Herman Van Dijk

Herman Van Dijk
Erasmus University Rotterdam | EUR · Department of Econometrics

PhD

About

234
Publications
26,420
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,721
Citations

Publications

Publications (234)
Article
A novel approach to inference for a specific region of the predictive distribution is introduced. An important domain of application is accurate prediction of financial risk measures, where the area of interest is the left tail of the predictive density of logreturns. Our proposed approach originates from the Bayesian approach to parameter estimati...
Article
A dynamic asset-allocation model is specified in probabilistic terms as a combination of return distributions resulting from multiple pairs of dynamic models and portfolio strategies based on momentum patterns in US industry returns. The nonlinear state space representation of the model allows efficient and robust simulation-based Bayesian inferenc...
Article
Full-text available
Invited Discussion : Bertrand Clarke - Meng Li - Peter Grunwald and Rianne de Heide Contributed Discussion : A. Philip Dawid - William Weimin Yoo - Robert L. Winkler, Victor Richmond R. Jose, Kenneth C. Lichtendahl Jr., and Yael Grushka-Cockayne - Kenichiro McAlinn, Knut Are Aastveit, and Mike West - Minsuk Shin - Tianjian Zhou - Lennart Hoogerheid...
Article
Full-text available
This paper presents the R package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel - typically a posterior density kernel - using an adaptive mixture of Student t densities as approximating density. In the f...
Article
Weak empirical evidence near and at the boundary of the parameter region is a predominant feature in econometric models. Examples are macroeconometric models with weak information on the number of stable relations, microeconometric models measuring connectivity between variables with weak instruments, financial econometric models like the random wa...
Article
The proposed panel Markov-switching VAR model accommodates changes in low and high data frequencies and incorporates endogenous time-varying transition matrices of country-specific Markov chains, allowing for interconnections. An efficient multi-move sampling algorithm draws time-varying Markov-switching chains. Using industrial production growth a...
Article
We investigate the direct connection between the uncertainty related to estimated stable ratios of stock prices and risk and return of two pairs trading strategies: a conditional statistical arbitrage method and an implicit arbitrage one. A simulation-based Bayesian procedure is introduced for predicting stable stock price ratios, defined in a coin...
Article
Full-text available
Challenging statements have appeared in recent years in the literature on advances in computational procedures.[...]
Article
We introduce a Combined Density Nowcasting (CDN) approach to Dynamic Factor Models (DFM) that in a coherent way accounts for time-varying uncertainty of several model and data features in order to provide more accurate and complete density nowcasts. The combination weights are latent random variables that depend on past nowcasting performance and o...
Technical Report
Full-text available
This paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm, introduced by Hoogerheide, Opschoor and Van Dijk (2012), provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kern...
Article
This paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm, introduced by Hoogerheide et al. 2012, provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kernel of the target d...
Technical Report
This paper presents the R-package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel -- typically a posterior density kernel -- using an adaptive mixture of Student-t densities as approximating density. In the...
Article
A Bayesian semi-parametric dynamic model combination is proposed in order to deal with a large set of predictive densities. It extends the mixture of experts and the smoothly mixing regression models by allowing combination weight dependence between models as well as over time. It introduces an information reduction step by using a clustering mecha...
Article
Interconnections between Eurozone and United States booms and busts and among major Eurozone economies are analyzed using a Panel Markov-Switching VAR model. The model accommodates changes in low and high data frequencies and incorporates endogenous time-varying transition matrices of country-specific Markov chains. These country-specific Markov ch...
Article
Changing time series properties of US inflation and economic activity, measured as marginal costs, are modeled within a set of extended New Keynesian Phillips curve (NKPC) models. It is shown that mechanical removal or modeling of simple low-frequency movements in the data may yield poor predictive results which depend on the model specification us...
Technical Report
Time varying patterns in US growth are analyzed using various univariate model structures, starting from a naive model structure where all features change every period to a model where the slow variation in the conditional mean and changes in the conditional variance are specified together with their interaction, including survey data on expected g...
Article
This paper starts with a brief description of the introduction of the likelihood approach in econometrics as presented in Cowles Foundation Monographs 10 and 14. A sketch is given of the criticisms on this approach mainly from the first group of Bayesian econometricians. Publication and citation patterns of Bayesian econometric papers are analyzed...
Article
Full-text available
A Direct Monte Carlo (DMC) approach is introduced for posterior simulation in the Instrumental Variables (IV) model with one possibly endogenous regressor, multiple instruments and Gaussian errors under a flat prior. This DMC method can also be applied in an IV model (with one or multiple instruments) under an informative prior for the endogenous r...
Article
We investigate the direct connection between the uncertainty related to estimated stable ratios of stock prices and risk and return of two pairs trading strategies: a conditional statistical arbitrage method and an implicit arbitrage one. A simulation-based Bayesian procedure is introduced for predicting stable stock price ratios, defined in a coin...
Article
We introduce a combined density nowcasting (CDN) approach to dynamic factor models (DFM) that in a coherent way accounts for time-varying uncertainty of several model and data features to provide more accurate and complete density nowcasts. The combination weights are latent random variables that depend on past nowcasting performance and other lear...
Article
Accurate prediction of risk measures such as Value at Risk (VaR) and Expected Shortfall (ES) requires precise estimation of the tail of the predictive distribution. Two novel concepts are introduced that offer a specific focus on this part of the predictive density: the censored posterior, a posterior in which the likelihood is replaced by the cens...
Article
This paper presents the Matlab package DeCo (Density Combination) which is based on the paper by Billio et al. (2013) where a constructive Bayesian approach is presented for combining predictive densities originating from different models or other sources of information. The combination weights are time-varying and may depend on past predictive for...
Article
Full-text available
Macrosatellite repeats (MSRs), usually spanning hundreds of kilobases of genomic DNA, comprise a significant proportion of the human genome. Because of their highly polymorphic nature, MSRs represent an extreme example of copy number variation, but their structure and function is largely understudied. Here, we describe a detailed study of six autos...
Data
Additional file containing supplementary tables S1-S5 and their legends. The file is in .pdf format.
Data
Observed repeat sizes for all MSRs. Additional file containing tables with repeat sizes obtained in this study for every individual for every MSR separately. The file is in .xls format.
Data
Full-text available
Additional file containing supplementary figures S1-S8 and their legends. The file is in .pdf format.
Article
The empirical support for features of a Dynamic Stochastic General Equilibrium model with two technology shocks is valuated using Bayesian model averaging over vector autoregressions. The model features include equilibria, restrictions on long-run responses, a structural break of unknown date and a range of lags and deterministic processes. We find...
Article
Interactions between the eurozone and US booms and busts and among major eurozone economies are analyzed by introducing a panel Markov-switching VAR model well suitable for a multi-country cyclical analysis. The model accommodates changes in low and high data frequencies and endogenous time-varying transition matrices of the country-specific Markov...
Article
After a brief description of the first Bayesian steps into econometrics in the 1960s and early 70s, publication and citation patterns are analyzed in ten major econometric journals until 2012. The results indicate that journals which contain both theoretical and applied papers, such as Journal of Econometrics, Journal of Business and Economic Stati...
Article
Interactions between the eurozone and US booms and busts and among major eurozone economies are analyzed by introducing a panel Markov-switching VAR model well suitable for a multi-country cyclical analysis. The model accommodates changes in low and high data frequencies and endogenous time-varying transition matrices of the country-specific Markov...
Article
Changing time series properties of US inflation and economic activity, measured as marginal costs, are modeled within a set of extended Phillips Curve (PC) models. It is shown that mechanical removal or modeling of simple low frequency movements in the data may yield poor predictive results which depend on the model specification used. Basic PC mod...
Article
Changing time series properties of US inflation and economic activity are analyzed within a class of extended Phillips Curve (PC) models. First, the misspecification effects of mechanical removal of low frequency movements of these series on posterior inference of a basic PC model are analyzed using a Bayesian simulation based approach. Next, struc...
Article
A jump robust positive semidefinite rank-based estimator for the daily covariance matrix based on high-frequency intraday returns is proposed. It disentangles covariance estimation into variance and correlation components. This allows us to account for ...
Article
A jump robust positive semidefinite rank-based estimator for the daily covariance matrix based on high-frequency intraday returns is proposed. It disentangles covariance estimation into variance and correlation components. This allows us to account for ...
Article
We propose a Bayesian combination approach for multivariate predictive densities which relies upon a distributional state space representation of the combination weights. Several specifications of multivariate time-varying weights are introduced with a particular focus on weight dynamics driven by the past performance of the predictive densities an...
Article
We discuss Bayesian inferential procedures within the family of instrumental variables regression models and focus on two issues: existence conditions for posterior moments of the parameters of interest under a flat prior and the potential of Direct Monte Carlo (DMC) approaches for efficient evaluation of such possibly highly non-elliptical posteri...
Technical Report
This paper presents the R package MitISEM, which provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kernel of the target density is required. The approximation can be used as a candidate density in Importance Sampling or Metropolis Hastings methods fo...
Article
Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying combination strategies are introduced. In particular, a wei...
Article
A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of sequences of importance weighted Expectation Maximization st...
Article
The empirical support for a DSGE type of real business cycle model with two technology shocks is evaluated using a Bayesian model averaging procedure that makes use of a finite mixture of many models within the class of vector autoregressive (VAR) processes. The linear VAR model is extended to permit equilibrium restrictions and restrictions on lon...
Article
Forecast rationality under squared error loss implies various bounds on second moments of the data across forecast horizons. For example, the mean squared forecast error should be increasing in the horizon, and the mean squared forecast should be decreasing in the horizon. We propose rationality tests based on these restrictions, including new ones...
Article
Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. The Oxford Handbook of Bayesian Econometrics is a single source about Bayesian methods in specialized fields. It contains articles by leading Bayesians on the l...
Article
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by autoregressive (AR) and Markov-Switching AR models, which are...
Article
We propose a multivariate combination approach to prediction based on a distributional state space representation of the weights belonging to a set of Bayesian predictive densities which have been obtained from alternative models. Several specifications of multivariate time-varying weights are introduced with a particular focus on weight dynamics d...
Article
Patton and Timmermann (2011, 'Forecast Rationality Tests Based on Multi-Horizon Bounds', Journal of Business & Economic Statistics, forthcoming) propose a set of useful tests for forecast rationality or optimality under squared error loss, including an easily implemented test based on a regression that only involves (long-horizon and short-horizon)...
Article
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by autoregressive (AR) and Markov-Switching AR models, which are...
Article
We summarize the general combination approach by Billio et al. [2010]. In the combination model the weights follow logistic auto-regressive processes, change over time and their dynamics are possible driven by the past forecasting performances of the predictive densities. For illustrative purposes we apply it to combine White Noise and GARCH models...
Article
Divergent priors are improper when defined on unbounded supports. Bartlett's paradox has been taken to imply that using improper priors results in ill-defined Bayes factors, preventing model comparison by posterior probabilities. However many improper priors have attractive properties that econometricians may wish to access and at the same time con...
Article
A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of sequences of importance weighted Expectation Maximization st...
Article
Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying combination strategies are introduced. In particular, a wei...
Article
When forecasts are assessed by a general loss (cost-of-error) function, the optimal point forecast is, in general, not the conditional mean, and depends on the conditional volatility-which, for stock returns, is time-varying. In order to provide forecasts ...
Article
Several Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time-varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time series. The results indicate that the proposed time-varying mod...
Article
Full-text available
The cointegration hypothesis can be formulated as a reduced rank restriction on equation system parameters of a vector autoregressive model. For Bayesian analysis, this restriction must then be incorporated in prior knowledge on the parametric struc-ture. In many economic time series models this prior information is vague. Several ways to approach...