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CHAPTER 15

Subtle Nonlinearity in Popular Album Charts
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Large-scale patterns of culture change may be explained by models of self organized
criticality, or alternatively, by multiplicative processes. We speculate that popular album
activity may be similar to critical models of extinction in that interconnected agents
compete to survive within a limited space. Here we investigate whether popular music
albums as listed on popular album charts display evidence of self-organized criticality,
including a self-affine time series of activity and power-law distributions of lifetimes

and exit activity in the chart. We find it difficult to distinguish between multiplicative
growth and critical model hypotheses for these data. However, aspects of criticality may
be masked by the selective sampling that a “Top 200” listing necessarily implies.

Keywords: Culture change; self-organized criticality; multiplicative process; music al-
bums.

1. Introduction

In this paper we test for evidence of self-organized criticality in the Billboard “Top

200” album chart (hereafter referred to as the Chart). We suspected that activity

on this Chart might resemble critical models of extinction in that albums, as inter-

connected agents, compete to survive within a limited space on the Chart. We also

evaluate the data in terms of alternative models that do not invoke self-organized

criticality. Evidence for or against self-organized criticality among popular albums

on album charts has the potential to lead us from market or macroevolutionary

dynamics toward similar phenomena in cultural evolution reflected in the arrivals

of changing styles. The analysis reveals that, while self-organized critical models

may explain the large scale patterns of cultural change, all components of a system

must be documented for criticality to be unambiguously apparent.
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Here we evaluate three possible explanations for patterns in twenty years of

Chart activity, self-organized criticality, multiplicative process and Poisson process.

Falling within these categories are various models which have been proposed that

produce the kind of statistics discussed here. Newman and Palmer [13] review such

models of extinction, some of which involve criticality and some of which do not.

One important model is that of Newman [10], who has proposed an evolutionary

model that reproduces the power-law behavior of the B–S model without interaction

between agents. Species in this model are instead subject to external environmental

stresses. We do not invoke it here, however, as Newman’s model relies on a rapidly

decreasing distribution of external stress events (Ref. 10, p. 251), which seems an

unwarranted precondition for the Chart.

2. Self-Organized Critical Models

Self-organized critical models of extinction have been used to explain power-law

distributions of species’ lifespans and extinction events (“avalanches”) in statistical

evidence from the fossil record [4, 15, 16, 18]. Debate exists as to whether self-

organized criticality is necessary to explain the power-law behavior (e.g. Refs. 9 and

11), and whether some of this fossil evidence may be a statistical artifact [6, 12].

For systems with highly resolved time series, however, such as financial markets,

multi-agent models suggest that power-law behavior results from the interactions

between agents [3, 7, 8]. Cultural evolution, especially the comings and goings of

styles, may be governed at an abstract level by algorithms similar to those appro-

priate to macroevolution or market activity — styles may be seen as interconnected

agents whose existences depend on each other. Products of long periods of social

interaction, such as the English language, are characterized by power-law statistics

that may be indicative of critical systems [2, 25]. Examples are limited, however, as

the qualitative nature of cultural data makes it especially difficult to obtain solid

evidence for criticality in cultural evolution.

The Bak–Sneppen (B–S) generalized model of punctuated evolution [4, 15],

which generates a power-law distribution of “species” lifetimes and avalanche sizes,

is a good test model for pop Chart activity because both the model and the Chart

have a fixed number of positions for which interconnected agents compete. In the

B–S model, species are arranged in a lattice, such that each species interacts with

its nearest neighbors. Each species can be represented by a value between 0 and 1,

chosen at random to start the simulation. These values can be taken to represent

species’ fitnesses (see Ref. 13). At each time step, the lowest fitness value in the

lattice is selected, and the mutation is represented by the assignment of a new

random value between 0 and 1. The nearest neighbors are also randomly assigned

new fitness values in order to model abstractly their “adaptation” to the new fitness

landscape created by the extinction of the species near them in the lattice. As the

fitnesses in the lattice evolve to a state where they are all above a certain “gap”

value, the system becomes poised for an avalanche. Avalanches occur when a value
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above the gap and its neighbors are replaced by random values. Since these new

random replacements are likely to fall below the gap value, one of them is likely to

be selected in the next time step for replacement, and subsequent time steps, until

finally all values are above the gap value and the avalanche ends.

For pop albums, an analog to the absolute fitness values of the B–S model is

not identifiable, since peak Chart position or even sales figures are dependent on

time and the environment (market) and therefore are measures of relative fitness.

This will force us (below) to define an avalanche differently from the B–S model, in

which avalanches are defined as the total activity occurring between periods of all

fitnesses above a certain threshold [14], with no other constraint on the duration of

those periods. Self-organized critical extinction models are characterized by (a) a

power-law distribution in the sizes of coevolutionary avalanches, (b) a power-law

distribution of the lifespans of agents, and (c) self-affine time series of events char-

acterized by a 1/fD power spectrum [2]. The power-law exponent varies between

models. For the B–S model, that power-law has an exponent between 1.0 and 1.5

[4]. In the model of Sole and Manrubia [17], in which interactions between species

have variable strengths and signs (they can be beneficial or harmful relationships),

the exponent is 2.3± 0.1.

Other processes may generate power-law statistics, but one important implica-

tion of self-organized criticality is that the interdependencies between agents gen-

erate the “fat tail” of the avalanche size and lifespan distributions. Our test for

self-organized criticality is motivated by our belief that such interdependencies are

present between albums in the Chart. For example, consider an album like Pink

Floyd’s Dark Side of the Moon, which had been on the Chart for a remarkable 566

weeks in a row by 1985. The staying power of such an album is best explained

by its interaction with subsequent “spin-off” performers and albums. Acts that

were inspired by Dark Side of the Moon, though they may themselves have been

short-lived, lent sales support by association to the album that inspired them.

3. Multiplicative Processes

As an alternative to self-organized criticality, the activity of the Chart might be

describable as a result of multiplicative processes. Multiplicative processes can gen-

erate power-law distributions in statistics such as the dynamics of the growth of

units of complex internal structure [1]. As discussed below, a log-normal distribu-

tion of avalanche sizes or album lifespans would rule out self-organized criticality

in favor of a mutiplicative process. The log-normal distribution is given by

f(x) =
A

x(2π)1/2
· exp

(
− (lnx− ȳ)2

2σ2
y

)
, (1)

where A is a constant, x ≥ 0 and y = ln(x). The values of y are normally distributed

with a mean ȳ and standard deviation σy . A log-normal distribution of album

lifespans, for example, can be modeled by assuming that each album achieves a
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certain longevity on the Chart through having a certain number of attributes, each

with an independent probability of being adequate to acheive that lifespan (see

Ref. 23). The lifespan of the album would then be proportional to the product of

the probabilities of each attribute, leading to a log-normal distribution of lifetimes.

Such attributes might include, for instance, originality (or conformity), meaningful

lyrics, charismatic performers, advertising, etc. Even with systems characterized by

power-law statistics, self-organized criticality is not a foregone conclusion. There

are many random growth processes that generate power-law distributions without

invoking criticality [19]. Takayasu et al. [21] and Sornette [20], for example, have

shown that random multiplicative growth processes have a power-law probability

density function (PDF) for large x:

P (x) = Cx−1−µ , (2)

where µ is a constant. The value of µ depends on the particular multiplicative

process [20]. We discuss whether multiplicative processes may generate power-law

distributions in the Chart data in Sec. 5.

4. Poisson Process

A Poisson process in Chart activity would be characterized by simple exponential

distributions. With avalanche events, for example, if the probability that the activity

is above the threshold during any given week is p, and the data are not correlated

through time, then the expected number of avalanches of size Cx scales as

y = (N − x+ 1) · px , (3)

where N is the total number of time steps in the time series, and the avalanche size

Cx implies that x steps of above-threshold activity with average rate C occurred

in a row. This is essentially a simple exponential relationship when N is large

compared to x. A similar explanation can be made for an exponential distribution

of album lifespans by letting p be the probability that a species will survive to the

following time step.

5. Analysis of the Top 200 Album Chart

We analyzed data compiled by Whitburn [24] for 12,005 albums from the Billboard

Album pop Chart from 1963–1985, which include the date each album entered the

Chart, its peak position, and the number of weeks it stayed on the Chart. The

Chart has had a variable size over the years, from 15 positions in 1955 to separate

stereo and mono charts from 1959–1963, to 150 positions from 1963–1967; it has

been fixed at 200 albums since 1967. Details are explained in Ref. 24. To avoid large

variations in activity during the times when the Chart was small and erratic in size

from week to week, we chose to consider the Chart activity beginning in 1963, by

which time the Chart size had become consistent. We then normalized activity in

the Chart by the number of listed albums in the Chart at a given time.
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Fig. 1. The cumulative fraction of the total number of albums on the Chart that exited the
Billboard pop Chart, January 5, 1963 to March 31, 1985 (1162 weeks), was determined in terms
of the fraction of albums on the Chart exiting the Chart each week. The turnover rate during this
period was remarkably consistent at about 5.6% per week.

The time series of cumulative exiting-album activity shows that, for over twenty

years, the Chart underwent a remarkably consistent turnover rate of about 5.6%

per week (Fig. 1). This is equivalent to a dominant lifespan of 10–20 weeks, which

might correspond to the promotional period of new albums by the record industry.

Suspecting that more interesting behavior among longer-lived albums may be hid-

den by the consistent turnover rate, we focus on deviations from the trend. Figure 2

shows the residual activity on the pop Chart after the linear trend of 5.6% per week

has been removed.

In the next three subsections we examine the three characteristics of self orga-

nized criticality mentioned in Sec. 2, with respect to the Chart data.

5.1. Self-affinity

Visual inspection of Figs. 2(a) and 2(b) suggests that the residual activity may

be self-affine, as the “blow-up” of the activity in 1972 shows a pattern similar in

relative scale to that of the full time series.

The self-affine nature of the residual series, ξ(t), was tested by examining its

Fourier spectrum. A fast Fourier-transform (FFT) was performed on ξ(t) over N =

1162 weeks. In the FFT, the magnitude P (f) is

P (f) =
1√
N

N∑
τ=1

C(τ) exp

(
−i2πfτ
N

)
, (4)

where C(τ) = 〈ξ(t)ξ(t + τ)〉 is the autocorrelation function, and the integral of

P (f) over all frequencies is one. The frequency f is in terms of the temporal unit

t of the time series, so in this case f is in cycles/week. We find a 1/fD power

spectrum with D = 1.23± 0.09. This indicates that the time series of cumulative

residual activity is self-affine (Ref. 22, p. 148). This self-affinity could mean that

the pop Chart activity may consist of two components, a fairly steady turnover
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(a)

(b) (c)

Fig. 2. Cumulative residual activity with linear trend removed. (a) Cumulative residual activity
series after a linear trend of 5.6% per week was removed. (b) A “blow-up” of the time series in (a),
showing the weekly data for 1972. (c) Power spectrum of the series in (a), with a least-squared-
fitted slope of −1.23±0.09. The three figures show that self-similarity and a 1/fD power spectrum
become apparent in the cumulative activity after a linear trend is removed.

component averaging 5.6% per week and a residual component with characteristics

of self-organized criticality. Alternatively, the power spectrum could be generated

by multiplicative processes rather than critical phenomena (Ref. 23, pp. 156–165).

We discuss this consideration below.

5.2. Avalanches of Chart activity

For our analysis, we define an avalanche as an event during which the rate of

activity was sustained above a chosen threshold over a succession of consecutive

time intervals (weeks), and the size of the avalanche as the total number of albums

that exited on the Chart during that period. Avalanches defined in this way vary

in temporal duration, which is similar to B–S model avalanches. With the pop

Chart activity, the threshold was chosen to be the average turnover rate of 5.6%



May 10, 2002 16:47 WSPC/bk02-005-mcess chap15

Ch. 15 Subtle Nonlinearity in Popular Album Charts 237

(a)

(b)

Fig. 3. Avalanche events in the Billboard pop Chart, January 5, 1963 to March 31, 1985, de-
fined as periods of activity sustained above the average exit rate of 5.6% of the Chart per week.
Avalanche size is expressed as proportion of the total number of albums on the Chart at one
time. (a) Avalanche sizes shown in a regular histogram. The bin size for the avalanche size is a
proportion of 0.05. For the power-law fit, the slope is −2.14 ± 0.25, r2 = 0.873. The power-law
fit is significantly better than for the exponential relationship (not shown), for which r2 = 0.569.
(b) Cumulative plot of avalanches, showing the largest 5% of avalanche sizes, to distinguish between
log-normal and power-law distributions. All of the shown cumulative functions fit the avalanche
distribution up to about 95%, and differences between possible distribution functions are only
apparent for large avalanches. The power law may be the closest to the distribution of the few
largest avalanches.
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Table 1. Effect of threshold on avalanche distribution. The power law slope in the

avalanche distribution depends on the threshold (as a portion of the Chart exiting per
week) used to define avalanche events. The threshold also affects the correlation coef-
ficients for power law and exponential fits to the distribution. As the threshold moves
outside the range of 4%–7%, the waning number of avalanches makes it difficult to pro-
duce a good histogram of avalanche sizes.

Threshold Avalanches Power law slope R2 for log-log plot R2 for semilog plot

4% 179 −1.34± 0.13 0.820 0.648
4.5% 210 −1.64± 0.16 0.832 0.581
5% 248 −2.03± 0.18 0.883 0.664

5.5% 256 −2.20± 0.26 0.860 0.547
5.6% 256 −2.14± 0.25 0.873 0.569
6% 232 −2.48± 0.19 0.947 0.772

6.5% 199 −2.70± 0.36 0.877 0.660
7% 155 −2.65± 0.76 0.844 0.656

per week. The result is a distribution of avalanches with an extended tail, possibly a

power law (Fig. 3). Power-law and log-normal functions both fit considerably better

than an exponential function to avalanche distribution. This is significant because

avalanches defined this way for random noise should be exponentially distributed.

As a test, we looked at the distribution of avalanches (using 5.6% threshold) for

the values of the weekly time series in randomly shuffled order. The result was an

exponential distribution resembling equation (3). For the real data, the avalanche

distribution is either a power-law or log-normal with significantly more large events,

either of which is definitely distinguishable from an exponential distribution. As

Fig. 3 shows, it is hard to tell whether the distribution is log-normal or a power law.

We noticed that the extended tail in the distribution of avalanche sizes occurred

for a range of different thresholds, with slopes becoming steeper as the threshold is

increased from 4% to 7% per week (Table 1). The relationship in all cases within

this range is better fitted with a power-law (Table 1, log-log plot) or log-normal than

with an exponential function (Table 1, semilog plot), which is the expected result

for a random time series. Outside this range, there are not enough avalanches for a

good histogram because either there are only a few mostly small avalanches or a few

very large avalanches. We want to make the point that the slope of the power-law

distribution of avalanche size is highly dependent on the choice of threshold value,

as the average avalanche size increases as the threshold is lowered (Table 1). There

is a qualitative similarity in this effect to the B–S model, in which the average

avalanche size increases as the fitness threshold is brought closer to its critical

value [14]. Nonetheless, avalanche sizes on the Chart are clearly either power-law

or log-normally distributed for a range of thresholds.

5.3. Album lifespans

We now turn to distribution of album lifespans on the Chart (Fig. 4). As Fig. 4

shows, however, both the log-normal and power law functions fit the data reasonably
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Fig. 4. Lifespans of albums on the Billboard Chart, 1963–1985. The bin size is five albums.
Beyond 20 weeks, the slope converges asymptotically to −2.70± 0.12, r2 = 0.913. The power-law
fit for albums living 20 weeks or more is better than for the exponential relationship, but the
log-normal distribution fits the entire distribution.

well. The difference between these two is rather important, because while neither

distribution requires interconnections between albums [13], a log-normal distribu-

tion suggests this is not a critical system at all. While only log-normal fits the left

side of the distribution, it is the proper form of the tail that we are most concerned

with. An indication that albums on the pop Chart interact in a critical system

would be a power-law distribution of lifespans analogous to the species lifespans in

self-organized critical models of evolution. If the distribution of album lifespans in

Fig. 4 indeed has a power-law tail, its exponent is 2.70± 0.12, which is higher than

that of the B–S one-dimensional and two-dimensional models, with exponents of

1.58 and 1.28, respectively (Ref. 14, Fig. 30). The plateau in the lifespan distribu-

tion up to 20 weeks is due to the dominance of the 5.6% per week rate of turnover

in the Chart, the reciprocal of which is an expected lifespan of about 18 weeks.

However, it is the longer lifespans that interest us here, since in a non-critical sys-

tem, we would expect the distribution to fall off as an exponential function rather

than the existing power-law. A power-law tail in the lifespan distribution would

be additional evidence for two components of Chart activity, with the effect of a

steady turnover giving way to a critical-type power-law in the longer lifespans.

We find it unlikely that multiplicative processes would produce a power-law

distribution of album lifespans. Assuming that an album’s position on the Chart
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is a function of weekly sales rate, it might be that the sales rate for each album,

as a stochastic multiplicative process, could generate a power-law distribution of

album lifespans on the Chart. For an album to be on the Chart on a given week, its

sales must be above the sales rate, x201, of the 201st album tracked by Billboard.

Supposing that sales are distributed in the power-law form (2), the probability that

an album’s sales are above this threshold in a given week is

P (x > x201) =

∫ ∞
x201

C

x1+µ
dx = Cx201 . (5)

The probability that it remains on the Chart for n weeks in a row is then

P (n) = Cx−nµ201 , (6)

which is an exponential with respect to n. The value of x201 varies week to week,

but unless x201 were to decrease with time, Eq. (4) does not resemble a power-law

with respect to n.

In other words, even if the power-law PDF (5) were the probability of sales for a

given week, it would not explain a power-law distribution of album lifetimes, which

are the number of weeks in a row above a threshold sales rate. Thus any random

process that might produce a power-law PDF for album sales still does not explain

the power-law tail of album lifespans, unless x201 becomes smaller with time over

the lifetime of an album, which of course does not make sense.

6. Discussion

Despite the good fit of the log-normal function to the lifespan distribution, we do not

abandon our suspicion that popular album choice may be a self-organized critical

phenomenon, due to the ubiquitous interdependencies in popular music culture,

especially in the form of imitation. It may be that evidence for criticality is obscured

by the nature of the data. This is because the Top 200 by definition is a limited

representative of the entire system. This can be illustrated by considering the Top

200 as a real-life B–S model. In the B–S model, the critical state is reached when

the species in the system all take on fitness values above a critical threshold, which

happens to be 0.67 for the one-dimensional model [14]. Avalanches are triggered

by species with random fitnesses, likely to be lower than the threshold, replacing

high-fitness species and their neighbors, and thus being likely to be reselected for

replacement in the subsequent time step. The Chart, comprising the top 200 best-

selling albums, is filled with fit species like the B–S model in the critical state.

However, the fitness of new albums introduced to the Chart is anything but random.

Albums are momentarily very fit when they enter the Chart. Best-selling albums

are replaced by other best-selling, highly fit albums. In other words, observation

limited to the 200 best albums at any time eliminates the fundamental generator

of avalanches and power-law lifespans. Unlike species in the B-S model, the newest
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albums on the Chart are not necessarily the most likely to be replaced the following

week.

This leads to an important point. Criticality may only be visible with data

that include all the members of the system, all the way down to the most unfit

competitors. Within a ranking of, say, the top 10,000 albums, there would be masses

of unsuccessful albums making the bottom levels of such a chart for momentary

periods. There would also be more long-lived albums with sales below Top 200

levels but in the Top 10,000 for a long time. This is speculation, of course. The

main point is that a continuously-updated ranking of the topmost echelon of a

competitive hierarchy is unlikely to exhibit a power-law distribution of lifespans,

even for a self-organized critical system. It is likely that the variance of album sales

is highly dependent on sales themselves, perhaps analogous to the way the standard

deviation of the growth rates of firms has an inverse-power law dependence on firm

size [1]. In other words, to see the full range of variance, the smallest competitors

must be included in the data.

Finally, despite our adherence to the hypothesis of self-organized criticality, the

evaluation of log-normal fits in addition to possible power-laws has been instructive.

We note that data similar to ours have been described as power-law in form without

reference to the possibility of log-normality. For example, Barabasi and Albert

(Ref. 5, Fig. 1(a)) describe the collaboration graph of movie actors as having a

power-law tail, yet the distribution looks log-normal.

7. Conclusion

By analogy with the B–S model, we speculated that the pop Chart has a critical

nature because albums contemporary with one another may be interconnected in

such a way that the demise or success of one can affect others in the Chart. However,

since the Chart draws the best-selling albums in all genres, interconnections are not

prevalent and evidence of self-organized criticality is subtle at best. An important

lesson from this study may be that the data must include the least successful albums

if criticality is to become apparent. Potential interconnections might be highlighted

by isolating a single music genre or record label, and isolating the effect of such

relationships is the goal of further research.

The implications of finding evidence for or against criticality on the Billboard

Album pop Chart are significant for future behavioral and cultural studies. Social

scientists are beginning to recognize that there are organizational principles in hu-

man socioeconomic systems that underlie both interactions between individuals and

complex, macro-regional networks. How popular music choices evolve has bearing

on how we look at oral traditions, fashion, bestseller book lists, ancient pottery

styles, religion, and many other competitive categories of modern and past social

systems. For archaeology, for example, our results present a challenge due to the

difficulty in seeing all the artifact styles that were not successful and are sparsely

represented in excavations.
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