About
176
Publications
11,177
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,715
Citations
Citations since 2017
Publications
Publications (176)
Polyether-ether-ketone (PEEK) is increasingly becoming popular in medicine because of its excellent mechanical strength, dimensional stability, and chemical resistance properties. However, PEEK being bioinert, has weak bone osseointegration properties, limiting its clinical applications. In this study, a porous PEEK structure was developed using a...
Connexin 43 (Cx43), the predominate gap junction protein in bone, is essential for intercellular communication and skeletal homeostasis. Previous work suggests osteocyte-specific deletion of Cx43 leads to increased bone formation and resorption, however the cell-autonomous role of osteocytic Cx43 in promoting increased bone remodeling is unknown. R...
Physiochemical cues like topography and wettability can impact the inflammatory response and tissue integration after biomaterial implantation. T cells are essential for immunomodulation of innate immune cells and play an important role in the host response to biomaterial implantation. This study aimed to understand how CD4+ and CD8+ T cell subsets...
Developments in long-term space exploration necessitate advancements in countermeasures against microgravity-induced skeletal muscle loss. Astronaut data shows considerable variation in muscle loss in response to microgravity. Previous experiments suggest that genetic background influences the skeletal muscle response to unloading, but no in-depth...
Connexin 43 (Cx43), the predominate gap junction protein in bone, is essential for intercellular communication and skeletal homeostasis. Previous work suggests osteocyte-specific deletion of Cx43 leads to increased bone formation and resorption, however the cell-autonomous role of osteocytic Cx43 in promoting increased bone remodeling is unknown. R...
During disuse, mechanical unloading causes extensive bone loss, decreasing bone volume and strength. Variation in bone mass and risk of osteoporosis are influenced by genetics; however, it remains unclear how genetic variation affects the skeletal response to unloading. We previously found that genetic variation affects the musculoskeletal response...
Neutrophils are the most abundant immune cells in the blood and the first cells to be recruited to the biomaterial implantation site. Neutrophils are fundamental in recruiting mononuclear leukocytes to mount an immune response at the injury site. Neutrophils exert significant pro-inflammatory effects through the release of cytokines and chemokines,...
Patients with bone and muscle weakness from disuse have higher risk of fracture and worse post-injury mortality rates. The goal of this current study was to better inform post-fracture rehabilitation strategies by investigating if physical remobilization following disuse by hindlimb unloading improves osteochondral callus formation compared to cont...
Materials for craniofacial and orthopedic implants are commonly selected based on mechanical properties and corrosion resistance. The biocompatibility of these materials is typically assessed in vitro using cell lines, but little is known about the response of immune cells to these materials. This study aimed to evaluate the inflammatory and immune...
Patients with bone and muscle loss from prolonged disuse have higher risk of falls and subsequent fragility fractures. In addition, fracture patients with continued disuse and/or delayed physical rehabilitation have worse clinical outcomes compared to individuals with immediate weight-bearing activity following diaphyseal fracture. However, the eff...
Bone loss during mechanical unloading increases fracture risk and is a major concern for the general population and astronauts during spaceflight. The endocannabinoid system (ECS) plays an important role in bone metabolism. One of the main ECS receptors, cannabinoid receptor 1 (CB1), has been studied in regards to basic bone metabolism; however, li...
Disuse and aging are known risk factors associated with bone mass and quality deterioration, resulting in increased fracture risk. Indeed, current and emerging evidence implicates a large number of shared skeletal manifestations between disuse and aging scenarios. This review provides a detailed overview of current preclinical models of musculoskel...
Bone marrow stromal cells are regulated by the chemical and physical features of a biomaterial surface. When grown on titanium (Ti) and Ti alloy surfaces, such as titanium-aluminum-vanadium, with specific topographies that mimic the microscale, mesoscale, and nanoscale features of an osteoclast resorption pit, they undergo a rapid change in cell sh...
The mechanism by which substrate surface characteristics are transduced by osteoblastic cells and their progenitors is not fully known. Data from previous studies by our group suggest the involvement of β‐catenin in the mechanism by which substrate surface characteristics are transduced. This focal adhesion and β‐catenin mediated mechanism function...
The skeleton is a dynamic tissue system comprised of cancellous and cortical bone that is constantly being remodeled throughout postnatal life. During normal physiological conditions, bone mass and integrity are maintained through bone resorbing osteoclasts, and bone forming osteoblasts. Bone remodeling takes place in the Haversian system through t...
With the reignited push for manned spaceflight and the development of companies focused on commercializing spaceflight, increased human ventures into space are inevitable. However, this venture would not be without risk. The lower gravitational force, known as microgravity, that would be experienced during spaceflight significantly disrupts many ph...
Mechanical unloading decreases bone volume and strength. In humans and mice, bone mineral density is highly heritable, and in mice the response to changes in loading varies with genetic background. Thus, genetic variability may affect the response of bone to unloading. As a first step to identify genes involved in bones' response to unloading, we e...
Objective:
To examine whether genetic variability plays a role in skeletal muscle response to disuse.
Methods:
We examined skeletal muscle response to disuse in five different strains of mice: CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, 129S1/SvImJ and A/J. Mice had one limb immobilized by a cast for three weeks.
Results:
Response to immobilization was d...
In this study, the effect of silica/calcium phosphate (SiCaP) nanocomposite particles on the properties of a novel chitosan-based thermosensitive hydro-gel system was examined. SiCaP nanocomposite powder was fabricated using a sol-gel method and then used to fabricate nanocomposite hydrogels (Ch-β/7.5SiCaP and Ch-β/15SiCaP) including chitosan and β...
Synthetic biomimetic carbonated hydroxyapatite (CHA) has shown significant promise in bone tissue engineering for its mechanical and chemical biocompatibility and osteogenic potential. Variations in the size of hydroxyapatite particles have also been shown to contribute to the hydroxyapatite's osteogenic success. However, synthesizing biomimetic CH...
We examined the hypothesis that exaggerating unloading‐induced bone loss using a combination of hindlimb suspension (HLS) and exogenous injections of receptor activator of nuclear factor‐κB ligand (RANKL) also exaggerates gastrocnemius and quadriceps muscle loss. Forty, male C57Bl/6J mice (16 weeks) were subjected to HLS or normal ambulation (groun...
Space travel and prolonged bed rest are examples of mechanical unloading that induce significant muscle and bone loss. The compromised structure and function of bone and muscle owing to unloading make the reloading period a high risk for injury. To explore interactions between skeletal bone and muscle during reloading, we hypothesized that acute ex...
We examined the hypothesis that exaggerating unloading-induced bone loss using a combination of hindlimb suspension (HLS) and exogenous injections of receptor activator of nuclear factor kappa-B ligand (RANKL) also exaggerates muscle loss. Forty, male C57Bl/6J mice (16 weeks) were subjected to HLS or normal ambulation (ground control, GC) for 14 da...
Space travel and prolonged bed rest are examples of mechanical unloading that induce significant muscle and bone loss. To explore interactions between skeletal bone and muscle during reloading, we hypothesized that acute external mechanical loading of bone in combination with re-ambulation facilitates proportional recovery of bone and muscle lost d...
This chapter outlines various printing parameters including rheological requirements, print speed, and nozzle head shape and scale that are necessary to maximize print quality. In addition, artificial bone constructs were fabricated using a calcium phosphosilicate nanoparticle doped hydroxyapatite paste. Artificial bone constructs (ABCs) may greatl...
Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bo...
Bone adaptation to mechanical loading is regulated via signal transduction by mechano-sensing osteocytes. Mineral-embedded osteocytes experience strain-induced interstitial fluid flow and fluid shear stress, and broad shifts in gene expression are key components in the signaling pathways that regulate bone turnover. RNA sequencing analysis, or RNA-...
Additive manufacturing technologies, including three-dimensional printing (3DP), have unlocked new possibilities for bone tissue engineering. Long-term regeneration of normal anatomic structure, shape, and function is clinically important subsequent to bone trauma, tumor, infection, nonunion after fracture, or congenital abnormality. Due to the gre...
We previously demonstrated, using osteoblastic MC3T3-E1 cells, that P2Y2 purinergic receptors are involved in osteoblast mechanotransduction. In this study, our objective was to further investigate, using a knockout mouse model, the roles of P2Y2 receptors in bone mechanobiology. We first examined bone structure with micro-CT and measured bone mech...
Background:
We propose that fracture-healing potential is affected by the patient's genome. This genotype is then phenotypically expressed by the patient at the time of injury. We examined the hypothesis that patients who exhibit delayed or impaired fracture-healing may have one or more single nucleotide polymorphisms (SNPs) within a series of gen...
Mechanical unloading induces muscle atrophy and bone loss; however, the time course and interdependence of these effects is not well defined. We subjected 4-month-old C57BL/6J mice to hindlimb suspension (HLS) for three weeks, sacrificing 12-16 mice on day (D) 0, 7, 14, and 21. Lean mass was 7-9% lower for HLS vs. control from D7-21. Absolute mass...
Connexin 43 (Cx43) is the predominant gap junction protein in bone. Mice with a bone-specific deletion of Cx43 (cKO) have an osteopenic cortical phenotype. In a recent study, we demonstrated that cKO mice are resistant to bone loss induced by hindlimb suspension (HLS), an animal model of skeletal unloading. This protective effect occurred primarily...
Osteocytes, positioned within bone׳s porous structure, are subject to interstitial fluid flow upon whole bone loading. Such fluid flow is widely theorized to be a mechanical signal transduced by osteocytes, initiating a poorly understood cascade of signaling events mediating bone adaptation to mechanical load. The objective of this study was to exa...
Gap junctions (GJs) are membrane-spanning channels that allow for the movement of small molecules across cell membranes. Connexin43 (Cx43) is the predominant GJ protein in bone. In vitro studies suggest that gap junctional intercellular communication (GJIC) sensitizes bone cells to mechanical signals. Additionally, mechanical signals detected by os...
Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblasti...
Connexin 43 (Cx43) is a gap junction protein that plays an integral role in the skeletal response to mechanical loading and unloading. In a previous study, we demonstrated preservation of trabecular bone mass and cortical bone formation rate in mice with an osteoblast/osteocyte-selective deficiency of Cx43 (cKO) following mechanical unloading via h...
Microarray technologies provide high-throughput analysis of genes that are differentially expressed in humans and other species, and thereby provide a means to measure how biological systems are altered during development or disease states. Within, we review how high-throughput genomic technologies have increased our understanding about the molecul...
Purinergic signaling may represent an effective target in cancer therapy because the expression of purinergic receptors is altered in many forms of cancer and extracellular nucleotides modulate cancer cell growth. We examined the effect of extracellular ATP on the growth of the metastatic breast carcinoma cell line MDA-MB-435 relative to an immorta...
Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microe...
Impaired healing of cortical bone grafts represents a significant clinical problem. Cadaveric bone grafts undergo extensive chemical processing to decrease the risk of disease transmission, however, these processing techniques alter the bone surface and decrease the osteogenic potential of cells at the healing site. Extensive work has been done to...
Connexin43 (Cx43) plays an important role in osteoblastic differentiation in vitro, and bone formation in vivo. Mice with osteoblast/osteocyte-specific loss of Cx43 display decreased gap junctional intercellular communication (GJIC), bone density, and cortical thickness. To determine the role of Cx43 in fracture healing, a closed femur fracture was...
Aging demonstrates deleterious effects upon the skeleton which can predispose an individual to osteoporosis and related fractures. Despite the well-documented evidence that aging decreases bone formation, there remains little understanding whereby cellular aging alters skeletal homeostasis. We, and others, have previously demonstrated that gap junc...
Connexin 43 (Cx43) is the most abundant gap junction protein in bone and has been demonstrated as an integral component of skeletal homeostasis. In the present study, we sought to further refine the role of Cx43 in the response to mechanical unloading by subjecting skeletally mature mice with a bone-specific deletion of Cx43 (cKO) to 3 weeks of mec...
Cell-to-cell and cell-to-matrix communication in bone cells mediated by gap junctions and hemichannels, respectively, maintains bone homeostasis. Gap junctional communication between cells permits the passage of small molecules including calcium and cyclic AMP. This cell-to-cell communication occurs between bone cells including osteoblasts, osteocl...
Modulating physical cell culture environments via nanoscale substrate topographic modification has recently been of significant interest in regenerative medicine. Many studies have utilized a polymer-demixing technique to produce nanotextured films and showed that cellular adhesion, proliferation, and differentiation could be regulated by the shape...
Adult stem cells, including mesenchymal stem cells, display plasticity in that they can differentiate toward various lineages including bone cells, cartilage cells, fat cells, and other types of connective tissue cells. However, it is not clear what factors direct adult stem cell lineage commitment and terminal differentiation. Emerging evidence su...
We previously demonstrated that oscillatory fluid flow activates MC3T3-E1 osteoblastic cell calcium signaling pathways via a mechanism involving ATP releases and P2Y(2) puringeric receptors. However, the molecular mechanisms by which fluid flow initiates cellular responses are still unclear. Accumulating evidence suggests that lipid rafts, one of t...
Emerging evidence suggests that connexin mediated gap junctional intercellular communication contributes to many aspects of bone biology including bone development, maintenance of bone homeostasis and responsiveness of bone cells to diverse extracellular signals. Deletion of connexin 43, the predominant gap junction protein in bone, is embryonic le...
Communication between osteoblasts, osteoclasts, and osteocytes is integral to their ability to build and maintain the skeletal system and respond to physical signals. Various physiological mechanisms, including nerve communication, hormones, and cytokines, play an important role in this process. More recently, the important role of direct, cell-cel...
The pathophysiology of posterior tibial tendon dysfunction (PTTD) is poorly understood. It has been theorized that changes in hormone physiology may be a factor influencing tendon health. Estrogen's influence on the fibroblast has been studied in other musculoskeletal tissues. Gender differences in anterior cruciate ligament (ACL) injuries have bee...
Enhancing cellular mechanosensitivity is recognized as a novel tool for successful musculoskeletal tissue engineering. We examined the hypothesis that mechanosensitivity of human mesenchymal stem cells (hMSCs) is enhanced on nanotopographic substrates relative to flat surfaces. hMSCs were cultured on polymer-demixed, randomly distributed nanoisland...
Pro-inflammatory cytokines like TNF-α activate sphingosine kinase (SK). Therefore, inhibition of SK is a potential molecular target for the treatment of rheumatoid arthritis.
The primary goal of this study was to assess the efficacy of ABC249640 (a selective SK-2 inhibitor) in two models of rodent arthritis. A secondary goal was to evaluate the pha...
Hypotransferrinemia is a genetic defect in mice resulting in <1% of normal plasma transferrin (Tf) concentrations; heterozygotes for this mutation (+/hpx) have low circulating Tf concentrations. We used this mutant mouse in conjunction with dietary iron deficiency to study the influence of Tf and iron on bone structural and mechanical properties. T...
Morphological evidence shows that osteocytes, bone cells that exist enclosed within bone matrix, are connected to one another and to surface osteoblasts via gap junctions; however, it is unknown whether these gap junctions are functional. Using a newly established murine osteocytic cell line MLO-Y4, we have examined functional gap junctional interc...
The discovery of piezoelectric potentials in loaded bone was instrumental in developing a plausible mechanism by which functional activity could intrinsically influence the tissue's cellular environment and thus affect skeletal mass and morphology. Using an in vivo model of osteopenia, we have demonstrated that the bone resorption that normally par...
The ability of low-dose tetracyclines to inhibit collagenase activity and inactivate osteoclasts suggests that these compounds have great potential as a prophylaxis for metabolic bone disease. However, the cellular mechanism by which tetracyclines interact with skeletal tissue is not yet clear. To better understand the effects of tetracyclines on b...
PTH and other hormones that stimulate resorption affect osteoclasts indirectly by modulating cytokine production by osteoblasts. However, the identity and role of the osteoblast-derived cytokines involved in this process are unclear. To examine which cytokines are regulated by PTH, we assessed cytokine mRNA levels in osteoblasts using the reverse t...
The distribution, expression, and functionality of gap junctions was examined in bovine chondrocytes (BCs) isolated from mature articular cartilage. BC cells displayed immunoreactivity for connexin 43 (Cx43), a specific gap junction protein. Cx43 protein expression was confirmed by Western blot analysis, and Cx43 mRNA was detected by nuclease prote...
Numerous studies in tissue engineering and biomechanics use fluid flow stimulation, both unidirectional and oscillatory, to analyze the effects of shear stresses on cell behavior. However, it has typically been assumed that these shear stresses are uniform and that cell and substrate properties do not adversely affect these assumptions. With the in...
The influence of an extremely low frequency (ELF) electric field stimulus (30 Hz at 6 microV/cm rms), known to promote bone formation in vivo, was evaluated for its ability to affect bone cell function in vitro. To accomplish this, we developed an apparatus for the exposure of monolayer cell systems to electric fields in a manner that provides rela...
We have characterized the distribution, expression, and hormonal regulation of gap junctions in primary cultures of rat osteoblast-like cells (ROBs), and three osteosarcoma cell lines, ROS 17/2.8, UMR-106, and SAOS-2, and a continuous osteoblastic cell line, MC3T3-E1. All cell lines we examined were functionally coupled. ROS 17/2.8 were the more st...
Bone formation occurs in vivo in response to mechanical stimuli, but the signaling pathways involved remain unclear. The ability of bone cells to communicate with each other in the presence of an applied load may influence the overall osteogenic response. The goal of this research was to determine whether inhibiting cell-to-cell gap junctional comm...
Mechanical loads are vital regulators of skeletal mass and architecture as evidenced by the increase in bone formation following the addition of exogenous loads and loss of bone mass following their removal. While our understanding of the molecular mechanisms by which bone cells perceive changes in their mechanical environment has increased rapidly...
The skeleton is a dynamic structure that constantly remodels in response to local and systemic stimuli to meet the needs of
structural integrity, mechanical competence, and maintenance of mineral homeostasis. Control of bone remodeling requires coordinated
activity among osteoblasts, osteocytes, and osteoclasts. In recent years, knowledge about the...
Recently the concept that gap junctions play a role in cancer cell metastasis has emerged. However, the mechanism by which this might occur is unknown. To examine this issue a metastatic breast cancer cell line, MDA-MB-435, was stably transfected with human Cx43 cDNA. Four clones of 435 transfectants (435/Cx43(+) c1, c6, c8, c14) and two clones of...
Gap junctions (GJs) are membrane-spanning channels that facilitate intercellular communication by allowing small signaling molecules (e.g. calcium ions, inositol phosphates, and cyclic nucleotides) to pass from cell to cell. Over the past two decades, many studies have described a role for GJ intercellular communication (GJIC) in the proliferation...
Mechanical loads produce a diverse set of biophysical signals that may regulate bone cell activity, but accumulating evidence suggests that interstitial fluid flow is the primary signal that bone cells perceive. Because we previously demonstrated that oscillatory fluid flow increases human bone marrow stromal cell proliferation, we investigated the...
While short-term surface energy effects on cell adhesion are relatively well known, little is revealed as regards its later stage effects on cell behavior. We examined surface energy effects on osteoblastic cell growth and mineralization by using human fetal osteoblastic (hFOB) cells cultured on plasma-treated quartz (contact angle, theta=0 degrees...
Mechanical signals are major regulators of skeletal homeostasis as the addition of exogenous load is followed by enhanced bone formation and the removal of normal loads is followed by net bone loss. The mechanism by which bone cells perceive and respond to changes in their biophysical environment are still poorly understood, but it is widely accept...
Emerging evidence suggests that gap junctional intercellular communication (GJIC) and expression of connexins (Cx) contribute to the metastatic potential of breast cancer cells. To more directly address this, an aggressive bone metastasis breast cancer cell line, MDA-MET (MET), was stably transfected with human Cx43 cDNA (MET/Cx43(+)). Focusing on...
Breast cancer cells preferentially metastasize to bone, leading to the formation of primarily osteolytic lesions. Osteoprotegerin (OPG) plays multifactorial roles in the development of osteolytic bone metastases. An increase in the ratio of receptor activator of nuclear factor kappaB ligand (RANKL) to OPG increases osteoclastogenesis within the bon...
A new porous, thermoresponsive, partially biodegradable, chemically crosslinked hydrogel system was developed, characterized, and tested as a cartilage tissue-engineering scaffold for in vitro chondrocyte culture over a 4-week period. The hydrogel system was composed of poly(N-isopropylacrylamide), poly(D,L-lactic acid), and dextran segments. Pores...
Time-dependent phenotypic response of a model osteoblast cell line (hFOB 1.19, ATCC, and CRL-11372) to substrata with varying surface chemistry and topography is reviewed within the context of extant cell-adhesion theory. Cell-attachment and proliferation kinetics are compared using morphology as a leading indicator of cell phenotype. Expression of...
An early response to mechanical stimulation of bone cells in vitro is an increase in intracellular calcium concentration ([Ca (2+)](i)). This study analyzed the [Ca (2+)](i) wave area, magnitude, duration, rise time, fall time, and time to onset in individual osteoblasts for two identical bouts of mechanical stimulation separated by a 30-min rest p...
Chemical and topographic substrate surface patterning is recognized as a powerful tool for regulating cell functions. We discuss the relative role of scale and pattern of chemically and topographically patterned surfaces in regulating cell behavior. Chemical patterning achieved using spatial cell-adhesive molecular organization regulates different...
Mechanical loads are required for optimal bone mass. One mechanism whereby mechanical loads are transduced into localized cellular signals is strain-induced fluid flow through lacunae and canaliculi of bone. Gap junctions (GJs) between osteocytes and osteoblasts provides a mechanism whereby flow-induced signals are detected by osteocytes and transd...
Unlabelled:
Oscillatory fluid flow induced the vesicular release of ATP from human BMSCs that directly contributes to the induction of BMSC proliferation. Degrading extracellular nucleotides prevents fluid flow-induced increases in intracellular calcium concentration, the activation of calcineurin, and the nuclear translocation of NFAT.
Introduct...