicPro
 frmOpmz5.ProgressBar2.Value =
frmOpmz5.ProgressBar2.Value + (100 / Phase_num - 1)
 frmOpmz5.List3.AddItem frmOpmz5.List2.List(0)
 frmOpmz5.List2.RemoveItem (0)
 Next Phase
15 ResultsByInitial
Next CrPhase
20 End Sub

Private Sub DynamicPro()
'Optimization Procedure
Dim S As Variant, F As Variant
S = Timer
Chromosome 'done
ObjectiveFunc
PopSort
Initialize
Do
Sort 'done
Generate
Statistics
OutputData
frmOpmz5.ProgressBar1.Value = 400 * Delta ^ 2 - 400 * Delta +
100
Loop Until Delta < Convergence / 100
frmOpmz5.ProgressBar1.Value = 90
RefineSolution
SaveResults
frmOpmz5.ProgressBar1.Value = 100
frmOpmz5.Action_lbl = "Optimization Complete"
F = Timer
frmOpmz5.Time_lbl.Caption = F - S
End Sub

Private Sub Chromosome()
Dim random As Integer
Dim j As Byte, N As Integer, row As Integer
frmOpmz5.Action_lbl.Caption = "Initializing first population"
ReservedPts = 1
row = 0
For N = 1 To InitalChoice
For j = 1 To NumTemp(Phase)
If PR(Phase, j) = 0 Then 'New facility
10 Randomize
 random = Int((Rnd * NumofPoints(Phase)) + 1)
 PoolPop(N).TypePop.ChromosomeX(j) = AvailableX(Phase,
random)
 PoolPop(N).TypePop.ChromosomeY(j) = AvailableY(Phase,
random)
 'Check to make sure facility fits on site:

 106

 If CheckSite(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 10
 'Check for no overlap, reserving places for placed
facilities:
 If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 10
Else 'Facility was present in previous phase
 Randomize
 If Rnd > 0.5 Then 'Facility will be placed in its same
position
 i = PR(Phase, j)
 PoolPop(N).TypePop.ChromosomeX(j) = OptSol2(CrPhase,
Phase - Stp, i, 1)
 PoolPop(N).TypePop.ChromosomeY(j) = OptSol2(CrPhase,
Phase - Stp, i, 2)
 'Check to make sure facility fits on site:
 If CheckSite(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 20
 'Check for no overlap, reserving places for placed
facilities:
 If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 20
 Else
 'Facility is placed in random order
20 Randomize
 random = Int((Rnd * NumofPoints(Phase)) + 1)
 PoolPop(N).TypePop.ChromosomeX(j) = AvailableX(Phase,
random)
 PoolPop(N).TypePop.ChromosomeY(j) = AvailableY(Phase,
random)
 'Check to make sure facility fits on site:
 If CheckSite(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 20
 'Check for no overlap, reserving places for placed
facilities:
 If CheckOverlap(PoolPop(N).TypePop.ChromosomeX(j),
PoolPop(N).TypePop.ChromosomeY(j), Fac_Length(Phase, j),
Fac_width(Phase, j)) = False Then GoTo 20
 End If
End If
Next j
EmptyOccupied
frmOpmz5.ProgressBar1.Value = (N / InitalChoice) * 100
frmOpmz5.Refresh
Next N
End Sub

Sub OutputData()
Dim i As Byte
frmOpmz5.Min_lbl.Caption = Minimum 'Min

 107

frmOpmz5.Avg_lbl.Caption = Average 'Avg
frmOpmz5.Ncross_lbl.Caption = Ncross 'Number of crossovers
frmOpmz5.Nmut_lbl.Caption = Nmutation 'number of mutations
frmOpmz5.Gnr_lbl.Caption = Ngener 'number of generations
frmOpmz5.Refresh
End Sub

Sub Initialize()
frmOpmz5.Action_lbl.Caption = "Running GA"
Nmutation = 0
Ncross = 0
Ngener = 0
End Sub

Private Sub RefineSolution()
Dim i As Byte
frmOpmz5.Action_lbl.Caption = "Refining Solution"
For i = 1 To 20
 Mutation
 Statistics
 OutputData
Next i
End Sub

Private Sub SaveResults()
For i = 1 To NumTemp(Phase)
 OptSol2(CrPhase, Phase, i, 1) =
CurrentPop(MinSolution).TypePop.ChromosomeX(i)
 OptSol2(CrPhase, Phase, i, 2) =
CurrentPop(MinSolution).TypePop.ChromosomeY(i)
Next i
MinObjFunc(Phase) = Minimum * PhaseLength(Phase)
RelocationCost(Phase) = AmountofReloc(MinSolution)
RelocationCost2(CrPhase, Phase) = RelocationCost(Phase)
TotalCost2(CrPhase, Phase) = MinObjFunc(Phase)
End Sub

Private Sub ResultsByInitial()
RelocationCost3(CrPhase) = 0
TotalCost3(CrPhase) = 0
For i = 1 To Phase_num
 RelocationCost3(CrPhase) = RelocationCost3(CrPhase) +
RelocationCost2(CrPhase, i)
 TotalCost3(CrPhase) = TotalCost3(CrPhase) +
TotalCost2(CrPhase, i)
Next i
End Sub

Private Sub OptSolChange()
For i = 1 To Phase_num
 For j = 1 To Phase_num
 For k = 1 To NumTemp(j)

 108

 OptSol2(i, j, k, 1) = OptSol(j, k, 1)
 OptSol2(i, j, k, 2) = OptSol(j, k, 2)
 Next k
 Next j
Next i
For i = 1 To Phase_num
 TotalCost2(i, i) = MinObjFunc(i)
Next i
End Sub

 109

APPENDIX B: SPACE IDENTIFICATION CODE

Const Max_Lines = 50
Dim Num_Eqn As Byte, X(Max_Lines) As Double, Y(Max_Lines) As
Double
Dim InteriorPoint As Variant
Dim A(Max_Lines) As Double, B(Max_Lines) As Double
Dim Xmax As Integer, Ymax As Integer, Xmin As Integer, Ymin As
Integer
Dim NumofPoints As Integer
Dim PoolX(30000) As Integer, PoolY(30000) As Integer
Dim Centroid(15, 2) As Single
Public NumFixed As Byte, NumObst As Byte
Dim PFac_Name(10) As String 'Names of permenant/fixed facilities
Public Pitch As Integer
Dim Flag(Max_Lines) As Byte

Sub MainProgram()
UserForm1.Show
On Error GoTo ErrorHandler
BoundarySelection
GetEquations
GetPoints
GetPermenantFac
GetObstacles
Redimension
SendToFile
Exit Sub
ErrorHandler:
UserForm3.Show
End Sub

Private Sub BoundarySelection()
Dim SitePolyLine As AcadLWPolyline
Dim Pickedpt As Variant
Dim PolyLineVertices As Variant
Dim Vertix(100) As Double
Dim i As Byte 'Counter
With ThisDrawing.Utility
.GetEntity SitePolyLine, Pickedpt, vbCr & "Select site
boundaries (Must be polyline)"
InteriorPoint = .GetPoint(, vbCr & "Select any point inside the
boundary")
End With
SitePolyLine.GetBoundingBox Min, Max
Xmin = Min(0)
Ymin = Min(1)
Xmax = Max(0)
Ymax = Max(1)
PolyLineVertices = SitePolyLine.Coordinates
For i = 0 To 2 * Max_Lines Step 2
 On Error GoTo 10

 110

 X(i / 2) = PolyLineVertices(i)
 Y(i / 2) = PolyLineVertices(i + 1)
Next i

10 Num_Eqn = (i - 2) / 2 '# of lines of polygon
End Sub

Private Sub GetEquations()
For i = 1 To Num_Eqn
 If X(i) = X(i - 1) Then
 B(i) = X(i)
 If X(i) < InteriorPoint(0) Then
 Flag(i) = 3
 Else: Flag(i) = 4
 End If
 GoTo 10
 End If
 If Y(i) = Y(i - 1) Then
 B(i) = Y(i)
 If Y(i) < InteriorPoint(1) Then
 Flag(i) = 5
 Else: Flag(i) = 6
 End If
 GoTo 10
 End If
 A(i) = (Y(i) - (Y(i - 1))) / (X(i) - X(i - 1))
 B(i) = Y(i) - (A(i) * X(i))
 'If Py > a*Px + b then "greater"
 If InteriorPoint(1) > A(i) * InteriorPoint(0) + B(i) Then
 Flag(i) = 1
 Else
 Flag(i) = 2
 End If
10 Next i
 End Sub

Private Sub GetPoints()
Dim Counter As Byte
Dim j As Integer
Dim X As Integer, Y As Integer
For X = Xmin To Xmax - 1
 For Y = Ymin To Ymax - 1
 Counter = 0
 For i = 1 To Num_Eqn
 Select Case Flag(i)
 Case 1
 If Y < A(i) * X + B(i) Then GoTo 10
 Case 2
 If Y > A(i) * X + B(i) Then GoTo 10
 Case 3
 If X < B(i) Then GoTo 10
 Case 4
 If X > B(i) Then GoTo 10
 Case 5

 111

 If Y < B(i) Then GoTo 10
 Case 6
 If Y > B(i) Then GoTo 10
 End Select
 Next i
 PoolX(j) = X
 PoolY(j) = Y
 j = j + 1
10 Next Y
Next X
NumofPoints = j + 1
End Sub

Private Sub FacilityBoundary()
Dim FacilityPolyLine As AcadLWPolyline
Dim X_min As Integer, Y_min As Integer, X_max As Integer, Y_max
As Integer
With ThisDrawing.Utility
.GetEntity FacilityPolyLine, Pickedpt, vbCr & "Select site
boundaries (Must be polyline)"
End With
FacilityPolyLine.GetBoundingBox Min, Max
X_min = Min(0)
Y_min = Min(1)
X_max = Max(0)
Y_max = Max(1)
End Sub

Private Sub GetPermenantFac()
 Dim X1 As Integer, Y1 As Integer, X2 As Integer, Y2 As
Integer
 Dim FacilityBorder(10) As AcadLWPolyline
 Dim PermenantFac(10) As AcadText
 'delete the selection set if it already exists
For i = 1 To NumFixed
 With ThisDrawing.Utility
.GetEntity FacilityBorder(i), Pickedpt, vbCr & "Select Permenant
Facility (must be polyline)"
FacilityBorder(i).Color = acMagenta
FacilityBorder(i).Update
End With
Next i
For i = 1 To NumFixed
FacilityBorder(i).Color = acWhite
FacilityBorder(i).Update
Next i
 For i = 1 To NumFixed
 FacilityBorder(i).GetBoundingBox Min, Max
 '-1 so that facilities can be placed exactly adjacent to
permenant objects
 X1 = Min(0)
 Y1 = Min(1)
 X2 = Max(0) - 1
 Y2 = Max(1) - 1

 112

 Centroid(i, 1) = X1 + ((X2 - X1 + 1) * 0.5)
 Centroid(i, 2) = Y1 + ((Y2 - Y1 + 1) * 0.5)
 Call RemoveOccupiedPlaces(X1, Y1, X2, Y2)
 Next i
For i = 1 To NumFixed
ThisDrawing.Utility.GetEntity PermenantFac(i), Pickedpt, vbCr &
"Select Permenant Facility Name (Follow the same order of
previous selection!)"
PFac_Name(i) = PermenantFac(i).TextString
PermenantFac(i).Color = acMagenta
Next i
For i = 1 To NumFixed
PermenantFac(i).Color = acWhite
PermenantFac(i).Update
Next i
End Sub

Private Sub GetObstacles()
 Dim X1 As Integer, Y1 As Integer, X2 As Integer, Y2 As
Integer
 Dim FacilityBorder(10) As AcadLWPolyline
 Dim PermenantFac As AcadText
 'delete the selection set if it already exists
For i = 1 To NumObst
 With ThisDrawing.Utility
.GetEntity FacilityBorder(i), Pickedpt, vbCr & "Select Site
Obstacles (must be polyline)"
FacilityBorder(i).Color = acMagenta
FacilityBorder(i).Update
End With
Next i
For i = 1 To NumObst
FacilityBorder(i).Color = acWhite
FacilityBorder(i).Update
Next i
 For i = 1 To NumObst
 FacilityBorder(i).GetBoundingBox Min, Max
 '-1 so that facilities can be placed exactly adjacent to
permenant objects
 X1 = Min(0)
 Y1 = Min(1)
 X2 = Max(0) - 1
 Y2 = Max(1) - 1
 Call RemoveOccupiedPlaces(X1, Y1, X2, Y2)
 Next i
End Sub

Private Sub RemoveOccupiedPlaces(X1 As Integer, Y1 As Integer,
X2 As Integer, Y2 As Integer)
Dim Ywidth As Integer, Xwidth As Integer
Ywidth = Y2 - Y1
Xwidth = X2 - X1
con = 1
For j = 1 To NumofPoints

 113

 If PoolX(j) = X1 And PoolY(j) = Y1 Then
 For m = 0 To Ywidth
 PoolX(j + m) = 9999
 PoolY(j + m) = 9999
 Next m
 j = j + Ywidth
 X1 = X1 + con
 If X1 = X2 + 1 Then GoTo 10
 End If
Next j
10 End Sub

Private Sub Redimension()
c = 0
For j = 1 To NumofPoints
 If PoolX(j) = 9999 Then
 For i = j To NumofPoints
 PoolX(i) = PoolX(i + 1)
 PoolY(i) = PoolY(i + 1)
 Next i
 j = j - 1
 c = c + 1
 End If
Next j
NumofPoints = NumofPoints - c
End Sub

Private Sub SendToFile()
 'sending line data to Text File
 '.lin is the line data file
 '.per is the permenant facilities file
 Open "c:\Temp\EDSLP.LIN" For Output As #1
 Write #1, NumofPoints - 1
 For i = 1 To NumofPoints - 1
 Write #1, PoolX(i - 1), PoolY(i - 1)
 Next i
 Close #1
 Open "c:\Temp\EDSLP.PER" For Output As #1
 Write #1, NumFixed
 For i = 1 To NumFixed
 Write #1, PFac_Name(i), Centroid(i, 1), Centroid(i, 2)
 Next i
 Close #1
End Sub

Sub CheckPoints()
Dim PPoints As AcadPoint
Dim P(2) As Double
P(2) = 0
Open "c:\temp\edslp.lin" For Input As #1
Input #1, NumofPoints
For i = 1 To NumofPoints
 Input #1, P(0), P(1)

 114

 Set PPoints = ThisDrawing.ModelSpace.AddPoint(P)
Next i
Close #1
End Sub

APPENDIX C: SOLUTION REPRESENTATION CODE

Public ACADFileName(10) As String
Public fMainForm As frmMain
Option Explicit
'This module sends line data to autocad

Public Sub DrawFacilities(N As Byte)
Dim AutoCADapplication As AcadApplication
Dim PLinePoints(14) As Double
Dim TextPoint(2) As Double
Dim Point1(2) As Double, Point2(2) As Double, Point3(2) As
Double, Point4(2) As Double
Dim Facility As AcadPolyline
Dim FacilityText As AcadText
Dim i As Byte, j As Byte
Set AutoCADapplication = CreateObject("AutoCAD.Application")
AutoCADapplication.Visible = True
AutoCADapplication.Documents.Open ACADFileName(N)
Point1(2) = 0
Point2(2) = 0
Point3(2) = 0
Point4(2) = 0
For j = 1 To NumTemp(N)
Point1(0) = OptSol(N, j, 1)
Point1(1) = OptSol(N, j, 2)
Point2(0) = Point1(0) + Fac_Length(N, j)
Point2(1) = Point1(1)
Point3(0) = Point2(0)
Point3(1) = Point2(1) + Fac_width(N, j)
Point4(0) = Point1(0)
Point4(1) = Point3(1)
For i = 0 To 2
PLinePoints(i) = Point1(i)
PLinePoints(i + 3) = Point2(i)
PLinePoints(i + 6) = Point3(i)
PLinePoints(i + 9) = Point4(i)
PLinePoints(i + 12) = Point1(i)
Next i
TextPoint(0) = Point1(0) + 0.1
TextPoint(1) = Point1(1) + 0.1
TextPoint(2) = 0
AutoCADapplication.ActiveDocument.ActiveLayer =
AutoCADapplication.ActiveDocument.Layers("Facilities")
Set Facility =
AutoCADapplication.ActiveDocument.ModelSpace.AddPolyline(PLinePo
ints)

 115

Set FacilityText =
AutoCADapplication.ActiveDocument.ModelSpace.AddText(Fac_Name(N,
j), TextPoint, 1)
Next j
TextPoint(0) = 0
TextPoint(1) = 0
Set FacilityText =
AutoCADapplication.ActiveDocument.ModelSpace.AddText(MinObjFunc(
N), TextPoint, 1.5)
End Sub

Public Sub DrawFacilities2(Ini As Byte, N As Byte)
Dim AutoCADapplication As AcadApplication
Dim PLinePoints(14) As Double
Dim TextPoint(2) As Double
Dim Point1(2) As Double, Point2(2) As Double, Point3(2) As
Double, Point4(2) As Double
Dim Facility As AcadPolyline
Dim FacilityText As AcadText
Dim i As Byte, j As Byte
Set AutoCADapplication = CreateObject("AutoCAD.Application")
AutoCADapplication.Visible = True
AutoCADapplication.Documents.Open ACADFileName(N)
Point1(2) = 0
Point2(2) = 0
Point3(2) = 0
Point4(2) = 0
For j = 1 To NumTemp(N)
Point1(0) = OptSol2(Ini, N, j, 1)
Point1(1) = OptSol2(Ini, N, j, 2)
Point2(0) = Point1(0) + Fac_Length(N, j)
Point2(1) = Point1(1)
Point3(0) = Point2(0)
Point3(1) = Point2(1) + Fac_width(N, j)
Point4(0) = Point1(0)
Point4(1) = Point3(1)
For i = 0 To 2
PLinePoints(i) = Point1(i)
PLinePoints(i + 3) = Point2(i)
PLinePoints(i + 6) = Point3(i)
PLinePoints(i + 9) = Point4(i)
PLinePoints(i + 12) = Point1(i)
Next i
TextPoint(0) = Point1(0) + 0.1
TextPoint(1) = Point1(1) + 0.1
TextPoint(2) = 0
AutoCADapplication.ActiveDocument.ActiveLayer =
AutoCADapplication.ActiveDocument.Layers("Facilities")
Set Facility =
AutoCADapplication.ActiveDocument.ModelSpace.AddPolyline(PLinePo
ints)
Set FacilityText =
AutoCADapplication.ActiveDocument.ModelSpace.AddText(Fac_Name(N,
j), TextPoint, 1.5)
Next j

 116

Set FacilityText =
AutoCADapplication.ActiveDocument.ModelSpace.AddText(MinObjFunc(
i), TextPoint, 1.5)
End Sub

117

