Henrik Andreasson

Henrik Andreasson
Örebro University | oru · Department of Natural Sciences

About

141
Publications
59,403
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,172
Citations

Publications

Publications (141)
Article
Full-text available
This work introduces a novel detector, bounded false-alarm rate (BFAR), for distinguishing true detections from noise in radar data, leading to improved accuracy in radar odometry estimation. Scanning frequency-modulated continuous wave (FMCW) radars can serve as valuable tools for localization and mapping under low visibility conditions. However,...
Article
Full-text available
Adverse weather (rain, snow, and fog) can negatively impact computer vision tasks by introducing noise in sensor data; therefore, it is essential to recognize weather conditions for building safe and robust autonomous systems in the agricultural and autonomous driving/drone sectors. The performance degradation in computer vision tasks due to advers...
Preprint
Full-text available
The short-loading cycle is a repetitive task performed in high quantities, making it a great alternative for automation. In the short-loading cycle, an expert operator navigates towards a pile, fills the bucket with material, navigates to a dump truck, and dumps the material into the tipping body. The operator has to balance the productivity goal w...
Article
Full-text available
The short-loading cycle is a construction task where a wheel loader scoops material from a nearby pile in order to move that material to the tipping body of a dump truck. The short-loading cycle is a vital task performed in high quantities and is often part of a more extensive never-ending process to move material for further refinement. This, toge...
Article
Factor graphs are a very powerful graphical representation, used to model many problems in robotics. They are widely spread in the areas of Simultaneous Localization and Mapping (SLAM), computer vision, and localization. However, the physics of many real-world problems is better modeled through constraints, e.g., estimation in the presence of incon...
Article
Full-text available
We propose a context-aware navigation framework designed to support the navigation of autonomous ground vehicles, including articulated ones. The proposed framework employs a behavior tree with novel nodes to manage the navigation tasks: planner and controller selections, path planning, path following, and recovery. It incorporates a weather detect...
Preprint
Factor graphs are a very powerful graphical representation, used to model many problems in robotics. They are widely spread in the areas of Simultaneous Localization and Mapping (SLAM), computer vision, and localization. In this paper we describe an approach to fill the gap with other areas, such as optimal control, by presenting an extension of Fa...
Article
Full-text available
Robust SLAM in large-scale environments requires fault resilience and awareness at multiple stages, from sensing and odometry estimation to loop closure. In this work, we present TBV (Trust But Verify) Radar SLAM, a method for radar SLAM that introspectively verifies loop closure candidates. TBV Radar SLAM achieves a high correct-loop-retrieval rat...
Article
Full-text available
Registration of point cloud data containing both depth and color information is critical for a variety of applications, including in-field robotic plant manipulation, crop growth modeling, and autonomous navigation. However, current state-of-the-art registration methods often fail in challenging agricultural field conditions due to factors such as...
Article
Full-text available
Automated forest machines are becoming important due to human operators’ complex and dangerous working conditions, leading to a labor shortage. This study proposes a new method for robust SLAM and tree mapping using low-resolution LiDAR sensors in forestry conditions. Our method relies on tree detection to perform scan registration and pose correct...
Preprint
Full-text available
Robust SLAM in large-scale environments requires fault resilience and awareness at multiple stages, from sensing and odometry estimation to loop closure. In this work, we present TBV (Trust But Verify) Radar SLAM, a method for radar SLAM that introspectively verifies loop closure candidates. TBV Radar SLAM achieves a high correct-loop-retrieval rat...
Article
Current intralogistics services require keeping up with e-commerce demands, reducing delivery times and waste, and increasing overall flexibility. As a consequence, the use of automated guided vehicles (AGVs) and, more recently, autonomous mobile robots (AMRs) for logistics operations is steadily increasing.
Article
Full-text available
This article studies group-wise point set registration and makes the following contributions: ``FuzzyGReg'', which is a new fuzzy cluster-based method to register multiple point sets jointly, and ``FuzzyQA'', which is the associated quality assessment to check registration accuracy automatically. Given a group of point sets, FuzzyGReg creates a mod...
Preprint
Full-text available
This paper presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments -- outdoors, from urban to woodland, and indoors in warehouses and mines - without changing parameters. Our method integrates motion compensation...
Article
Full-text available
There is an increasing interest in the use of automation in plant production settings. Here, we employed a robotic platform to induce controlled mechanical stimuli (CMS) aiming to improve basil quality. Semi-targeted UHPLC-qToF-MS analysis of organic acids, amino acids, phenolic acids, and phenylpropanoids revealed changes in basil secondary metabo...
Preprint
A software architecture defines the blueprints of a large computational system, and is thus a crucial part of the design and development effort. This task has been explored extensively in the context of mobile robots, resulting in a plethora of reference designs and implementations. As the software architecture defines the framework in which all co...
Preprint
A sensor is a device that converts a physical parameter or an environmental characteristic (e.g., temperature, distance, speed, etc.) into a signal that can be digitally measured and processed to perform specific tasks. Mobile robots need sensors to measure properties of their environment, thus allowing for safe navigation, complex perception and c...
Preprint
Full-text available
Robust perception is an essential component to enable long-term operation of mobile robots. It depends on failure resilience through reliable sensor data and preprocessing, as well as failure awareness through introspection, for example the ability to self-assess localization performance. This paper presents CorAl: a principled, intuitive, and gene...
Article
This paper presents CorAl: a principled, intuitive, and generalizable method to measure the quality of alignment between pairs of point clouds, which learns to detect alignment errors in a self-supervised manner. CorAl compares the differential entropy in the point clouds separately with the entropy in their union to account for entropy inherent to...
Article
Full-text available
This paper presents a local planning approach that is targeted for pseudo-omnidirectional vehicles: that is, vehicles that can drive sideways and rotate on the spot. This local planner—MSDU–is based on optimal control and formulates a non-linear optimization problem formulation that exploits the omni-motion capabilities of the vehicle to drive the...
Article
Digital plant inventory provides critical growth insights, given the associated data quality is good. Stable & high-quality image acquisition is critical for further examination. In this work, we showcase an affordable, portable, and modular spectral camera prototype, designed with open hardware’s and open-source software’s. The image sensors used...
Article
This article presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments—outdoors, from urban to woodland, and indoors in warehouses and mines—without changing parameters. Our method integrates motion compensation wit...
Article
Full-text available
This research evaluates the effect on herbal crops of mechanical stress induced by two specially developed robotic platforms. The changes in plant morphology, metabolite profiles, and element content are evaluated in a series of three empirical experiments, conducted in greenhouse and CNC growing bed conditions, for the case of basil plant growth....
Preprint
Full-text available
Heavy-duty mobile machines (HDMMs) are a wide range of machinery used in diverse and critical application areas which are currently facing several issues like skilled labor shortage, poor safety records, and harsh work environments. Consequently, efforts are underway to increase automation in HDMMs for increased productivity and safety, eventually...
Article
Full-text available
This paper studies the fuzzy cluster-based point set registration (FuzzyPSReg). First, we propose a new metric based on Gustafson-Kessel (GK) fuzzy clustering to measure the alignment of two point clouds. Unlike the metric based on fuzzy c-means (FCM) clustering in our previous work, the GK-based metric includes orientation properties of the point...
Conference Paper
Full-text available
This paper presents an accurate, highly efficient and learning free method for large-scale radar odometry estimation. By using a simple filtering technique that keeps the strongest returns, we produce a clean radar data representation and reconstruct surface normals for efficient and accurate scan matching. Registration is carried out by minimizing...
Preprint
Full-text available
This paper presents an efficient and accurate radar odometry pipeline for large-scale localization. We propose a radar filter that keeps only the strongest reflections per-azimuth that exceeds the expected noise level. The filtered radar data is used to incrementally estimate odometry by registering the current scan with a nearby keyframe. By model...
Preprint
Full-text available
This paper presents a new detector for filtering noise from true detections in radar data, which improves the state of the art in radar odometry. Scanning Frequency-Modulated Continuous Wave (FMCW) radars can be useful for localization and mapping in low visibility, but return a lot of noise compared to (more commonly used) lidar, which makes the d...
Article
Full-text available
This paper presents a efficient and accurate radar odometry pipeline for large-scale localization. We propose a radar filter that keeps only the strongest reflections per-azimuth that exceeds the expected noise level. The filtered radar data is used to incrementally estimate odometry by registering the current scan with a nearby keyframe. By modeli...
Conference Paper
Full-text available
Heavy-duty mobile machines (HDMMs) are a wide range of machinery used in diverse and critical application areas which are currently facing several issues like skilled labor shortages, poor safety records, and harsh work environments. Consequently, efforts are underway to increase automation in HDMMs for increased productivity and safety, eventually...
Preprint
Full-text available
In robotics perception, numerous tasks rely on point cloud registration. However, currently there is no method that can automatically detect misaligned point clouds reliably and without environment-specific parameters. We propose "CorAl", an alignment quality measure and alignment classifier for point cloud pairs, which facilitates the ability to i...
Article
Plant phenotyping in general refers to quantitative estimation of the plant’s anatomical, ontogenetical, physiological and biochemical properties. Analyzing big data is challenging, and non-trivial given the different complexities involved. Efficient processing and analysis pipelines are the need of the hour with the increasing popularity of phenot...
Preprint
Full-text available
This paper presents the accurate, highly efficient, and learning-free method CFEAR Radarodometry for large-scale radar odometry estimation. By using a filtering technique that keeps the k strongest returns per azimuth and by additionally filtering the radar data in Cartesian space, we are able to compute a sparse set of oriented surface points for...
Article
Full-text available
The implementation of image-based phenotyping systems has become an important aspect of crop and plant science research which has shown tremendous growth over the years. Accurate determination of features using images requires stable imaging and very precise processing. By installing a camera on a mechanical arm driven by motor, the maintenance of...
Article
Full-text available
We propose a loosely-coupled framework for integrated task assignment, motion planning, coordination and control of heterogeneous fleets of robots subject to non-cooperative tasks. The approach accounts for the important real-world requirement that tasks can be posted asynchronously. We exploit systematic search for optimal task assignment, where i...
Article
Full-text available
Continuous monitoring of crops is critical for the sustainability of agriculture. The effects of changes in temperature, light intensity, humidity, pH, soil moisture, gas intensities, etc. have an overall impact on the plant growth. Growth chambers are environmental controlled facilities which needs to be monitored round‐the‐clock. To improve both...
Article
Full-text available
This study presents a new point set registration method to align 3D range scans. Fuzzy clusters are utilized to represent a scan, and the registration of two given scans is realized by minimizing a fuzzy weighted sum of the distances between their fuzzy cluster centers. This metric has a broad basin of convergence and is robust to noise. Moreover,...
Conference Paper
Full-text available
In this paper we present the usage of PointNet, a deep neural network that consumes raw un-ordered point clouds, for detection of grape vine clusters in outdoor conditions. We investigate the added value of feeding the detection network with both RGB and depth data, contradictory to common practice in agricultural robotics which to-date relies only...
Conference Paper
Full-text available
This paper proposes a novel approach for global localisation of mobile robots in large-scale environments. Our proposed method leverages learning-based localisation and filtering-based localisation, to localise the robot efficiently and precisely through seeding Monte Carlo Localisation (MCL) with deep learned distribution. In particular, a fast lo...
Preprint
Full-text available
This paper proposes a novel approach for global localisation of mobile robots in large-scale environments. Our proposed method leverages learning-based localisation and filtering-based localisation, to localise the robot efficiently and precisely through seeding Monte Carlo Localisation (MCL) with deep learned distribution. In particular, a fast lo...
Article
The ability to maintain and continuously update geometric calibration parameters of a mobile platform is a key functionality for every robotic system. These parameters include the intrinsic kinematic parameters of the platform, the extrinsic parameters of the sensors mounted on it, and their time delays. In this letter, we present a unified pipelin...
Article
Deploying fleets of autonomous robots in real-world applications requires addressing three problems: motion planning, coordination, and control. Application-specific features of the environment and robots often narrow down the possible motion planning and control methods that can be used. This paper proposes a lightweight coordination method that i...
Article
This paper presents a viewpoint-invariant place recognition algorithm which is robust to changing environments while requiring only a small memory footprint. It demonstrates that condition-invariant local features can be combined with Vectors of Locally Aggregated Descriptors (VLAD) to reduce high-dimensional representations of images to compact bi...
Conference Paper
Full-text available
Local scan registration approaches commonly only utilize ego-motion estimates (e.g. odometry) as an initial pose guess in an iterative alignment procedure. This paper describes a new method to incorporate ego-motion estimates, including uncertainty, into the objective function of a registration algorithm. The proposed approach is particularly suite...
Article
Full-text available
We present a graph representation that fuses information from the robot sensory system and an emergency-map into one. Emergency-maps are a support extensively used by firemen in rescue mission. Enabling the robot to use such prior maps instead of starting SLAM from scratch will aid planning and navigation for robots in new environments. However, th...
Research
Full-text available
A mobile robot communicating its intentions using Spatial Augmented Reality (SAR) on the shared floor space makes humans feel safer and more comfortable around the robot. Our previous work [1] and several other works established this fact. We built upon that work by adding an adaptable information and control to the SAR module. An empirical study a...
Article
Full-text available
Mobile robots are of great help for automatic monitoring tasks in different environments. One of the first tasks that needs to be addressed when creating these kinds of robotic systems is modeling the robot environment. This work proposes a pipeline to build an enhanced visual model of a robot environment indoors. Vision based recognition approache...
Article
Full-text available
Fleet automation often involves solving several strongly correlated sub-problems, including task allocation, motion planning, and coordination. Solutions need to account for very specific, domaindependent constraints. In addition, several aspects of the overall fleet management problem become known only online. We propose a method for solving the f...
Article
Full-text available
So far, autonomous order picking (commissioning) systems have not been able to meet the stringent demands regarding speed, safety and accuracy of real-world warehouse automation, resulting in reliance on human workers. In this work we target the next step in autonomous robot commissioning: automatizing the currently manual order picking procedure....
Conference Paper
Full-text available
The upcoming new generation of autonomous vehicles for transporting materials in industrial environments will be more versatile, flexible and efficient than traditional AGVs, which simply follow pre-defined paths. However, freely navigating vehicles can appear unpredictable to human workers and thus cause stress and render joint use of the availabl...
Article
We address the problem of human detection from heavy mobile machinery and robotic equipment operating at industrial working sites. Exploiting the fact that workers are typically obliged to wear high-visibility clothing with reflective markers, we propose a new recognition algorithm that specifically incorporates the highly discriminative features o...
Article
Full-text available
Autonomous navigation in real-world industrial environments is a challenging task in many respects. One of the key open challenges is fast planning and execution of trajectories to reach arbitrary target positions and orientations with high accuracy and precision, while taking into account non-holonomic vehicle constraints. In recent years, lattice...
Research
Full-text available
IEEE International Conference on Robotics and Automation (ICRA) - Workshop on Robotic Hands, Grasping, and Manipulation, 2015.