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FOXBY EQUIVALENCE OVER ASSOCIATIVE RINGS

HENRIK HOLM AND DIANA WHITE

Abstract. We extend the definition of a semidualizing module to associative
rings. This enables us to define and study Auslander and Bass classes with
respect to a semidualizing bimodule C. We then study the classes of C-flats,
C-projectives, and C-injectives, and use them to provide a characterization of
the modules in the Auslander and Bass classes. We extend Foxby equivalence
to this new setting. This paper contains a few results which are new in the
commutative, noetherian setting.

Introduction

Over a commutative, noetherian local ring, semidualizing modules provide a
common generalization of a dualizing (canonical) module and a free module of
rank one. Foxby [13] first defined them (PG-modules of rank one), while Golod [16]
(suitable modules) and Vasconcelos [26] (spherical modules) furthered their study.
Recently, Araya-Takahashi-Yoshino [1] extended this definition to a pair of non-
commutative, but noetherian rings, while White [28] extended the definition to the
non-noetherian, but commutative, setting. In this paper (see Section 2), we define
and study semidualizing (S,R)-bimodules, where R and S are arbitrary associative
rings, thereby encompassing all of the aforementioned definitions.

Over a commutative noetherian ring, Avramov and Foxby [2, 13] and Enochs-
Jenda-Xu [11] connected the study of (semi)dualizing modules to associated Aus-
lander and Bass classes for (semi)dualizing modules, AC(R) and BC(R), which are
subcategories of the category of R-modules. This paper furthers this study, which
in our setting involves an Auslander class AC(R) and a Bass class BC(S).

Those familiar with this area may wonder why we do not deal with derived Aus-
lander and Bass classes in this paper. The short answer is that the non-commutative
situation is more subtle. A longer answer is contained in Remark 2.5.

Many results for Auslander and Bass classes associated to a semidualizing module
over a commutative noetherian ring, carry over to an associative ring in a straight-
forward manner. However, some complications do arise. Thus, in Section 3, we
define faithfully semidualizing bimodules, see Definition 3.1. Over a commutative
ring, all semidualizing modules are faithfully semidualizing; see Theorem 3.6, but
it is unknown to the authors if this is true in the non-commutative setting. We
provide many examples of ones that are, see Proposition 3.7 and Example 3.8.

Section 4 contains basic properties of the Auslander and Bass classes. For ex-
ample, the Auslander class AC(R) contains all flat R-modules, and the Bass class
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BC(S) contains all injective S-modules; see Lemma 4.4. Also, both are closed under
summands, products, coproducts, and filtered colimits; see Proposition 4.5.

To further the study of the classes AC(R) and BC(S), in Section 5 we introduce
the classes of modules FC(S), PC(S), and IC(R), consisting of the C-flats, C-
projectives, and C-injectives, respectively. When C is free of rank one, these are
the flats, projectives, and injectives, respectively. The following is Theorem 5.3.

Theorem 1 (Foxby equivalence). Let SCR be a semidualizing bimodule. There
are equivalences of categories

PR(R)
� _

��

∼

C⊗R− //
PC(S)

� _

��

HomS(C,−)
oo

FR(R)
� _

��

∼

C⊗R− //
FC(S)

� _

��

HomS(C,−)
oo

AC(R) ∼

C⊗R− //
BC(S)

HomS(C,−)
oo

IC(R)
?�

OO

∼

C⊗R− //
IS(S).

HomS(C,−)
oo

?�

OO

Propositions 5.5 and 5.6, and Lemma 5.9 discuss the closure properties of these
classes. Proposition 5.10 pertains to their (pre)covering and (pre)enveloping proper-
ties and includes some results that are new in the commutative, noetherian setting.
For example, when R is commutative noetherian the C-flats are preenveloping and
the C-injectives are precovering.

Section 6 contains two main results of the paper, which provide alternative char-
acterizations of the modules in the Auslander and Bass classes in terms of the
C-injectives, C-projectives, and C-flats. Here is one.

Theorem 2. Let SCR be a semidualizing bimodule. An R-module M belongs to
AC(R) if and only if there exists a complex of R-modules

X = · · · −→ P1 −→ P0 −→ U0 −→ U1 −→ · · ·

that satisfies the following conditions

(a) The complex X is exact;
(b) Each Pi is R-projective (or R-flat);
(c) Each U i is C-injective;
(d) There is an isomorphism M ∼= Coker(P1 −→ P0); and
(e) The complex C ⊗R X is exact.

Moreover, if M ∈ AC(R) then any complex constructed by splicing together an aug-
mented projective (or flat) resolution of M and an augmented proper C-injective
coresolution of M will satisfy the above properties.

When C is faithfully semidualizing, there is a clear analogy with the local setting.
First, the Auslander class contains the modules of finite flat dimension, while the
Bass class contains the modules of finite injective dimension. Second, if any two
modules in a short exact sequence are in the Auslander (respectively, Bass) class,
then so is the third; see Corollary 6.7.
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1. Background

This section introduces a number of assumptions, definitions, notions, and results
which will be used throughout the paper.

1.1. Throughout this work, R and S are fixed associative rings with unities and
all R- or S-modules are understood to be unital left R- or S-modules. Right R- or
S-modules are identified with left modules over the opposite rings Rop or Sop.

The suggestive notation SMR is used to denote that M is an (S,R)-bimodule.
This means that M is both a left S- and a right R-module, and that these structures
are compatible; namely

s(xr) = (sx)r for all s ∈ S, r ∈ R, and x ∈M.

Finally, if X is a class of, say, R-modules, then X f is the subclass of all finitely
generated R-modules in X . Throughout this background section, X will denote a
fixed class of R-modules.

1.2. An R-complex is a sequence of R-module homomorphisms

X = · · ·
∂X

n+1
−−−→ Xn

∂X
n−−→ Xn−1

∂X
n−1

−−−→ · · ·

such that ∂Xn−1∂
X
n = 0 for each integer n.

In this paper, all resolutions will be built from precovers, which we now discuss.

1.3. Let M be an R-module. A homomorphism φ : X → M with X ∈ X is an
X -precover of M if for every homomorphism ψ : Y → M with Y ∈ X , there exists
a homomorphism f : Y → X such that φf = ψ. If every R-module admits an
X -precover, then we say that the class X is precovering.

An X -cover of M is an X -precover φ : X →M with the additional property that
any endomorphism f : X → X with φ = φf must be an automorphism. If every
R-module admits an X -cover, then we say that the class X is covering.

Preenvelopes and envelopes are defined dually; see [10] for further details.

1.4. If the class X is precovering, then for any R-module M , there exists an aug-
mented proper X -resolution of M , that is, a complex

X+ = · · ·
∂X
2−−→ X1

∂X
1−−→ X0 →M → 0

such that HomR(Y,X+) is exact for all Y ∈ X . The truncated complex

X = · · ·
∂X
2−−→ X1

∂X
1−−→ X0 → 0

is a proper X -resolution of M .
Note thatX+ need not be exact. However, if X contains the projectives, then any

augmented proper X -resolution of M is exact. Augmented proper X -coresolutions
are defined dually, and they must be exact if the class X contains the injectives.

1.5. A degreewise finite projective resolution of an R-module M is a projective
resolution P of M such that each Pi is finitely generated (projective).

1.6. When X is a precovering class, the X -projective dimension of M is

X - pdR(M) = inf
{

sup{n | Xn 6= 0}
∣

∣ X is an X -resolution of M
}

The modules of X -projective dimension zero are the non-zero modules in X . When
X is preenveloping, the X -injective dimension, denoted X - id(−), is defined dually.
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1.7. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of R-modules. The class
X is closed under extensions if it has the property that if M ′ and M ′′ are in X ,
then so is M . The class X is closed under kernels of epimorphisms if whenever M
and M ′′ are in X , then so is M ′. Finally, the class X is closed under cokernels of
monomorphisms if whenever M ′ and M are in X , then so is M ′′.

1.8. The class X is projectively resolving if

(a) The class X contains every projective R-module, and
(b) For every exact sequence of R-modules 0 → M ′ → M → M ′′ → 0 with

M ′′ ∈ X , one has M ∈ X if and only if M ′ ∈ X .

The notion of injectively resolving is defined dually.
The class X is finite projectively resolving if

(a) The class X consists entirely of finitely generated R-modules,
(b) The class X contains every finitely generated projective R-module, and
(c) For every exact sequence of finitely generated R-modules 0 → M ′ → M →

M ′′ → 0 with M ′′ ∈ X , one has M ∈ X if and only if M ′ ∈ X .

The next result will be used in the proof of Theorem 3.6.

1.9. Vasconcelos [26, (4.3)] proves the following corollary of a theorem of Gruson:
Let R be a commutative ring and let C be a finitely generated R-module with
AnnR(C) = 0. If M is any module such that C ⊗RM = 0, then M = 0.

Remark 1.10. Let SCR be an (S,R)-bimodule. Unless otherwise mentioned, an
Ext group of the form Ext∗S(SM,C) will be computed by resolving SM with a pro-
jective resolution. This has the important consequence that Ext∗S(SM,C) inherits
a right R-structure. Similar remarks could be said about the computation of other
derived functors such as Ext∗Rop(MR, C) and Tor∗R(C,RM).

We conclude this section with some necessary results about two important ho-
momorphisms. The proofs are straightforward, keeping Remark 1.10 in mind.

1.11. Consider modules SM , SNR, and RF . The tensor evaluation homomorphism

ωMNP : HomS(M,N) ⊗R F −→ HomS(M,N ⊗R F )

is defined by ωMNF (ψ⊗f)(m) = ψ(m)⊗f . It is straightforward to verify that this
is an isomorphism when M is a finitely generated projective. In general, ωMNF is
just an abelian group homomorphism. However, if SM has an additional right R-
structure compatible with the given left S-structure, then ωMNF becomes R-linear.

Lemma 1.12. Let SM , SNR, and RF be modules such that M admits a degreewise
finite S–projective resolution, and let F be flat. Let i be an integer.

(a) The map ωMNF induces an isomorphism of abelian groups

ExtiS(M,N) ⊗R F ∼= ExtiS(M,N ⊗R F ).

(b) If ExtiS(M,N) = 0, then ExtiS(M,N ⊗R F ) = 0.

(c) If F is faithfully flat and ExtiS(M,N ⊗R F ) = 0, then ExtiS(M,N) = 0. �

1.13. Consider modules MR, SNR, and SI. The Hom-evaluation homomorphism

θMNI : MR ⊗R HomS(N, I) −→ HomS(HomRop(M,N), I)

is defined by θMNI(m⊗φ)(ϕ) = (φ◦ϕ)(m). It is straightforward to verify that this is
an isomorphism when M is a finitely generated projective. In general, θMNI is just
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a homomorphism of abelian groups, but if MR has an additional left S-structure
compatible with the right R-structure, then θMNI becomes S-linear.

Lemma 1.14. Let MR, SNR, and SI be modules such that M admits a degreewise
finite Rop–projective resolution, and let I be injective. Let i be an integer.

(a) The map θMCI induces an isomorphism of abelian groups

TorRi (M,HomS(N, I)) ∼= HomS(ExtiRop(M,N), I).

(b) If ExtiRop(M,N) = 0, then TorRi (M,HomS(N, I)) = 0.

(c) If I is faithfully injective and TorRi (M,HomS(N, I)) = 0, then there is an

equality ExtiRop(M,N) = 0. �

2. Semidualizing bimodules

We begin by extending the definition of a semidualizing module.

Definition 2.1. An (S,R)-bimodule C = SCR is semidualizing if

(a1) SC admits a degreewise finite S-projective resolution.
(a2) CR admits a degreewise finite Rop-projective resolution.

(b1) The homothety map SSS
Sγ
−−→ HomRop(C,C) is an isomorphism.

(b2) The homothety map RRR
γR
−−→ HomS(C,C) is an isomorphism.

(c1) Ext>1
S (C,C) = 0.

(c2) Ext>1
Rop(C,C) = 0.

2.2. Unless otherwise stated, when R = S is commutative, all semidualizing bimod-
ules in this paper are symmetric in the sense that the two R-actions on C agree. In
this case we will use the terminology “C is semidualizing over R”. Note that when
R = S is commutative and noetherian, Definition 2.1 agrees with the established
terminology; that is a finitely generated R-module C is semidualizing if the natural

homothety map R
γR
−−→ HomR(C,C) is an isomorphism and Ext>1

R (C,C) = 0. Two
examples are the free module of rank 1, and over a Cohen-Macaulay local ring, the
dualizing (canonical) module, when it exists.

Observation 2.3. (a) When S is left noetherian and R is right noetherian, condi-
tions (a1) and (a2) reduce to SC and CR being finitely generated, and therefore
Definition 2.1 agrees with that of Araya-Takahashi-Yoshino [1, (2.1)].

(b) Let R = S be commutative. Conditions (a1) and (a2) reduce to the statement
that C admits a degreewise finite projective resolution, while conditions (b1)
and (b2) reduce to HomR(C,C) ∼= R, and conditions (c1) and (c2) reduce to

Ext>1
R (C,C) = 0. Thus, Definition 2.1 agrees with that of White [28, (1.8)].

(c) By the symmetry of the definition above it is clear that if C is a semidualizing
(S,R)-bimodule, then C is also a semidualizing (Rop, Sop)-bimodule.

(d) If R = S is commutative and C is a semidualizing R-module, then Cp is a
semidualizing Rp-bimodule for all p ∈ Spec(R), cf. Example 2.4(a) below.

Note that 2.4(a) below can be applied to produce examples of semidualizing
modules over a commutative, but not necessarily noetherian, ring. Many additional
examples can be found in the next section.

Example 2.4. (a) Let Q −→ R be a flat ring homomorphism between commuta-
tive rings. If E is semidualizing over Q, then E ⊗Q R is semidualizing over R,
cf. Proposition 3.7.
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(b) Assume the R and S are Morita equivalent rings in the sense of [27, (9.5)], that
is, there exists bimodules RPS and SQR with

RPS ⊗S SQR ∼= RRR and SQR ⊗R RPS ∼= SSS .

By [27, (9.5.4), (9.5.2)], the bimodule SQR is semidualizing.

We close this section with a comparison of derived Auslander and Bass classes
[5] and module Auslander and Bass classes [13] in the non-commutative setting.

Remark 2.5. Over a commutative, noetherian ring R, Christensen [5] general-
ized the notions of a semidualizing module and a dualizing complex to that of a
semidualizing complex C. He then connected their study to the associated derived
Auslander and Bass classes, AC(R) and BC(R), which are subcategories of the de-
rived category of R. When C is a semidualizing module, Foxby [13] studied the
module Auslander and Bass classes, AC(R) and BC(R), which are subcategories of
the category of R-modules (see Definition 4.1).

Thus, for a semidualizing module C, a natural question arises: Does AC(R) and
BC(R) consist of the modules belonging to AC(R) and BC(R)?

In the commutative noetherian setting, the answer is “yes”, and thus the existing
literature tends to focus on the more general derived Auslander and Bass classes.
However, for non-commutative rings the question is much more complicated:

Dualizing complexes of bimodules over a non-commutative but two-sided noe-
therian ring have been given several different definitions, e.g. [14, 24, 30]. In [6] the
authors use a variant of Miyachi’s definition [24] of a dualizing complex of bimod-
ules to consider a special case of the derived Auslander and Bass classes. However,
this definition requires the existence of a so-called biprojective resolution of the du-
alizing complex of bimodules, and such a resolution is only known to exist in certain
special cases. Even if the semidualizing bimodule admits a biprojective resolution,
so that the derived Auslander and Bass classes can be defined, it is not known to
these authors if the modules in AC(R) or BC(R) belong to AC(R) or BC(R)?

3. Faithfully semidualizing bimodules

This section focuses on faithfully semidualizing bimodules. Over a commutative
ring, all semidualizing modules are faithfully semidualizing; see Theorem 3.6.

Definition 3.1. A semidualizing bimodule SCR is faithfully semidualizing if it
satisfies the following conditions for all modules SN and MR.

(a) If HomS(C,N) = 0, then N = 0.
(b) If HomRop(C,M) = 0, then M = 0.

3.2. Note that when R is commutative, these conditions are the same, and a semi-
dualizing module C is faithfully semidualizing if and only if, for any R-module N ,
the condition HomR(C,N) = 0 implies N = 0.

3.3. By left exactness of HomS(C,−) and HomRop(C,−), it suffices to verify that
the conditions in Definition 3.1 hold for all cyclic modules N and M .

Lemma 3.4. A semidualizing bimodule SCR is faithfully semidualizing if and only
if the following conditions hold for all modules NS and RM .

(a) If N ⊗S C = 0, then N = 0.
(b) If C ⊗RM = 0, then M = 0.
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Proof. Assume that N ⊗S C = 0. This provides the equality below

HomS(C,HomZ(N,Q/Z)) ∼= HomZ(N ⊗S C,Q/Z) = 0

while the isomorphism follows from Hom-tensor adjointness. Since C is faithfully
semidualizing, HomZ(N,Q/Z) = 0. The module Q/Z is faithfully injective, which
forces N = 0. Similarly, if C ⊗RM = 0, then M = 0.

The converse is proved similarly, using Lemma 1.14(a). �

3.5. When R is commutative and noetherian, it is straightforward to prove that
every semidualizing module C is faithfully semidualizing. Indeed, if M 6= 0, then
for any associated prime p of M there is a nonzero map Cp → k(p) → Mp. It
follows that there is a nonzero map C →M .

The situation where R is commutative, but non-noetherian seems to require
significantly more work (which is done behind the scenes in Gruson’s Theorem;
see 1.9), but the same result holds, as we show next. The authors are unaware if this
result carries over to the non-commutative setting. However, Proposition 3.7 and
Example 3.8 below provide many examples of faithfully semidualizing bimodules
over a wide class of non-commutative rings.

Proposition 3.6. Let R be a commutative ring. If C is a semidualizing R-module,
then C is faithfully semidualizing.

Proof. As R ∼= HomR(C,C) we have AnnR(C) = 0. Therefore, Lemma 3.4 and the
corollary of Gruson’s Theorem 1.9 imply that C is faithfully semidualizing. �

The next result is a non-commutative, module version of [5, (5.1)].

Proposition 3.7. Let Q be a commutative ring and let R be an associative and flat
Q-algebra. If E is a semidualizing Q-module, then RCR = E ⊗Q RRR is a faithfully
semidualizing (R,R)-bimodule.

Proof. We first prove that C is a semidualizing bimodule. We show only that it
satisfies (a1), (b1), and (c1) of Definition 2.1, as the other parts are proved similarly.

Since E admits a degreewise finite Q-projective resolution P and R is Q-flat,
P ⊗Q RR is a degreewise finite projective resolution of RC = E ⊗Q RR.

The map Q
γQ

−−→ HomQ(E,E) is an isomorphism, so the commutative diagram

R
Rγ //

∼=

��

HomRop(C,C) HomRop(E ⊗Q R,E ⊗Q R)

adjointness∼=

��
Q⊗Q R

∼=γQ⊗QR

��

HomQ(E,HomRop(R,E ⊗Q R))

∼=

��
HomQ(E,E) ⊗Q R

∼=

ωEER

// HomQ(E,E ⊗Q R)

shows that the homomorphism R Rγ−−→ HomR(C,C) is an isomorphism.
Finally, let P be a Q-projective resolution of E. For i > 0, the first and fourth

isomorphisms below are by definition while the second is Hom-tensor adjointness

ExtiR(C,C) = H−iHomR(P ⊗Q R,E ⊗Q R)

∼= H−iHomQ(P,HomR(R,E ⊗Q R))

∼= H−iHomQ(P,E ⊗Q R)

∼= ExtiQ(E,E ⊗Q R) = 0.
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The third isomorphism is standard, and the last equality is by Lemma 1.12(b), as

ExtiQ(E,E) = 0 and R is Q-flat. Next, note that for modules NR and RM there
are standard isomorphisms

N ⊗R C = N ⊗R (E ⊗Q R) ∼= (N ⊗R R) ⊗Q E ∼= N ⊗Q E

and similarly C⊗RM ∼= E⊗QM . Since E is faithfully semidualizing by Proposition
3.6, it follows from Lemma 3.4 that C is faithfully semidualizing as well. �

Example 3.8. Here are several standard examples of associative flat algebras R
over a commutative ground ring Q.

(a) If T is any commutative and torsion-free (that is, flat) Z-algebra, then the
tensor product algebra

R = T ⊗Z Q

is a commutative flat Q-algebra, as R⊗Q− ∼= T ⊗Z −. Even if Q is noetherian,
R need not be. For example, T = Z[x1, x2, x3, . . .] gives R = Q[x1, x2, x3, . . .].

(b) The n× n matrix ring
R = Mn(Q)

is a free Q-algebra. In general, Q is non-commutative. Moreover, R is left
and/or right noetherian if and only if Q is noetherian; see [23, (1.1.2)].

(c) Let α : Q −→ Q be a ring endomorphism, and let δ : Q −→ Q be an α-derivation.
Then the skew polynomial ring

R = Q[θ;α, δ]

is a free Q-algebra with basis {1, θ, θ2, . . .}. In general, R is non-commutative.
Even if Q is noetherian, R need not be (from either side). However, if Q is
noetherian and α is an automorphism, then R is two-sided noetherian; see [17,
Exer. 1N and (1.12)].

(d) If G is any group, then the group ring

R = Q[G]

is a free Q-algebra with basis G. Note that R is commutative if and only if G
is abelian. Even if Q is noetherian R need not be (from either side). However,
if Q is noetherian and G is polycyclic-by-finite then R is two-sided noetherian;
see [23, (1.5.12)].

(e) Let F be any flat Q-module. Then the formal triangular matrix ring

R =

(

Q F
0 Q

)

is a flat Q-algebra, since R ∼= Q ⊕ F ⊕ Q as a Q-module. In general, R is
non-commutative. Moreover R is left and/or right noetherian if and only if Q
is noetherian and F is finitely generated; see [17, Exer. 1C and (1.9)].

4. Auslander and Bass classes with respect to C

In this section we introduce and investigate properties of the Auslander and
Bass classes with respect to a semidualizing (S,R)-bimodule C = SCR. Over a
commutative noetherian ring the following definition can be found in [13, sec. 1].

Definition 4.1. The Auslander class AC(R) with respect to C consists of all R-
modules M satisfying

(A1) TorR>1(C,M) = 0,
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(A2) Ext>1
S (C,C ⊗RM) = 0, and

(A3) The natural evaluation homomorphism µM : M −→ HomS(C,C ⊗RM) is
an isomorphism (of R-modules).

The Bass class BC(S) with respect to C consists of all S-modules N satisfying

(B1) Ext>1
S (C,N) = 0,

(B2) TorR>1(C,HomR(C,N)) = 0, and
(B3) The natural evaluation homomorphism νN : C⊗RHomS(C,N) −→ N is an

isomorphism (of S-modules).

It is straightforward to check the following:

Observation 4.2. Given modules RM and SN , the homomorphisms

C ⊗R HomS(C,C ⊗RM)
ν(C⊗RM) //

C ⊗RM, and
C⊗RµM

oo

HomS(C,N)
µHomS(C,N) //

HomS(C,C ⊗R HomS(C,N))
HomS(C,νN )

oo

from Definition 4.1 yield identities

ν(C⊗RM) ◦ (C ⊗R µM ) = id(C⊗RM) and

HomS(C, νN ) ◦ µHomS(C,N) = idHomS(C,N).

The next result is a component of the Foxby equivalence; see Theorem 5.3.

Proposition 4.3. Let SCR be a semidualizing bimodule. There are equivalences of
categories

AC(R) ∼

C⊗R− //
BC(S).

HomS(C,−)
oo

Proof. To see that the functor C⊗R− maps AC(R) to BC(S), let M ∈ AC(R) and
note that the following hold by definition of the class AC(R). First, for all i > 0

there is an equality ExtiS(C,C ⊗RM) = 0. Second, for i > 0 one has

0 = TorRi (C,M) ∼= TorRi (C,HomS(C,C ⊗RM)).

Finally, as µM is an isomorphism, so is C ⊗R µM , Thus, Observation 4.2 implies
that ν(C⊗RM) is also an isomorphism and the inclusion C ⊗RM ∈ BC(S) follows.

The proof that HomS(C,−) maps BC(S) to AC(R) is similar. To conclude, note
that if M ∈ AC(R) and N ∈ BC(S), then there are natural isomorphisms

µM : M
∼=
−→ HomS(C,C ⊗RM) and

νN : C ⊗R HomS(C,N)
∼=
−→ N.

The desired equivalences of categories now follows. �

The next lemma, together with Corollary 6.6 (in view of Proposition 3.6), ex-
tend [13, (1.2)].

Lemma 4.4. Let SCR be a semidualizing bimodule. The class AC(R) contains the
flat R-modules and the class BC(R) contains the injective S-modules.



10 HENRIK HOLM AND DIANA WHITE

Proof. For a flat R-module F , one has TorR>1(C,F ) = 0 and Lemma 1.12(b) implies

Ext>1
S (C,C ⊗R F ) = 0.

Finally, Lemma 1.12(a) implies that ωCCF is an isomorphism of abelian groups. It
is also R-linear, and so an R-module isomorphism. Thus, the commutative diagram

R⊗R F

∼=

��

∼=

γR⊗R F // HomS(C,C) ⊗R RF

ωCCF∼=

��
F µF

// HomS(C,C ⊗R F )

implies that µF is an isomorphism. The other proof is dual. �

We conclude this section by investigating how the Auslander and Bass classes
behave with respect to summands, products, coproducts, and filtered colimits.

Proposition 4.5. Let SCR be a semidualizing bimodule.

(a) The classes AC(R) and BC(S) are closed under direct summands, products,
coproducts, and filtered colimits.

(b) The classes Af
C(R) and BfC(S) are closed under finite direct sums and direct

summands.

Proof. (a) It is straightforward to verify that AC(R) is closed under direct sum-
mands and finite direct sums, as the functors Ext, Tor, and Hom are additive.
We prove that AC(R) is closed under filtered colimits, from which it follows that
AC(R) is closed under coproducts. To this end, let {Mλ} be a filtered direct system
of R-modules. Since tensor products and taking homology commute with filtered
colimits, for each i > 0 there is an isomorphism of abelian groups

(†) TorRi (C, lim
−→

Mλ) ∼= lim
−→

TorRi (C,Mλ)

and, when i = 0, an isomorphism of S-modules

(††) C ⊗R (lim
−→

Mλ) ∼= lim
−→

(C ⊗RMλ).

As SC admits a degreewise finite S-projective resolution, ExtiS(C,−) commutes
with filtered colimits. In particular, for i > 0 the isomorphism in (††) gives an
isomorphism of abelian groups

(†††) ExtiS(C,C ⊗R (lim
−→

Mλ)) ∼= lim
−→

ExtiS(C,C ⊗RMλ)

and, when i = 0, an isomorphism of R-modules

HomS(C,C ⊗R (lim
−→

Mλ)) ∼= lim
−→

HomS(C,C ⊗RMλ).

This isomorphism fits into the following commutative diagram

lim
−→

Mλ

lim
−→

(µMλ
)

""E
E

E
E

E
E

E
E

µ(lim
−→

Mλ)

// HomS(C,C ⊗R (lim
−→

Mλ))

lim
−→

HomS(C,C ⊗RMλ)

∼=

66nnnnnnnnnnnn

Since lim
−→

(µMλ
) is an isomorphism if each µMλ

is, the diagram above, together with

the isomorphisms (†) and (†††), imply that AC(R) is closed under filtered colimits.
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A proof similar to the one above, using the proof of [10, (3.2.26)], shows that
AC(R) is closed under products. Similar arguments show that the Bass class BC(S)
is closed under direct summands, coproducts, products, and filtered colimits.

(b) Since finite direct sums and direct summands of finitely generated modules
are finitely generated, this follows from (a). �

5. C-flats, C-projectives, and C-injectives

In this section we study flat, projective, and injective modules with respect to
a semidualizing bimodule C = SCR, investigate basic properties of these classes,
and prove a form of Foxby equivalence. In the commutative noetherian setting, the
following classes of modules already appear in, for example, [11], [12], [21], and [29].

Definition 5.1. An S-module is C-flat (resp., C-projective) if it has the form
C ⊗R F for some flat (resp., projective) module RF . An R-module is C-injective if
it has the form HomS(C, I) for some injective module SI. Set the notation

FC = FC(S) = {C ⊗R F | RF is flat},

PC = PC(S) = {C ⊗R P | RP is projective},

IC = IC(R) = {HomS(C, I) | SI is injective}.

It is straightforward to prove the following:

Lemma 5.2. Let SCR be a semidualizing bimodule. For modules RU and SV the
following hold.

(a) V ∈ FC(S) ⇐⇒ V ∈ BC(S) and HomS(C, V ) is flat over R.
(b) V ∈ PC(S) ⇐⇒ V ∈ BC(S) and HomS(C, V ) is projective over R.
(c) U ∈ IC(R) ⇐⇒ U ∈ AC(R) and C ⊗R U is injective over S.

The next result is a non-commutative, non-noetherian version of [13, (1.4)].

Theorem 5.3 (Foxby equivalence). Let SCR be a semidualizing bimodule. There
are equivalences of categories as illustrated in Theorem 1 from the introduction.

Proof. The equivalence between AC(R) and BC(S) was established in Proposi-
tion 4.3. The vertical containments are either trivial or follow from Lemmas 4.4
and 5.2. The horizontal equivalences follow from Lemma 5.2. �

Remark 5.4. When C is faithfully semidualizing, a stronger version of the above
theorem holds, proved using Corollaries 6.4 and 6.6. Specifically, replace the classes
PR(R), FR(R) and IS(S) with the classes of modules of finite R-projective, R-flat
and S-injective dimension and replace the classes PC(S), FC(S) and IC(R) with
the classes of modules of finite PC -projective dimension over S, finite FC-projective
dimension over S and finite IC -injective dimension over R; see 1.6.

We now prove some additional properties of the classes FC , PC , and IC . When
R is commutative and noetherian, part (a) appears in [21][(2.14)].

Proposition 5.5. Let SCR be a semidualizing bimodule.

(a) The class FC(S) is closed under coproducts, filtered colimits and summands.
If R is right coherent, then FC(S) is also closed under products.

(b) The class PC(S) is closed under coproducts and summands.
(c) The class IC(R) is closed under products and summands. If S is left noe-

therian, then IC(R) is also closed under coproducts and filtered colimits.
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Proof. We only prove (a), as (b) and (c) are similar. To prove that FC(S) is closed
under summands, consider a split exact sequence of S-modules

X = 0 −→ V ′ −→ V −→ V ′′ −→ 0,

with V ∈ FC(S). Lemma 5.2(a) and Proposition 4.5(a) imply V ′, V ′′ ∈ BC(S).
The complex HomS(C,X) is split exact and contains the module HomS(C, V ) as
a middle term. By Lemma 5.2(a), this module is R-flat. The flat R-modules are
closed under summands, so the modules HomS(C, V ′) and HomS(C, V ′′) are R-flat.
An application of Lemma 5.2(a) shows that V ′, V ′′ ∈ FC(S).

The class FC(S) is closed under finite direct sums, so in order to prove that
it is closed under arbitrary coproducts, it suffices to prove that FC(S) is closed
under filtered colimits. Let {Nλ} be a filtered direct system of C-flat S-modules.
By Lemma 5.2(a) and Proposition 4.5(a) it follows that lim

−→
Nλ ∈ BC(S). Lemma

5.2(a) implies that {HomS(C,Nλ)} is a filtered direct system of flat R-modules.
Since the flat R-modules are closed under filtered colimits, the module

HomS(C, lim
−→

Nλ) ∼= lim
−→

HomS(C,Nλ)

is R-flat. The above isomorphism comes from the fact that that HomS(C,−)
commutes with filtered colimits since SC is finitely presented. An application of
Lemma 5.2(a) implies lim

−→
Nλ ∈ FC(S).

Finally, if R is right coherent then the class of flat (left) R-modules is closed
under products by [10, (3.2.24)]. Since CR is finitely presented, C ⊗R − commutes
with products by [10, (3.2.22)]. Thus arguments similar to the ones above show
that FC(S) is closed under products. �

The next result shows, in particular, that the classes PC(S), FC(S), and IC(R)
are closed under extensions.

Proposition 5.6. Let SCR be a semidualizing bimodule. Consider the following
exact sequences of S- and R-modules, respectively

0 −→W ′ −→W −→W ′′ −→ 0,

0 −→ U ′ −→ U −→ U ′′ −→ 0.

The following assertions hold.

(a) If W ′,W ′′ ∈ FC(S), then W ∈ FC(S).
(b) If W ′,W ′′ ∈ PC(S), then X splits and W ∈ PC(S).
(c) If U ′, U ′′ ∈ IC(R), then Y splits and U ∈ IC(R).

Proof. We prove only (b), as (c) is dual and (a) requires only minor adjustments. If
P ′ is R-projective, then Lemma 1.12(b) implies Ext1S(C,C ⊗R P

′) = 0, and hence
Ext1S(C,W ′) = 0 since W ′ is C-projective. This, together with Lemma 5.2(b),
forces HomS(C,X) to be a split exact sequence of R-projectives. Thus, the left
column in the following commutative diagram, C ⊗R HomS(C,X), is a split exact
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sequence of C-projective S-modules.

0

��

0

��
C ⊗R HomS(C,W ′)

��

ν
W ′

∼=
// W ′

��
C ⊗R HomS(C,W )

��

νW // W

��
C ⊗R HomS(C,W ′′)

��

ν
W ′′

∼=
// W ′′

��
0 0

(∗)

Lemma 5.2(b) implies that νW ′′ and νW ′ are isomorphisms, and the five lemma
forces νW to be an isomorphism as well. Thus, V ∈ PC(S) the right column in (∗)
is split exact, as desired. �

Corollary 5.7. Let SCR be a semidualizing bimodule. The classes PfC(S), Ff
C(S),

and IfC(R) are closed under extensions (see notation in 1.1). �

5.8. Recall that a short exact sequence of S-modules

X = 0 −→ N ′ −→ N −→ N ′′ −→ 0

is pure exact if A⊗SX is exact for all Sop-modules A, equivalently, if HomS(B,X)
is exact for all finitely presented S-modules B. When X is pure exact, N ′ is a pure
submodule of N , and N ′′ a pure quotient of N . See [22, appendix] for more details.

We now address how FC(S) and IC(R) behave with respect to pure submodules
and pure quotients. In the commutative noetherian setting, this is [9, (3.9)].

Lemma 5.9. Let SCR be a faithfully semidualizing bimodule.

(a) The class FC(S) is closed under pure submodules and pure quotients.
(b) When S is left noetherian, the class IC(R) is closed under pure submodules

and pure quotients.

Proof. (a). Consider a pure exact sequence, X , as in 5.8, with N ∈ FC(S). Since
C is finitely presented over S, the complex HomS(C,X) is an exact sequence of
R-modules. We claim that HomS(C,X) is pure exact. To this end, let Q be a
finitely presented R-module. Since C is finitely presented over S and C ⊗R − is
right exact, the S-module C⊗RQ is finitely presented. By Hom-tensor adjointness

HomR(Q,HomS(C,X)) ∼= HomS(C ⊗R Q,X).

It remains to note that the latter complex (and hence also the first) is exact since
X is pure exact, and C ⊗R Q is finitely presented.

In the pure exact sequence of R-modules HomS(C,X), the module HomS(C,N)
is R-flat by Lemma 5.2(a), since N is C-flat. Since the class of R-flat modules is
closed under pure submodules and pure quotients, HomS(C,N ′) and HomS(C,N ′′)
are also R-flat. Thus, if we can prove

N ′ ∼= C ⊗R HomS(C,N ′) and N ′′ ∼= C ⊗R HomS(C,N ′′)
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then N ′, N ′′ ∈ FC(S), as desired. Since HomR(C,X) is pure exact, there is a
commutative diagram with exact columns

0

��

0

��
C ⊗R HomS(C,N ′)

��

ν
N′ // N ′

��
C ⊗R HomS(C,N)

��

νN

∼=
// N

��
C ⊗R HomS(C,N ′′)

��

ν
N′′ // N ′′

��
0 0.

Lemma 5.2(a) implies N ∈ BC(S), so νN is an isomorphism. The snake lemma
gives that νN ′ is injective, νN ′′ is surjective, and that Ker νN ′′

∼= Coker νN ′ . Thus,
it suffices to argue that Ker νN ′′ = 0. Since C is faithfully semidualizing, it is
enough to prove that HomS(C,Ker νN ′′) = 0. Applying HomS(C,−) to

0 −→ Ker νN ′′ −→ C ⊗R HomS(C,N ′′)
ν

N′′

−→ N ′′ −→ 0

we see it is enough to show that HomS(C, νN ′′ ) is injective. We claim HomS(C, νN ′′)
is an isomorphism. By Observation 4.2, it suffices to argue that µHomS(C,N ′′) is an

isomorphism. Since HomS(C,N ′′) is R-flat, this follows from Lemma 4.4.
The proof of (b) is dual to that of (a) — using that when S is left noetherian the

class of injective S-modules is closed under pure submodules and pure quotients. �

We conclude this section with a result on the (pre)covering and (pre)enveloping
properties of the C-flats, C-projectives, and C-injectives. In the commutative noe-
therian setting, parts (a), (c) below appear in [9, (3.5)].

Proposition 5.10. Let SCR be a semidualizing bimodule.

(a) The class FC(S) is covering on the category of S-modules.
(b) The class PC(S) is precovering on the category of S-modules.
(c) The class IC(R) is enveloping on the category of R-modules.
(d) If R is right coherent and C is faithfully semidualizing, then the class FC(S)

is preenveloping on the category of S-modules.
(e) If S is left noetherian and C is faithfully semidualizing, then the class IC(R)

is covering on the category of R-modules.

Proof. (a) By Bican-El Bashir-Enochs [3, (3)], the class of flat R-modules is cov-
ering. Thus, for any S-module N , the R-module HomS(C,N) has an R-flat cover
α : F −→ HomS(C,N). Define β to be the composite homomorphism

C ⊗R F
C⊗Rα−−−−→ C ⊗R HomS(C,N)

νN−−→ N.

This is an FC(S)-cover of N : To prove the precovering property, consider a homo-
morphism τ : C ⊗R G −→ N where G is R-flat. We want ψ : C ⊗R G −→ C ⊗R F
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such that τ = β◦ψ. The assignment ν from 4.1(B3) is natural. Also, Lemma 5.2(a)
implies C⊗RG ∈ BC(R). Observation 4.2 then gives rise to a commutative diagram

C ⊗R G
τ //

∼=ν−1
(C⊗RG)

=C⊗RµG

��

N

C ⊗R HomS(C,C ⊗R G)
C⊗RHomS(C,τ) // C ⊗R HomS(C,N).

νN

OO

(†)

Now, since α is an R-flat precover and G is R-flat there exists a homomorphism
ϕ : G −→ F making the following diagram commute

G
µG

∼=
//

ϕ

���
�

�
HomS(C,C ⊗R G)

HomS(C,τ)

��
F

α // HomS(C,N).

(††)

Define ψ = C ⊗R ϕ. The first equality below comes from the commutativity of (†)

τ = νN ◦ (C ⊗R HomS(C, τ)) ◦ (C ⊗R µG)

= νN ◦ (C ⊗R α) ◦ (C ⊗R ϕ)

= β ◦ ψ

while the second comes the commutativity of the diagram induced by applying the
functor C ⊗R − to the diagram (††). The third holds by the definitions of β and
ψ, and thus β is a precover of N , as desired.

To see that β is a cover, let G = F , τ = β, and β ◦ ψ = β. We show ψ is
an automorphism. It is straightforward to verify that the following diagram is
commutative, and Lemma 4.4 imples µF is an isomorphism

F
α //

∼=µF

��

HomS(C,N)

HomS(C,C ⊗R F )
HomS(C,C⊗Rα) // HomS(C,C ⊗R HomS(C,N)).

HomS(C,νN )

OO

The equality β ◦ ψ = β implies

HomS(C, β) ◦ Hom(C,ψ) = HomR(C, β).

Using the diagram immediately above, one checks that the following diagram is
commutative

F

α

��

µ−1
F

◦HomS(C,ψ)◦µF

yys
s

s
s

s
s

F α
// HomS(C,N).

Since α is an R-flat cover, it follows that µ−1
F ◦ HomS(C,ψ) ◦ µF , and hence

HomS(C,ψ) must be an automorphism. Finally, the commutative diagram

C ⊗R F

∼=C⊗RµF

��

ψ // C ⊗R F

∼= C⊗RµF

��
C ⊗R HomS(C,C ⊗R F )

C⊗RHomS(C,ψ)

∼= // C ⊗R HomS(C,C ⊗R F )
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implies that ψ itself must be an automorphism.
(b) This is similar to the proof of (a), using the fact that the class of R-projective

modules is precovering.
(c) This proof is dual to the proof of (a), using that the class of S-injective

modules is enveloping by Xu [29, (1.2.11)] and Eckmann–Schopf [8].
(d) It suffices by [25, (3.5)(c)] (see also [20, (2.6)(ii)]) to prove that FC(S) is

closed under arbitrary products and pure submodules, which follows immediately
from Proposition 5.5(a) and Lemma 5.9(a).

(e) By [20, (2.5)], it suffices to show that IC(R) is closed under coproducts and
pure quotients. This follows from Proposition 5.5(c) and Lemma 5.9(b). �

6. Characterizations of AC and BC and applications

Before characterizing the modules in the Auslander and Bass classes in terms of
the C-flats, C-projectives, and C-injectives, we note an immediate consequence of
the adjoint isomorphisms

HomS(C ⊗R X, I) ∼= HomR(X,HomS(C, I)), and

HomS(C ⊗R P, Y ) ∼= HomR(P,HomS(C, Y )).

Lemma 6.1. Let SCR be a semidualizing bimodule, let X be a complex of R-
modules, and let Y a complex of S-modules.

(a) If C ⊗R X is exact, then HomR(X,HomS(C, I)) is exact for all injective S-
modules I. Conversely, if I is faithfully S-injective and HomR(X,HomS(C, I))
is exact, then C ⊗R X is exact.

(b) If HomS(C, Y ) is exact, then HomS(C⊗R P, Y ) is exact for all projective R-
modules P . Conversely, if P is faithfully R-projective and HomS(C⊗RP, Y )
is exact, then HomS(C, Y ) is exact. �

In the commutative noetherian setting, Theorem 2 from the Introduction and
Theorem 6.2 appear in [9, (3.6, 3.7)]; see also [29, (5.5.4, 5.5.5)]. We now prove
Theorem 2 from the introduction.

Proof of Theorem 2 : Assume M ∈ AC(R) so that TorR>1(C,M) = 0. An aug-

mented projective resolution P+ of M then gives rise to an exact sequence

C ⊗R P
+ = · · · −→ C ⊗R P1 −→ C ⊗R P0 −→ C ⊗RM −→ 0

By Proposition 5.10(c), the class of C-injective modules is preenveloping. Thus, M
admits an augmented proper C-injective coresolution. That is, there is a complex

U+ = 0 −→M −→ U0 −→ U1 −→ · · ·

such that HomR(U+,W ) is exact for W ∈ IC(R). In particular, if RI is faithfully
injective, then HomR(U+,HomS(C, I)) is exact. Thus, Lemma 6.1(a) implies

C ⊗R U
+ = 0 −→ C ⊗RM −→ C ⊗R U

0 −→ C ⊗R U
1 −→ · · ·

is exact. Therefore, we prove that U+ is exact. The complex X , obtained by
splicing together P+ and U+, then has the desired properties. By Lemma 5.2(c),
C ⊗R U

i is injective for all i > 0, so C ⊗R U
+ is an augmented injective resolution

of C ⊗RM . Since the modules Ui and M are in AC(R), there is an isomorphism

HomS(C,C ⊗R U
+) ∼= U+.

Since Ext>1
S (C,C ⊗RM) = 0, it follows that U+ is exact.
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Conversely, assume there is a complex X satisfying properties (a)-(e) of the
theorem, where each Pi is R-flat. The complex X induces exact sequences P+ and
U+, as depicted above, and property (e) implies that the complexes C ⊗R P

+ and
C ⊗R U

+ are exact.
Since Pi is R-flat and C ⊗R P

+ is exact, there is an equality TorR>1(C,M) = 0.

Also, as C ⊗R U+ is exact and the functor HomS(C,−) is left exact, the right
column in the following commutative diagram is exact

0

��

0

��
M

µM //

��

HomS(C,C ⊗RM)

��
U0

∼=

µ
U0 //

��

HomS(C,C ⊗R U
0)

��
U1

µ
U1

∼=
// HomS(C,C ⊗R U

1)

By Lemma 5.2(c) one has U i ∈ AC(R) so µU0 and µU1 are isomorphisms. The five
lemma implies that µM is an isomorphism. The µUi and µM fit together to give
an isomorphism of complexes HomS(C,C ⊗R U

+) ∼= U+. Since the complex U+ is
exact, it follows that HomS(C,C ⊗R U

+) is exact. As C ⊗R U
+ is an augmented

S-injective resolution of C ⊗RM , there is an equality

Ext>1
S (C,C ⊗RM) = 0.

Thus, M belongs to AC(R). �

The next result is proved in a similar manner.

Theorem 6.2. Let SCR be a semidualizing bimodule. An S-module N belongs to
BC(S) if and only if there exists a complex of S-modules

Y = · · · −→W1 −→W0 −→ I0 −→ I1 −→ · · ·

that satisfies the following conditions

(a) The complex Y is exact;
(b) Each Ii is S-injective;
(c) Each Wi is a C-projective (or C-flat);
(d) There is an isomorphism N ∼= Ker(I0 −→ I1); and
(e) The complex HomS(C, Y ) is exact.

Moreover, if N ∈ BC(S) then any complex constructed by splicing together an aug-
mented injective coresolution of N and an augmented proper C-projective resolution
of N will satisfy the above properties. �

The next two theorems address the behavior of the classes AC(R) and BC(S)
with respect to short exact sequences, see 1.8 for the terminology.

Theorem 6.3. Let SCR be a semidualizing bimodule. The classes AC(R) and

Af
C(R) are projectively resolving, and the class BC(S) is injectively resolving.
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Proof. We prove that AC(R) is projectively resolving; the other proof is similar. By
Lemma 4.4, the class AC(R) contains the R-projective modules. Thus, it suffices
to show that, given an exact sequence of R-modules

X = 0 −→M ′ −→M −→M ′′ −→ 0

with M ′′ ∈ AC(R), then M ′ ∈ AC(R) if and only if M ∈ AC(R). Since M ′′ ∈

AC(R) we have TorR1 (C,M ′′) = 0. In particular, the complex C ⊗RX is exact. By
Lemma 6.1(a), the complex HomR(X,U) is exact for all U ∈ IC(R). Moreover, the
class IC(R) is closed under finite direct sums by Proposition 5.5(c) and is preen-
veloping by Proposition 5.10(c). Thus, the Horseshoe Lemma for preenveloping
classes [10, (8.2.2)] gives a commutative diagram

0 // M ′

��

// M

��

// M ′′

��

// 0

0 // U ′ // U ′ ⊕ U ′′ // U ′′ // 0

(†)

with exact rows and where each vertical map gives rise to an augmented proper
IC(R)-coresolution. Similarly, the Horseshoe Lemma for projective resolutions
yields a commutative diagram with exact rows

0 // P ′

��

// P ′ ⊕ P ′′

��

// P ′′

��

// 0

0 // M ′ // M // M ′′ // 0

(††)

where each vertical map gives rise to an augmented projective resolution. Splicing
these diagrams together provides a degreewise split exact sequence of complexes

...

��

...

��

...

��
0 // P ′

1

��

// P ′
1 ⊕ P ′′

1

��

// P ′′
1

��

// 0

0 // P ′
0

��

// P ′
0 ⊕ P ′′

0

��

// P ′′
0

��

// 0

0 // U ′
0

��

// U ′
0 ⊕ U ′′

0

��

// U ′′
0

��

// 0

0 // U ′
1

��

// U ′
1 ⊕ U ′′

1

��

// U ′′
1

��

// 0

...
...

...

(∗)

where P ′
i , P

′′
i are projective, U ′

i , U
′′
i ∈ IC(R), and where

M ′ = Coker(P ′
1 −→ P ′

0) , M
′′ = Coker(P ′′

1 −→ P ′′
0 ),

M = Coker(P ′
1 ⊕ P ′′

1 −→ P ′
0 ⊕ P ′′

0 ).
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Two of the (nonzero) modules in the complexX are in AC(R), and so by Theorem 2,
two of the complexes in (∗) are exact. The long exact sequence in homology implies
that the third complex is also exact. Furthermore, if we apply C ⊗R − to (∗), we
get another degreewise split exact sequence of complexes, and again, since two of
these complexes are exact (by assumption), so is the third. Another application of
Theorem 2 completes the proof. �

The next result follows from Lemma 5.2 and Theorem 6.3 by taking appropriate
bounded resolutions and breaking them up into short exact sequences.

Corollary 6.4. Let SCR be a semidualizing bimodule. The class AC(R) contains
the R-modules of finite IC-injective dimension and the class BC(S) contains the S-
modules of finite FC-projective dimension and finite PC- projective dimension. �

Theorem 6.5. Let SCR be a faithfully semidualizing bimodule. The classes AC(R)

and Af
C(R) are closed under cokernels of monomorphisms and BC(S) is closed

under kernels of epimorphisms.

Proof. We only prove the statement for AC(R), as the other statements are proved
similarly. Consider a short exact sequence of R-modules

0 −→M ′ −→M −→M ′′ −→ 0

with M ′ and M in AC(R). The proof of Theorem 6.3 gives the desired conclusion

provided TorR1 (C,M ′′) = 0. To verify this vanishing, note that TorR1 (C,M) = 0 as
M ∈ AC(R). Hence, there is an exact sequence

0 −→ TorR1 (C,M ′′) −→ C ⊗RM
′ −→ C ⊗RM −→ C ⊗RM

′′ −→ 0.

Using Remark 1.10, this is an exact sequence of S-modules homomorphisms. Apply-
ing the functor HomS(C,−) to this sequence provides the right-hand exact column
in the following commutative diagram

0

��
HomS(C,TorR1 (C,M ′′))

��
M ′

µ
M′

∼=
//

��

HomS(C,C ⊗RM
′)

��
M

µM

∼=
// HomS(C,C ⊗RM)

As M ′ −→M is injective, a diagram chase shows that HomS(C,TorR1 (C,M ′′)) = 0.

Since C is faithfully semidualizing, TorR1 (C,M ′′), as desired. �

The next result—which is a non-commutative, non-noetherian version of [13,
(1.2)]—follows from Theorem 6.5 by taking appropriate bounded resolutions and
breaking them up into short exact sequences.

Corollary 6.6. Let SCR be a faithfully semidualizing bimodule. The class AC(R)

(resp., Af
C(R)) contains the R-modules (resp., finite R-modules) of finite flat dimen-

sion, and the class BC(S) contains the S-modules of finite injective dimension. �
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Theorems 6.3 and 6.5 immediately give the following non-commutative, non-
noetherian version of [13, (1.3)] and [29, (5.5.6), (5.5.7)].

Corollary 6.7. Let SCR be a faithfully semidualizing bimodule. The classes AC(R)
and BC(S) have the property that if two of three modules in a short exact sequence
are in the class then so is the third. �

We also have the following result related to Proposition 5.6.

Corollary 6.8. Let SCR be a faithfully semidualizing bimodule. The classes PC(S)
and FC(S) are projectively resolving and the class IC(R) is injectively resolving.

Proof. We only prove the claim for PC(S). By Proposition 5.6, we only need
to argue that PC(S) is closed under kernels of epimorphisms. Consider an exact
sequence of S-modules

0 −→W ′ −→W −→W ′′ −→ 0

with W,W ′′ ∈ PC(S). By Lemma 5.2(b), one has W,W ′′ ∈ BC(S) and so The-
orem 6.5 implies that W ′ ∈ BC(S). It follows that Ext1S(C,W ′) = 0. The same
technique as in the proof of Proposition 5.6 shows that W ′ ∈ PC(S). �

Lemma 6.9. Let SCR be a semidualizing bimodule, and let M be an R-module.

If Ext>1
S (C,C ⊗RM) = 0, then Ext>1

S (C ⊗R P,C ⊗RM) = 0 for all projective R-
modules P .

Proof. Let I be an injective resolution of the S-module C⊗RM and P a projective
R-module. The first and fourth isomorphisms below are by definition of Ext

ExtiS(C ⊗R P,C ⊗RM) ∼= H−i HomS(C ⊗R P, I)

∼= H−i HomR(P,HomS(C, I))

∼= HomR(P,H−iHomS(C, I))

∼= HomR(P,ExtiS(C,C ⊗RM))

while the second is by Hom-tensor adjointness, and the third is by exactness of the

functor HomR(P,−). The desired conclusion follows, as Ext>1
S (C,C⊗RM) = 0. �

The following result can be thought of as a derived version of Foxby equiva-
lence. For derived Auslander and Bass classes over a commutative noetherian ring,
cf. Remark 2.5, related results can be found in e.g. [5, (4.5)].

Theorem 6.10. Let M and M ′ be R-modules, let N and N ′ be S-modules, let Ñ
be an Sop-module, and let i > 0.

(a) If M ∈ AC(R) and TorR>1(C,M
′) = 0 (e.g., if M ′ ∈ AC(R)), then

ExtiR(M ′,M) ∼= ExtiS(C ⊗RM
′, C ⊗RM).

(b) If N ∈ BC(S) and Ext>1
S (C,N ′) = 0 (e.g., if N ′ ∈ BC(S)), then

ExtiS(N,N ′) ∼= ExtiR(HomS(C,N),HomS(C,N ′)).

(c) If N ∈ BC(S) and TorS>1(Ñ , C) = 0, then

TorSi (Ñ ,N) ∼= TorRi (Ñ ⊗S C,HomS(C,N)).

Each isomorphism defined above is a natural isomorphism of abelian groups.
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Proof. (a) We proceed by induction on i. For i = 0, the first isomorphism below
holds since M ∈ AC(R) while the second is Hom-tensor adjointness

HomR(M ′,M) ∼= HomR(M ′,HomS(C,C ⊗RM))

∼= HomS(C ⊗RM
′, C ⊗RM).

Moreover, these isomorphisms are natural in M ′ and M . Next assume that i > 0.
The induction hypothesis implies that for j < i there exist isomorphisms

(†) ExtjR(L′, L)
∼=
−→ ExtjS(C ⊗R L

′, C ⊗R L),

which are natural for allR-modules L ∈ AC(R) and L′ with TorR>1(C,L
′) = 0. Now,

consider M ∈ AC(R) and M ′ such that TorR>1(C,M
′) = 0. There is a projective

R-module P ′ which gives rise to an exact sequence

X = 0 −→ K ′ −→ P ′ −→M ′ −→ 0.

The equalities TorR>1(C,M
′) = 0 = TorR>1(C,P

′) and the appropriate long exact

sequence imply TorR>1(C,K
′) = 0. Thus, we may apply the induction hypothesis to

the modules L′ = K ′ (or L′ = P ′) and L = M . Since TorR1 (C,M ′) = 0, the complex
X induces the exact sequence of S-modules

C ⊗R X = 0 −→ C ⊗R K
′ −→ C ⊗R P

′ −→ C ⊗RM
′ −→ 0.

The long exact sequence coming from the complexes HomR(X,M) and HomS(C⊗R
X,C ⊗RM) give rise to a commutative diagram with exact columns

...

��

...

��
Exti−1

R (P ′,M)

��

∼= // Exti−1
S (C ⊗R P

′, C ⊗RM)

��
Exti−1

R (K ′,M)

��

∼= // Exti−1
S (C ⊗R K

′, C ⊗RM)

��
ExtiR(M ′,M)

��

ExtiS(C ⊗RM
′, C ⊗RM)

��
ExtiR(P ′,M) ExtiS(C ⊗R P

′, C ⊗RM)

0 0.

The right zero follows from Lemma 6.9, and the two isomorphisms come from the
induction hypothesis. Diagram chasing provides a unique isomorphism

(⋆) ExtiR(M ′,M)
∼=
−→ ExtiS(C ⊗RM

′, C ⊗RM)

making the induced diagram commutative. It is straightforward to verify that (⋆)
is natural in M and M ′. Parts (b) and (c) have similar proofs. �
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7. Auslander and Bass classes over commutative rings

If R is noetherian then the next two results are in [4, (3.2.9)] and [5, (5.8), (5.9)].

Proposition 7.1. Let R be a commutative ring and C a semidualizing R-module.
Assume M and N are R-modules and p is a prime ideal of R.

(a) If M ∈ AC(R), then Mp ∈ ACp
(Rp).

(b) If N ∈ BC(R), then Np ∈ BCp
(Rp).

Proof. We prove only (a), as (b) is similar. By Observation 2.3(d), the Rp-module
Cp is semidualizing. If M ∈ AC(R), then for i > 0

Tor
Rp

i (Cp,Mp) ∼= TorRi (C,M)p = 0,

ExtiRp
(Cp, Cp ⊗Rp

Mp) ∼= ExtiR(C,C ⊗RM)p = 0;

where the second row uses the assumption that C admits a degreewise finite R-
projective resolution. Furthermore, the commutative diagram

Mp

∼=(µM )p

��

µ(Mp) // HomRp
(Cp, Cp ⊗Rp

Mp)

∼=

��
HomR(C,C ⊗RM)p ∼=

// HomRp
(Cp, (C ⊗RM)p)

shows that µ(Mp) is an isomorphism. Thus, one has Mp ∈ ACp
(Rp). �

Proposition 7.2. If R is commutative and C is a semidualizing R-module, then
the following hold for all R-modules M and N .

(a) M ∈ AC(R) ⇐⇒ HomR(M, I) ∈ BC(R) for all injective R-modules I.
(b) N ∈ BC(R) ⇐⇒ HomR(N, I) ∈ AC(R) for all injective R-modules I.
(c) M ∈ AC(R) ⇐⇒ M ⊗R F ∈ AC(R) for all flat R-modules F .
(d) N ∈ BC(R) ⇐⇒ N ⊗R F ∈ BC(R) for all flat R-modules F .

Proof. We prove (a), as (b), (c), and (d) are similar. If I is injective then Hom-
tensor adjointness gives an isomorphism

HomR(TorRi (C,M), I) ∼= ExtiR(C,HomR(M, I)).

Thus, TorRi (C,M) = 0 if and only if ExtiR(C,HomR(M, I)) = 0 for all injective
modules I. The first isomorphism below follows from Lemma 1.14(a)

HomR(ExtiR(C,C ⊗RM), I) ∼= TorRi (C,HomR(C ⊗RM, I))

∼= TorRi (C,HomR(C,HomR(M, I)))

while the second is by Hom-tensor adjointness. Hence, ExtiR(C,C⊗RM) = 0 if and

only if TorRi (C,HomR(C,HomR(M, I))) = 0 for all injective modules I. Finally,
there is a commutative diagram

C ⊗R HomR(C ⊗RM, I)

∼=θC(C⊗RM)I

��

∼=

C⊗R(adjointness) // C ⊗R HomR(C,HomR(M, I))

νHomR(M,I)

��
HomR(HomR(C,C ⊗RM), I)

HomR(µM ,I)
// HomR(M, I)
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The left most vertical map is an isomorphism by Lemma 1.14(a). It follows that
µM is an isomorphism if and only if νHomR(M,I) is an isomorphism for all injective

modules I. In conclusion, M ∈ AC(R) if and only if HomR(M, I) ∈ BC(R) for all
injective modules I. �

Remark 7.3. Each of the statements in the above proposition has a third equiv-
alent condition. For example, the statements in (a) are both equivalent to the
following: HomR(M, I) ∈ BC(R) for some faithfully injective module I.
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