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Abstract. Finite trees are given a well ordering in such a way that
there is a 1-1 correspondence between finite trees and an initial segment
of the ordinals. The ordinal ε0 is the supremum of all binary trees. We
get the (fixpoint free) n-ary Veblen hierarchy as tree functions and the
supremum of all trees is the small Veblen ordinal φΩω (0).
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We work with ordinary finite trees with immediate subtrees ordered se-
quentially from left to right and with no labels at the nodes. Here we
just call them trees. The smallest tree is · and we draw the trees with
the root at the bottom. Here are four examples where we have indicated
the corresponding ordinals in the ordering defined below

·
· ·

= ω ·
· ·

·

= ωω
·

· · ·
= ε0 ·

· · ·
·

= Γ0

We write 〈A〉 for the finite sequence of immediate subtrees of the tree
A, and 〈·〉 is the empty sequence. Equality between trees is the usual
equality. Given that we already know the ordering of some trees we let

A ≤ 〈B〉 : There is an immediate subtree Bi of B such that either A <
Bi or A = Bi

〈A〉 < B : For all immediate subtrees Aj of A we have Aj < B

〈A〉 < 〈B〉 : The inverse lexicographical ordering of the immediate sub-
trees — we first check which sequence have smallest length, and if
they have equal length we look at the rightmost immediate subtree
where they differ

We are now ready to define the ordering of trees by recursion over the
immediate subtrees.

A < B ⇔ A ≤ 〈B〉 ∨ (〈A〉 < B ∧ 〈A〉 < 〈B〉)

We must prove that this defines an ordering. The following decision tree
shows (by induction) that we have a total relation



·

A < B · B < A

A < B A = B B < A

A ≤ 〈B〉
〈A〉 < B
〈B〉 < A

B ≤ 〈A〉

〈A〉 < 〈B〉 〈A〉 = 〈B〉
〈B〉 < 〈A〉

To get that this total relation is a total ordering we prove that it is
transitive. As before the argument is by induction over the heights of
the trees. So assume we have

A < B < C

and want to prove by induction over the sum of heights of the three trees
that we get A < C. This is done by cases

– B ≤ 〈C〉 : Then A < B ≤ 〈C〉, and by induction A ≤ 〈C〉 and
A < C

– 〈B〉 < 〈C〉 and 〈B〉 < C : Then

• A ≤ 〈B〉 : Then A ≤ 〈B〉 < C and by induction A < C
• 〈A〉 < 〈B〉 and 〈A〉 < B : Then we have A < C from

∗ 〈A〉 < 〈B〉 < 〈C〉 which gives by induction 〈A〉 < 〈C〉
∗ 〈A〉 < B < C which gives by induction 〈A〉 < C

Theorem 1. The ordering between finite trees is a total ordering where
the equality is the usual equality between trees.

By induction over the build up of trees we prove

Theorem 2. Let T(x) be a tree where x indicates a place where we can
substitute trees. Then

A < B ⇔ T(A) < T(B)

Furthermore by induction over the build up

Theorem 3. If tree S can be embedded in tree T, then S ≤ T.
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We note here that we have the following:

0 = · 1 = ·
·

ω = ·
· ·

But we need to develop more of the theory to come to these and other
calculations. First we give approximations of a tree from below. Given a
tree A with immediate subtrees

·

a0 · · · a`−1 a` a`+1 · · · ap

The immediate subtrees ai of A are smaller.
Now assume

– bl < al

– ci < A for all i < l

Then the following tree is less than A

·

c0 · · · c`−1 b` a`+1 · · · ap

This can be rephrased that for bl < al the function which to x0, . . . ,
x`−1 gives

·

x0 · · · x`−1 b` a`+1 · · · ap

is closed under A. We also get that for s < p that A is closed under the
function which to x0, . . . , xs gives

·

x0 · · · · · · xs

In the usual theory of ordinal notations we use fundamental sequences
as a way to approach ordinals from below. [2] For a given tree A we call

Fundamental subtrees of A : The immediate subtrees of A.
Fundamental functions of A : The two types of functions above.
Fundamental set of A : The set of trees generated by the fundamen-

tal functions starting with the fundamental subtrees.
Elementary fundamental function of A : We first get unary func-

tions by letting all variables except the rightmost be 0. Then use all
such unary functions of the first type. If there are no functions of
the first type use the one of the second type with largest branching.

Elementary fundamental set of A : The set of trees generated by
the elementary fundamental functions starting with the fundamental
subtrees.



We denote the fundamental set of A with F(A) and we shall write it as

[S, . . . , T |F, . . . , G]

where we have displayed the fundamental subtrees S, . . . , T and the fun-
damental functions F, . . . , G. Similarly for the elementary fundamental
set H(A)

We have the following:

F( · ) = ∅

F( ·
·
) = [· | ]

F( ·
· ·

) = [· | ·
x

]

F( ·
· ·

·

) = [·, ·
·
| ·
x

, ·

y ·
]

F( ·
· · ·

) = [· | ·
x

, ·

y z

]

H( ·
· · ·

) = [· | ·
· x

]

Here x, y, z are variables used for describing fundamental functions.

The following theorem shows the importance of the fundamental sets.

Theorem 4. For any tree A:

B < A ⇔ ∃C ∈ F(A).C ≥ B

We prove this by induction over the height of B. It is trivial for height
0. So assume it proved for smaller heights than the height of B. The
direction ⇐ is obvious. We assume B < A and divide up into cases:

B ≤ 〈A〉 : But then B is less than or equal to one of the fundamental
subtrees of A.

〈B〉 < A ∧ 〈B〉 < 〈A〉 : By induction — to each immediate subtree Bi

there is an Ci ∈ F(A) with Ci ≥ Bi. Depending on how we prove
〈B〉 < 〈A〉 we get a fundamental function which we can apply to
some of the Ci’s to get a C ∈ F(A) with C ≥ B

And the theorem is proved. We can also use the elementary fundamental
set



Theorem 5. For any tree A:

B < A ⇔ ∃C ∈ H(A).C ≥ B

We only need to note that

·
· · · α β · · ·

< ·
· · · · γ · · ·

where γ > max(α, β) and that the result of of an application of the second
type of fundamental function can be embedded into an application of the
first type.
We have also

Theorem 6. Assume that all trees less than or equal to the fundamental
subtrees of A is contained in F(A), then

B < A ⇔ B ∈ F(A)

The proof follows the lines above. We have induction over the height of
B and get to the cases
B ≤ 〈A〉 : Then by assumption B ∈ F(A).
〈B〉 < A ∧ 〈B〉 < 〈A〉 : By induction — for each immediate subtree Bi

we have Bi ∈ F(A). Depending on how we prove 〈B〉 < 〈A〉 we
get a fundamental function which we can apply to the Bi’s to get
B ∈ F(A).

We call a fundamental set which is an initial segment of the ordinals for
full. The fundamental sets mentioned above are full.

Theorem 7. ·
α

= α+ 1

We can prove this by simple induction over trees. We prove

β < ·
α

⇔ β ≤ α

or we can use that the ordering is a wellordering and then induction over
α noting that

F( ·
α

) = [α | ·
α−

]

We are now getting a clearer picture of the ordering. The trees can be
divided into layers — we let Ti be the trees with at most i-branchings.
We then get that T1 is majorised by

·
· ·

and this tree is the least in T − T1. The T2 is majorised by

·
· · ·

and this tree is the least in T − T2. The T3 are majorised by

·
· · · ·

and this tree is the least in T − T3. And so on.
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So far the properties could be proved by simple inductions over the
heights. Below we shall prove that the trees are well ordered. This re-
quires a stronger method of proof. Let T be the initial segment of trees
which are well ordered. We then prove

Theorem 8. Assume S1, . . . , Sk are well ordered. Then so is S given
by

·
S1 · · · Sk

Let A < S be as low as possible and not well ordered. We shall show that
A is well ordered. This is done by the inverse lexicographical ordering of
S1, . . . , Sk where the field of the inverse lexicographical ordering is the
set T of well ordered trees. We now have the following cases

A ≤ 〈S〉 : Then A ≤ Si and is therefore well ordered.

〈A〉 < S ∧ 〈A〉 < 〈S〉 : Then all immediate subtrees of A are less than
S and since A is lowest, then all the immediate subtrees of A are
well ordered. But the immediate subtrees of A comes before the im-
mediate subtrees of S in the inverse lexicographical ordering of well
ordered sets and with field T . We conclude that A is well ordered.

The proof is finished. Observe that this proof can be formalized and
proved within the theory of inductive definitions. This means — in proof
theoretical terms — that the trees give an initial segment of the ordinals,
and this segment is below the Howard ordinal. Using that the ordering
respects embedding we can lower this estimate considerably to the small
Veblen ordinal. [3]

Theorem 9. The ordering is a well order.

For the rest of the paper when we talk about ordinals, we mean ordinals
from the initial segment given by the (finite) trees. With our orderings
on the trees we have obtained an easy translation between ordinals and
trees. Note that this is an improvement over the usual theories of ordinal
notations. Then we can have multiple representations of an ordinal and
must worry how to pick a notation for an ordinal.

The function below are well defined:

·
α

·
α β

·
α β γ

·
α β γ δ

· · ·

where α, β, γ, δ, . . . are ordinals corresponding to (finite) trees. The
first function is the successor, but the other functions have not been
characterized so far.
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Here we want to describe the trees T2 with at most binary branching.
We know that the supremum of it is

·
· · ·

We shall prove that this is in fact the ordinal ε0. We can describe T2 as
the set of ordinals/trees given by
Start: ·

Successor: The function f+ given by x 7→ ·
x

α-jump: The function fα given by x 7→ ·
x α

where α is in T2

Furthermore we have a 1-1 correspondence between the terms given
above and the ordinals in T2. This can be used to describe the ordinals
less than

·
· ·

·

The ordinals are given by terms built up from f+ and f0. For simplicity
we just write down the sequence of indices. So we have a finite sequence
of + and 0. The empty sequence correspond to 0, and the finite ordinals
are +,++, + + +, + + ++, . . . . The tree ordering correspond exactly
to the lexicographical ordering of the sequences where we let the 0’s be
signs separating the +’s. The sequence 0++0+00+++0++ correspond
to the sequence 〈0, 2, 1, 0, 3, 2〉 and this is again given by the ordinal

ω5 + ω4 · 2 + ω3 · 1 + ω2 · 0 + ω1 · 3 + 2

We get

Theorem 10.

ωω = ·
· ·

·

It is no surprise that we get connections to the lexicographical ordering
in the ordering of binary trees. Let us note that we have

·
· βk−

· β1−
α− β

< ·
α β

and

·
· βk−

· β1−

< ·
· β



where α− < α and βi− < β. These are the crucial properties for the
lexicographical ordering.
We now want to characterize the function

g(α) = ·
· α

The fundamental set is

[·, α|x 7→ x+ 1, x 7→ ·
x α−

]

where α− runs over the ordinals < α. Furthermore the fundamental set
gives all the ordinals less than g(α). We get that the ordinals less than
g(α) are those that are built up from f+ and the fα− where α− < α. We
can write them as finite sequences of + and the ordinals α−. As before
we have a lexicographical ordering where we have as separating sign the
largest ordinal in the finite sequence and + is the least element. Hence

g(α+ 1) = g(α)ω

We get a recursion equation for g(α). We have the same recursion equa-
tion in

ω(ωα+1) = (ωωα

)ω

and both function behaves continuously at limits and have the same
start. Therefore

Theorem 11. For all α ∈ T2

·
· α

= ω(ωα)

The ordinal g(α) majorises all ordinals built up from f+ and fα− where
α− < α. Hence

Theorem 12.

·
· · ·

= ε0
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Consider now the function

·
α β

= ψ(α, β)

It has as fundamental set

[α, β | ·
α− β

, ·
x β−

, ·

y

]

where α− runs over the ordinals < α , β− runs over the ordinals < β and
x and y are variables indicating functions. The fundamental set gives a
recursion equation for the function ψ(α, β). We note that it is the least
ordinal such that



– ψ(α, β) > ψ(α−, β)
– ψ(α, β) > α
– ψ(α, β) > β
– ψ(α, β) is a limit ordinal
– ψ(α, β) is a fixpoint for all x 7→ ψ(x, β−)

But this is the fix point free Veblen hierarchy starting with x 7→ ω · x.
This hierarchy does not grow so fast. The first critical point is ε0.
Consider now the function

·
α β ·

= φ(α, β)

We first observe that φ(α, 0) gives a fixpoint free enumeration of the ε-
numbers. This is immediately seen from its fundamental set. But then
we get φ(α, β) is the fixpoint free Veblen hierarchy starting with the ε-
numbers. This is almost the same as the usual Veblen hierarchy [2] where
the start is the function ωα enumerating the multiplicative principal
numbers. The first critical number is of course the fixpoint of x 7→ φ(0, x)
which gives

Theorem 13.

·
· · ·

·

= Γ0

Its elementary fundamental set is

H( ·
· · ·

·

) = [0, 0, 1 | ·
· x ·

]

To go further along this line we need the Veblen hierarchy generalized
to n-ary functions as defined by Kurt Schütte [4] based on work by Wil-
helm Ackermann[1]. Assume we have the ordinary binary Veblen function
φ(α, β). We get the ternary Veblen function by

φ(α, β, 0) = φ(α, β)

γ > 0 : φ(α, 0, γ) = the α common fixpoint of all φ(0, x, γ−)

β, γ > 0 : φ(α, β, γ) = the α common fixpoint of all φ(x, β−, γ)

And we recognize these cases in the elementary fundamental set (for the
case when one of the subtrees is different from 0)

H( ·
α β γ

) = [α, β, γ | ·
α− β γ

, ·
0 x γ−

, ·
x β− γ

]

and

H( ·
· · ·

) = [0 | ·
· x

]

So here we have a fixpoint free version of the ternary Veblen hierarchy.



Theorem 14. The ordinal ·
· · · ·

is the ordinal of the ternary
Veblen hierarchy.

The same argument is lifted up.

Theorem 15. The ordinal of the trees with n-ary branching where n > 2
is the ordinal of the n-ary Veblen hierarchy.

Theorem 16. The ordinal of all finite trees is the small Veblen ordinal
φΩω0.

The small Veblen ordinal φΩω0 is the ordinal of finitary Veblen functions.
It is also the ordinal connected with Kruskals theorem. [3]
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