Hermann W. BangeGEOMAR Helmholtz Centre for Ocean Research Kiel · Marine Biogeochemistry
Hermann W. Bange
Prof. Dr.
About
230
Publications
66,171
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,700
Citations
Introduction
Hermann W. Bange currently works at the Research Unit Chemical Oceanography, Helmholtz Centre for Ocean Research Kiel. Hermann does research in Marine Biogeochemistry and Chemical Oceanography.
Publications
Publications (230)
Coastal ecosystems are affected by a multitude of anthropogenic stressors. As the Baltic Sea ecosystems rank among the most altered marine ecosystems worldwide, they represent ideal model regions to study ecosystem responses to anthropogenic pressures. Our statistical analysis of data including dissolved organic carbon and nitrogen, as well as bact...
Nitric oxide (NO) is an intermediate of various microbial nitrogen cycle processes, and the open-ocean and coastal areas are generally a source of NO to the atmosphere. However, our knowledge about its distribution and the main production processes in coastal areas and estuaries is rudimentary at best. To this end, dissolved NO concentrations were...
Fjord-like estuaries are hotspots of biogeochemical cycling due to steep physicochemical gradients. The spatiotemporal distribution of nitrous oxide (N2O) within many of these systems is poorly described, 10 especially in the southern hemisphere. The goal of this study is to describe the spatiotemporal distribution of N2O within a southern hemisphe...
Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 19...
1.The living lab method (German: “Reallabor”) is a proven tool from sustainability research. Although it offers a lot of potential for application to complex challenges in marine conservation, it has scarcely been used in this context so far. 2.This article presents the project "Reallabor Eckernförder Bucht 2030", which is the first living lab addr...
The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap...
The air–sea exchange and oceanic cycling of greenhouse gases (GHG), including carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), carbon monoxide (CO), and nitrogen oxides (NOx = NO + NO2), are fundamental in controlling the evolution of the Earth’s atmospheric chemistry and climate. Significant advances have been made over the last 10 years...
Nitric oxide (NO) is an intermediate of various microbial nitrogen cycle processes and the open ocean and coastal areas are generally a source of NO in the atmosphere. However, our knowledge about its distribution and the main production processes in coastal areas and estuaries is rudimentary at best. To this end, dissolved NO concentrations were m...
Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance, which has been accumulating in the atmosphere since the pre-industrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 parts per billion (ppb) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since...
Nitrous oxide (N2O) is a greenhouse gas, with a global warming potential 298 times that of carbon dioxide. Estuaries can be sources of N2O, but their emission estimates have significant uncertainties due to limited data availability and high spatiotemporal variability. We investigated the spatial and seasonal variability of dissolved N2O and its em...
Coastal ecosystems release or absorb carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), but the net effects of these ecosystems on the radiative balance remain unknown. We compiled a dataset of observations from 738 sites from studies published between 1975 and 2020 to quantify CO2, CH4 and N2O fluxes in estuaries and coastal vegetation i...
Carbon monoxide (CO) is an atmospheric trace gas that plays a crucial role in the oxidizing capacity of the Earth’s atmosphere. Moreover, it functions as an indirect greenhouse gas, influencing the lifetimes of potent greenhouse gases such as methane. Albeit being an overall source of atmospheric CO, the role of coastal regions in the marine cyclin...
Ocean data synthesis products for specific biogeochemical essential ocean variables have the potential to facilitate today’s biogeochemical ocean data usage and comply with the Findable Accessible Interoperable and Reusable (FAIR) data principles. The products constitute key outputs from the Global Ocean Observation System, laying the observational...
The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). Major advances have improved our understanding of the coastal air-sea exchanges of these three gasses since the first phase of the Regional Carbon Cycle Assessment and Processes...
Carbon monoxide (CO) influences the radiative budget and oxidative capacity of the atmosphere over the Arctic Ocean, which is a source of atmospheric CO. Yet, oceanic CO cycling is understudied in this area, particularly in light of the ongoing rapid environmental changes. We present results from incubation experiments conducted in the Fram Strait...
Nitrous oxide (N2O) is a greenhouse gas, with a global warming potential 298 times that of carbon dioxide. Estuaries can be sources of N2O, but their emission estimates have significant uncertainties due to limited data availability and high spatiotemporal variability. We investigated the spatial and seasonal variability of dissolved N2O and N2O em...
For millennia, humans have gravitated towards coastlines for their resource potential and as geopolitical centres for global trade. A basic requirement ensuring water security for coastal communities relies on a delicate balance between the supply and demand of potable water. The interaction between freshwater and saltwater in coastal settings is,...
Anthropogenic activities are modifying the oceanic environment rapidly and are causing ocean warming and deoxygenation, affecting biodiversity, productivity, and biogeochemical cycling. In coastal sediments, anaerobic organic matter degradation essentially fuels the production of hydrogen sulfide and methane. The release of these compounds from sed...
Methane (CH4) is a climate-relevant atmospheric trace gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. The oceanic CH4 emission estimates are still associated with a high degree of uncertainty partly because the temporal and spatial variability in the CH4 distribution in the ocean surface layer is usually not known....
Carbon monoxide (CO) influences the radiative budget and oxidative capacity of the atmosphere over the Arctic Ocean, which is a source of atmospheric CO. Yet, oceanic CO cycling is understudied in this area, particularly in view of the ongoing rapid environmental changes. We present results from incubation experiments conducted in the Fram Strait i...
For millennia humans have gravitated towards coastlines for their resource potential and as geopolitical centres for global trade. A basic requirement ensuring water security for coastal communities relies on a delicate balance between the supply and demand of potable water. The interaction between freshwater and saltwater in coastal settings is, t...
The impact of submarine groundwater discharge (SGD) on coastal sea biogeochemistry has been demonstrated in many recent studies. However, only a few studies have integrated biogeochemical and microbiological analyses, especially at sites with pockmarks of different degrees of groundwater influence. This study investigated biogeochemical processes a...
Methane (CH4) is a climate-relevant atmospheric trace gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. The oceanic CH4 emission estimates are still associated with a high degree of uncertainty partly because the temporal and spatial variability of the CH4 distribution in the ocean surface layer is usually not known....
Our understanding of the biogeochemical cycling of the climate-relevant trace gas dimethyl sulfide (DMS) in the Peruvian upwelling system is still limited. Here we present oceanic and atmospheric DMS measurements which were made during two shipborne cruises in December 2012 (M91) and October 2015 (SO243) in the Peruvian upwelling region. Dimethylsu...
Human activities are changing the Arctic environment at an unprecedented rate resulting in rapid warming, freshening, sea ice retreat and ocean acidification of the Arctic Ocean. Trace gases such as nitrous oxide (N2O) and methane (CH4) play important roles in both the atmospheric reactivity and radiative budget of the Arctic and thus have a high p...
Dimethyl sulphide (DMS) and carbon monoxide (CO) are climate-relevant trace gases that play key roles in the radiative budget of the Arctic atmosphere. Under global warming, Arctic sea ice retreats at an unprecedented rate, altering light penetration and biological communities, and potentially affect DMS and CO cycling in the Arctic Ocean. This cou...
Our understanding of the biogeochemical cycling of the climate-relevant trace gas dimethylsulfide (DMS) in the Peruvian upwelling system is still limited. Here we present, oceanic and atmospheric DMS measurements which were made during two shipborne cruises in December 2012 (M91) and October 2015 (SO243) in the Peruvian upwelling region. Dimethylsu...
Dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) were measured at the Boknis Eck Time Series Station (BE, Eckernförde Bay, SW Baltic Sea) during the period February 2009–December 2018. Our results show considerable interannual and seasonal variabilities in the mixed-layer concentrations of DMS, total DMSP (DMS...
Nitric oxide (NO) is a short-lived intermediate of the oceanic nitrogen cycle, and it is produced by biological and photochemical processes in the ocean. Nitrogen dioxide (NO2) is a reactive atmospheric compound which has not been determined in the ocean so far. Here, we present the setup and validation of a novel continuous underway measurement sy...
Comparable to carbon dioxide, dimethyl sulfide (DMS), and carbon monoxide (CO) are tiny gases that have a great impact on our climate. Though occurring only in very small amounts in the atmosphere they are climate influencers, especially in the Arctic. The Arctic is a unique place on Earth where all life is adapted to the extreme cold. Therefore, g...
Dissolved sulphur compounds were measured at the Boknis Eck Time-Series Station (BE, Eckernförde Bay, SW Baltic Sea) during the period February 2009–December 2018. Our results show considerable interannual and seasonal variabilities in the mixed layer concentrations of dimethyl sulphide (DMS), total dimethylsulphoniopropionate (DMSPt) and total dim...
In the current era of rapid climate change, accurate characterization of climate-relevant gas dynamics – namely production, consumption, and net emissions – is required for all biomes, especially those ecosystems most susceptible to the impact of change. Marine environments include regions that act as net sources or sinks for numerous climate-activ...
The southwestern basin of the Indian Ocean (SWIO) remains a rather under-sampled region with regard to nitrogen-cycle processes. Here we present the results of extensive nitrous oxide (N2O) measurements as well as the first reported open ocean measurements of hydroxylamine (NH2OH). Enhanced N2O sea-to-air fluxes were found in the zonal band between...
Coastal areas contribute significantly to the emissions of methane (CH4) from the ocean. In order to decipher its temporal variability in the whole water column, dissolved CH4 was measured on a monthly basis at the Boknis Eck Time Series Station (BE) located in Eckernförde Bay (SW Baltic Sea) from 2006 to 2017. BE has a water depth of about 28 m, a...
Oxygen-deficient zones (ODZs) are major sites of net natural nitrous oxide (N2O) production and emissions. In order to understand changes in the magnitude of N2O production in response to global change, knowledge on the individual contributions of the major microbial pathways (nitrification and denitrification) to N2O production and their regulatio...
Abstract. Coastal areas contribute significantly to the emissions of methane (CH<sub>4</sub>) from the ocean. In order to decipher its temporal variability in the whole water column, dissolved CH<sub>4</sub> was measured on a monthly basis at the Boknis Eck Time-series Station (BE) located in the Eckernförde Bay (SW Baltic Sea) from 2006 to 2017. B...
The Bay of Bengal (BoB) has long stood as a biogeochemical enigma, with subsurface waters containing extremely low, but persistent, concentrations of oxygen in the nanomolar range which – for some, yet unconstrained, reason – are prevented from becoming anoxic. One reason for this may be the low productivity of the BoB waters due to nutrient limita...
Nitric oxide (NO) is a short-lived intermediate of the oceanic nitrogen cycle. However, our knowledge about its production and consumption pathways in oceanic environments is rudimentary. In order to decipher the major factors affecting NO photochemical production, we irradiated several artificial seawater samples as well as 31 natural surface seaw...
The flow (flux) of climate-critical gases, such as carbon dioxide (CO2), between the ocean and the atmosphere is a fundamental component of our climate and an important driver of the biogeochemical systems within the oceans. Therefore, the accurate calculation of these air–sea gas fluxes is critical if we are to monitor the oceans and assess the im...
Oxygen deficient zones (ODZs) are major sites of net natural nitrous oxide (N2O) production and 15 emissions. In order to understand changes in the magnitude of N2O production in response to global change, knowledge on the individual contributions of the major microbial pathways (nitrification and denitrification) to N2O production and their regula...
Nitric oxide (NO) is a short-lived compound of the marine nitrogen cycle; however, our knowledge about its oceanic distribution and turnover is rudimentary. Here we present the measurements of dissolved NO in the surface and bottom layers at 75 stations in the Bohai Sea (BS) and the Yellow Sea (YS) in June 2011. Moreover, NO photoproduction rates w...
Nitrous oxide (N2O) and methane (CH4) are atmospheric trace gases which play important roles in the climate and atmospheric chemistry of the Earth. However, little is known about their emissions from rivers and estuaries, which seem to contribute significantly to the atmospheric budget of both gases. To this end concentrations of N2O and CH4 were m...
Nitrous oxide (N2O) is a potent greenhouse gas, and it is involved in stratospheric ozone depletion. Its oceanic production is mainly influenced by dissolved nutrient and oxygen (O2) concentrations in the water column. Here we examined the seasonal and annual variations in dissolved N2O at the Boknis Eck (BE) Time Series Station located in Eckernfö...
Ground-based atmospheric observations of CO2, δ(O2/N2), N2O, and CH4 were used to make estimates of the air–sea fluxes of these species from the Lüderitz and Walvis Bay upwelling cells in the northern Benguela region, during upwelling events. Average flux densities (±1σ) were 0.65±0.4 µmol m-2 s-1 for CO2, -5.1±2.5 µmol m-2 s-1 for O2 (as APO), 0.6...
The Bay of Bengal (BoB) has long stood as a biogeochemical enigma with subsurface waters containing extremely low, but persistent, concentrations of oxygen in the nanomolar range which – for some, yet unconstrained reason – are prevented from becoming anoxic. One reason for this may be the low productivity of the BoB waters due to nutrient limitati...
Nitrous oxide (N2O) is a climate-relevant atmospheric trace gas. It is produced as an intermediate of the nitrogen cycle. The open and coastal oceans are major sources of atmospheric N2O. However, its oceanic distribution is still largely unknown. Here we present the first measurements of the water column distribution of N2O in the Gulf of Aqaba an...
Nitrous oxide (N2O) and methane (CH4) are atmospheric trace gases which play important roles of the climate and atmospheric chemistry of the Earth. However, little is known about their emissions from rivers and estuaries which seem to contribute significantly to the atmospheric budget of both gases. To this end concentrations of N2O and CH4 were me...
Nitric oxide (NO) is a short–lived intermediate of the oceanic nitrogen cycle. However, our knowledge about its production and consumption pathways in oceanic environments is rudimentary. In order to decipher the major factors affecting NO photochemical production, we irradiated artificial seawater samples as well as natural surface seawater sample...
The coastal upwelling regime off Peru in December 2012 showed considerable vertical concentration gradients of dissolved nitrous oxide (N2O) across the top few meters of the ocean. The gradients were predominantly downward, i.e., concentrations decreased toward the surface. Ignoring these gradients causes a systematic error in regionally integrated...
Nitrous oxide (N2O) is a potent greenhouse gas and it is involved in stratospheric ozone depletion. Its oceanic production is mainly influenced by dissolved nutrient and oxygen (O2) concentrations in the water column. Here we examined the seasonal and annual variations of dissolved N2O at the Boknis Eck (BE) Time-Series Station located in Eckernför...
The open ocean is a major source of nitrous oxide (N2O), an atmospheric trace gas attributable to global warming and ozone depletion. Intense sea-to-air N2O fluxes occur in major oceanic upwelling regions such as the eastern tropical South Pacific (ETSP). The ETSP is influenced by the El Niño–Southern Oscillation that leads to inter-annual variatio...
The flow (flux) of climate critical gases, such as carbon dioxide (CO2), between the ocean and the atmosphere is a fundamental component of our climate and the biogeochemical development of the oceans. Therefore, the accurate calculation of these air-sea gas fluxes is critical if we are to monitor the health of our oceans and changes to our climate...
Methane (CH4) is the second-most important greenhouse gas in the atmosphere having a significant effect on global climate. The ocean—particularly the coastal regions—have been recognized to be a net source of CH4, however, the constraints on temporal and spatial resolution of CH4 measurements have been the limiting factor to estimate the total ocea...
Nitrous oxide (N2O) is an important atmospheric trace gas involved in tropospheric warming and stratospheric ozone depletion. Estimates of the global ocean contribution to N2O emissions average 21% (range: 10 to 53%). Ongoing environmental changes such as warming, deoxygenation and acidification are affecting oceanic N2O cycling and emissions to th...
Anthropogenically-derived nitrogen input to the northern Indian Ocean has increased significantly in recent decades, based on both observational and model-derived estimates. This external nutrient source is supplied by atmospheric deposition and riverine fluxes, and has the potential to affect the vulnerable biogeochemical systems of the Arabian Se...
Ground-based atmospheric observations of CO2, δ(O2/N2), N2O, and CH4 were used to make top-down estimates of the air–sea fluxes of these species from the Lüderitz and Walvis Bay upwelling cells in the northern Benguela region, during upwelling events. Average flux densities (±1σ) were 0.64 ± 0.4 μmol m−2 sec−1 for CO2, −5.1 ± 1.4 μmol m−2 sec−1 for...
Plain Language Summary
Nitrous oxide (N2O), commonly known as “laughing gas,” is a potent greenhouse gas that contributes both to Earth's warming and to the depletion of ozone in the stratosphere. Typically, N2O is produced in the water column as a result of microbial decay of organic matter (under low oxygen conditions) and then it is transferred...