
Analysis and Prediction of Performance for Evolving Architectures

E.M. Eskenazi, A.V. Fioukov, D.K.
Hammer

Department of Mathematics and
Computing Science, Technical University

of Eindhoven,
 Postbox 513, 5600 MB Eindhoven,

 The Netherlands
{e.m.eskenazi, a.v.fioukov,

d.k.hammer}@tue.nl

H. Obbink
Philips Research

Professor Holstlaan 4
5656 AA Eindhoven

The Netherlands
Henk.obbink@philips.com

B. Pronk
Philips Semiconductors
Professor Holstlaan 4
5656 AA Eindhoven

The Netherlands
ben.pronk@philips.com

Abstract

This paper describes a method for the “Analysis and
Prediction of Performance for Evolving Architectures”
(APPEAR). The method aims at performance estimation
of adapted parts of software product families during the
architecting phase. It combines both structural and
statistical techniques in a flexible way, that is, it allows
choosing which part of the component is structurally
described, modeled and simulated, and which part is
statistically evaluated. The method was exemplified by
case studies in the Consumer Electronics and the Medical
Imaging System domains. The results of the initial
validation of the method are encouraging.

1. Introduction

Early estimation of software performance makes it
possible to verify the feasibility of products of a product
family before their implementation, thus saving money
and effort otherwise devoted to developing potentially
infeasible products. The possibility to evaluate the
software performance (e.g. response time, latency,
average CPU utilization, execution time) at an early stage
can help, for instance, in evaluating the impact of
architectural decisions beforehand and in quickly
selecting the most appropriate one.

Software architects need thus a method to estimate the
performance of software early, during the architecting
phase. This method should be a) fast in comparison to
software implementation and subsequent measurements,
b) simple so that less time and fewer human resources are
required, c) general so that it can be applied to any type of
software, and d) accurate in order to provide useful
results.

To date, two types of methods were used for
performance evaluation: a) purely simulation-based
models and b) mathematical models (e.g., queuing
networks [18], [19]). Both types turned out to be
unsuitable for evaluating the performance of complex
embedded systems. The first type of the methods suffers
from the combinatorial explosion of details, whereas the
second often makes too specific assumptions about the
system under consideration. These assumptions do not
hold for many systems, and thus models based on these
assumptions can be both inaccurate and inadequate.

The APPEAR (Analysis and Prediction of
Performance for Evolving Architectures) method [7], [8]
combines the best elements of several existing estimation
techniques. The method employs both simulation and
statistical models. The former describe the evolving
performance-relevant parts that are not yet implemented.
The latter are used to abstract from details that are not
performance-relevant and to model those parts of a
system that remain unchanged for a long time during the
evolution of components. Abstracting from irrelevant
details helps one reduce the modeling complexity. This
mix is supported by the fact that fewer and fewer
software-intensive systems are currently being developed
from scratch.

This paper is structured as follows. Section 2
summarizes related work. Section 3 presents the
requirements for the APPEAR method. Section 4
describes the basic constituents and essential steps of the
method. Section 5 presents the application of the
APPEAR method to performance prediction of a
component of a Medical Imaging software system.
Section 6 describes the application of APPEAR to the
Teletext decoder of a modern TV set. Finally, Section 7
summarizes the paper and sketches the future work.

2. Related work

Significant research effort has been taken in the
performance-engineering domain. The main
investigations were aimed at the development of methods
for the early performance estimation of software-intensive
systems, and at defining the theoretical basis for software
performance engineering [18].

Classical approaches [18], [19] to performance
estimation use queuing network models, derived from the
structural description of the architecture and performance-
critical use cases. Other approaches concern specific
architecture description styles [2]. In [21], Wu et al. use
pre-calibrated performance models of software
components to predict the performance of component
assemblies. These models abstract from performance
irrelevant details and use a component-based modeling
language (CBML) for the specification. These models are
also based on layered queuing networks. In [1], UML
design diagrams are translated into queuing networks. Liu
et al. [16] abstract from irrelevant details of complex
applications and build performance models from a design
description. These models input the results of simple
benchmarks and yield the performance estimates.

The aforementioned modeling techniques treat the
behavior of a component in a restrictive manner, as they
describe it in terms of queuing networks that are not
always an adequate behavior description formalism.
Moreover, the availability of the entire code of software
and figures about its resource consumption and overhead
are often unrealistic. These techniques are hardly
applicable to modern component-based software, as they
neglect input parameters and consider scenarios instead of
components.

A well-known practice for early performance analysis
is the construction of a simulation model that captures the
performance-critical parts of the software. The results
from such a model, executed using different parameters,
are either estimates for performance attributes or
intermediate data that can be used for building other
mathematical models. For instance, an interesting
approach is proposed in [12]. The executable prototype (a
simulation model) generates traces that are expressed in a
specific syntax (angio-traces). These traces are used for
building performance prediction models, based on layered
queuing networks.

In [3], Avritzer et al. describe the early estimation of
the performance impact of a small change in a rule-based
system. A simulation model is constructed to estimate the
CPU utilization, based on rule firings (inter-arrival times).
The results of this simulation are compared with the
measurements taken from the system before the change to
estimate the performance degradation. This degradation is

expressed in terms of unprocessed alarms (tasks) in a
system due to long task queues and limited CPU capacity.

Stochastic Petri nets are also widely used for the
evaluation of software performance. An approach to the
generation of Petri nets from UML collaboration and
statechart diagrams is proposed in [14]. These Petri nets
are then used to estimate different performance
characteristics. Gilmore et al. propose in [10] to use
colored stochastic Petri nets (PEPA nets) for the
performance modeling of Web-services. Lopez-Grao et
al., in [17], and Canevet et al., in [6], translate UML
activity diagrams to Petri nets to be used for performance
analysis.

In [13], Jain advocates the use of measurements,
simulation, and analytical modeling to analyze the
performance of computer systems. The results provided
by any of these techniques should not be trusted until
confirmed by at least one of the other techniques.

An approach presented in [11] is similar to the one
presented in this paper. This approach also considers the
use of linear regression for performance prediction.

Another inspiration source for our method was the
approach described in [5]. Bontempi et al. suggest using
linear and non-linear regression (e.g., lazy learning [4]) to
predict the performance of embedded software. The
models are calibrated using performance-relevant
parameters of both software and hardware and the values
of performance measurements.

However, both approaches [5] and [11] do not fully
support the performance estimation of component-based
software at the architecting phase, as the entire program
code must be available. We extended these approaches
such that the performance models are built on the basis of
architectural and design specifications, without requiring
the entire code to be available.

3. Requirements

The aim of the “Analysis and Prediction of
Performance for Evolving Architectures” (APPEAR)
method is to support architects in analyzing the
performance of future versions of components during the
early phases of product development. By future versions
of components we mean adapted versions of existing
software or new components that are “sufficiently
similar” (see section 4.4) to the existing ones to allow the
use of statistical prediction techniques.

We interviewed a number of software architects about
the requirements to a valid performance prediction
method. The most essential requirements are the
following:

1. Allow performance prediction of the adapted
components to enable

Early estimation of the impacts of
architectural decisions on the performance,
Finding the appropriate architectural
solutions for performance-critical
components, and
Comparison of different architectural
solutions with respect to the performance.

2. Provide insight into the performance-relevant
behavior of the components by means of

Identification of performance critical
parameters,
Construction of behavioral models
(simulation models) of the components, and
Localization of performance bottlenecks.

3. Ensure a reasonable level of accuracy for
performance prediction. The required accuracy level
is product dependent. Our survey revealed that
architects consider an accuracy of 50% to 80% as a
definite improvement with respect to the currently
used methods.

4. Obtain performance predictions fast in comparison to
the time needed for the implementation of a new
component and subsequent measurements.

4. Description of the APPEAR method

This section sketches the APPEAR method and
enumerates a few assumptions that enable its application.

4.1. Signature type and signature instance

The signature of a component is a set of parameters
that provide sufficient information for performance
estimation. In this paper, the performance is considered in
terms of response and execution times. In principle, the
APPEAR method can also be applied for other
performance metrics that relate to resource consumption
(e.g., average memory demand).

We treat the performance metric P as a function over
the signature:

:P S C . (1.1)

In this formula, 1 2, ,..., NS S S S is a signature type,

a vector with real elements iS , and C is a performance

metric such as response time. An example of the signature
type of a hypothetical software component is as follows:

S = {Number of memory allocation calls, Number
of disk calls, Number of network calls}

The signature type typically correponds with
parameters (input parameters, service calls, etc.) that have
a serious influence on the performance. It is important to

distinguish between the signature type (see above) and a
signature instance that contains actual values for a
concrete use-case, e.g. s = {132, 57, 21}.

4.2. Essence of the method

This section overviews the basic principles of the
APPEAR method.

The APPEAR method suggests the following view of
the software stack. The software comprises two parts (see
Figure 1): (1) components and (2) a Virtual Service
Platform (VSP). The first consist of evolving components
that are specific for different products of a product family,
whereas the second encompasses stable components that
do not significantly evolve during the software lifecycle
of a product.

Components

 Environment

VSP

ResponsesStimuli

Services Interactions

1Sv NSv

Figure 1. APPEAR view of the software stack

Each use case of interest is represented by a pair
stimulus-response. As a result of an input stimulus, a
component can invoke several VSP services to perform
the necessary functionality. After completing these calls,
the component produces a response to the environment.
The timing dependency between the stimulus and
response can be characterized by some performance
measure.

The APPEAR method constructs a prediction model,
which is fitted to the measurements from the existing
component(s) by means of regression techniques [4], [9],
[15], and [20]. This model reflects the correlation
between the performance metric of interest and signature
instances of the existing components. The correlation can
be used to extrapolate the performance of adapted
components during the architecting phase, as the existing
and adapted components use the common VSP and share
the same signature type.

To gain insight into the execution architecture and its
performance, it is also advisable to construct a high-level
simulation model of the component(s) under
consideration. Such a model should capture performance-
relevant properties of the component(s).

The APPEAR method includes two phases: (1)
calibrating the prediction model on the existing
components and (2) applying this prediction model to the
adapted component to estimate its performance.

4.2.1 Phase 1. First, it is necessary to identify the
signature type and construct a statistically valid prediction
model. A prediction model is said to be statistically valid
if it satisfies a number of statistical tests indicating its
quality. The prediction model needs to be calibrated on
the signature instances. This can be accomplished
according to the following procedure (see Figure 2):

Prediction model

S1 S2 S3 S4 S5

4. Initial signature
type identification

3. Measurements

6. Signature
instance
extraction

7. Calibration

5. Model construction

1. Use cases definition

8. Modification
of simulation
model and
signature type

FILE

IMAGE

RUN

command
/ service

calls

command
/ service

callscommand
/ service

calls

command
/ service

calls

command
/ service

calls

command
/ service

calls

command
/ service

calls

command
/ service

calls

command
/ service

calls

Existing
component(s)

 Simulation model

2. VSP definition

Figure 2. Calibration of the prediction model

Step 1, Use cases definition. Based on the requirements
specification, the architect chooses a relevant set of use
cases. These use cases are used to extract signature
instances, i.e. obtaining the values of the signature
parameters.
Step 2, Virtual Service Platform identification. Based
on the architectural specification, the software stack is
subdivided into two parts: components and VSP.
Step 3, Measurements. For the use cases chosen in step
1, the performance of the existing component is
measured, for example, by instrumenting and profiling
the code. The collected measurements are treated then as
the values of a dependent variable, a variable that needs
predicting.
Step 4, Identification of the initial signature type. The
initial set of performance relevant parameters is deduced
from the analysis of execution profiles, architectural
documentation, etc.
Step 5, Construction of the initial simulation model.
Based on the available architecture description, a
simulation model needs to be built to extract the signature
instances, i.e. to determine the values of the performance
relevant parameters that can be observed at architecture
level.

Step 6, Signature instance extraction. The simulation
model calculates one signature instance per use case for
the defined set of the use cases. These signature instances
are then stored together with the corresponding
measurements obtained during step 3.
Step 7, Prediction model calibration. The results of
steps 3 and 6 form the calibration data for building a
model that predicts the performance, depending on the
signature instance. Each sample of this data corresponds
to a use case.
Step 8, Tuning of simulation model and signature
type. It can be the case that the prediction model is not
statistically valid during step 7. This means that either the
signature type is chosen wrongly or the simulation model
misses performance relevant details. Steps 6-8 must
therefore be repeated until the prediction model becomes
statistically valid.

4.2.2 Phase 2. After having the prediction model
calibrated, the performance can be predicted for adapted
components according to the following procedure (see
Figure 3):

Prediction model
S1 S2 S3 S4 S5

Simulation model

Adapted
component

11. Prediction

10. Signature instance
extraction (adapted)

9. Use cases
definition (adapted)

FILE

IMAGE

RUN

command
/ service

calls

command
/ service

callscommand
/ service

calls

command
/ service

calls

command
/ service

calls

command
/ service

calls

command
/ service

calls

command
/ service

calls

command
/ service

calls

Figure 3. Performance prediction for the adapted
component

Step 9, Definition of use cases for an adapted
component. For the adapted component, the architect
determines a set of use cases that needs performance
prediction. According to these use cases, the initial
simulation model of the existing component is modified
(if needed), with the signature type kept intact.
Step 10, Signature instance extraction for the adapted
component. By executing the simulation model, the
signature instance is calculated for the use cases defined
in step 9. This signature instance can be used for
predicting the performance, if the adapted component is
sufficiently similar (see section 4.4) to the existing one.

Step 11, Predicting the performance of the adapted
component. By applying the prediction model calibrated
at phase 1 to the signature instance obtained during step
10, the performance of the adapted component is
estimated. The architect must further interpret this
estimate with respect to performance requirements.

4.3. Assumptions

The following assumptions must be fulfilled to apply
the APPEAR method:

1. The performance of a component depends only on
its internals and VSP, but not on other
components.

2. The services of the VSP are independent. There
are no interactions that significantly influence the
performance, e.g. via exclusive access to shared
resources.

3. The order of service calls does not matter.
4. The adapted and existing components are similar

(see section 4.4). Otherwise, the prediction can
fail, because the observation data are not
applicable anymore.

5. The product (family) evolves gradually. During
the evolution of a product family, a significant
portion of the software remains unchanged.

6. A sufficient number of components are available
for training the prediction model.

7. The software is instrumented to collect
performance measurements.

4.4. Similarity of software components

The accuracy and trustworthiness of predictions
obtained using the APPEAR method are questionable. An
adapted component may have different behavior than the
existing ones; e.g., it may use the VSP in a different
manner. As a result, the prediction model may provide
incorrect results. Moreover, the architects do not have any
measurements to validate these predictions, as the
component is not implemented yet. Consequently, they
need other means to judge the trustworthiness and
accuracy of the estimates.

We define the notion of component similarity as
follows:

The existing and adapted components are similar if the
performance of the adapted component can be predicted
with a known accuracy and confidence using the
prediction model fitted on the existing component.

The architects can ascertain the similarity of existing
and adapted components by the following formula:

Similar ST SI IC (1.2)
In formula (1.2), Similar is a Boolean variable that

indicates whether the components are similar or not. The

IC, ST, and SI Boolean variables denote the three
similarity criteria, as explained in Table 1. These
similarity criteria are discussed in the subsequent
sections.

Table 1. The three similarity criteria

Variable Aspect Meaning
ST Signature

types
The signature types are the
same for the existing and
adapted components.

SI Signature
instances

The signature instances
extracted from the
simulation model of the
adapted component are close
to the ones from the existing
component.

IC Internal
component
calculations

The internal calculations are
the same for the existing and
adapted components.

4.4.1 Signature types. The existing and adapted
components must have exactly the same signature type.
The prediction model can only input the signature
parameters that were used for its calibration. These
signature parameters are determined on the basis of the
existing component.

4.4.2 Signature instances. Trustworthy predictions can
only be obtained for the signature instances that are close
to the ones used to fit this prediction model [15], [20]. It
is therefore necessary to check the distance between the
signature instances generated for the existing and adapted
component.

4.4.3 Internal component calculations. It is not always
the case that the most of performance is determined by
the VSP. Both existing and adapted components can have
timing dependencies or CPU-intensive internal
calculations that contribute to the overall performance.
These internal calculations and timing dependencies may
be component-specific.

5. Performance prediction for Medical
Imaging software system

This section describes our experience in building
APPEAR models for prediction of the response time of
the “Reviewing” component of a Medical Imaging
system.

5.1. Identification of the Virtual Service Platform

After selecting the most relevant use cases, the
architects assisted us in the identification of a VSP (see
step 2 from section 4.2.1). According to the structure of
the "Reviewing" component (see Figure 4), the VSP
includes the following subcomponents: "Graphics",
“Image Board Controller”, and “Database”.

User Interface

Viewing
modules

Graphics Database

Service
Manager

Image
Board

Controller

Stable
(Service Platform)

Variable

Figure 4. Virtual Service Platform (VSP) of the
Medical imaging component.

These subcomponents are a) defined by the underlying
hardware and b) common for other components (e.g.,
image acquisition). The subcomponents above this level
are regularly improved, and, thus, belong to the variable
part.

5.2. Signature extraction
The examined use cases dealt with images or image

sets. An image is a single medical image of a particular
patient. An image set is a collection of images obtained
between the activation and termination of an acquisition
process. A file contains all image sets of a patient.

The most time-consuming calls to the VSP were the
main candidates for signature parameters. The execution
time of most time consuming calls was directly related to
the number of images or to the number of image sets.
Some calls to the “Image Board Controller” and to the
“Graphics” subcomponents were also the most time
consuming ones. Both types of calls concerned updating
the state of the image processing hardware (“Update”)
and graphics (“Paint”) that overlay the medical images.

Finally, the signature type can be represented as a
vector consisting of four elements:

Signature = {#Image Sets, #Images, #Update,
#Paint}

5.3. Construction of simulation model

This section describes steps 5 and 8 of the APPEAR
method (see section 4.2.1). The simulation model inputs
external parameters of the software: the number of
images, the attributes of the images, user commands, etc.

When a user command is handled, the simulation model
generates a signature instance.

The behavior of the “Reviewing” component is
described in terms of state machine (see Figure 5).

Set_Image_mode
Set_Mode

Set_File_mode

File_Set_mode

Image_Set_mode

Set_command

File_command File_Mode

Image_command

Image_mode

File_Image_mode

Image_File_mode

Figure 5. State machine describing the system
behavior

The system can function in three modes: “Image”,
“Set”, and “File”. In these modes, an image, image set or
file are displayed and browsed, respectively. In the
“Image” mode, a single image is displayed. In the other
two modes, an image set and a file are displayed in an
interleaved manner.

Some user commands trigger the switching between
modes. Other user commands can be invoked while the
system is in a particular state. Both the execution of a
command in a certain state and the change of the state
result in generating the signature instance.

5.4. The prediction model
This section describes the construction and validation

of the prediction model for the “Reviewing” component.
The prediction model was constructed by linear
regression (using the S-PLUS tool [15]) and calibrated on
signature instances generated by the simulation model.
The model was validated in the following way: ten
arbitrarily chosen points were taken out from the
measurements, and the model was calibrated on the
remaining data points. First, the quality of the model was
assessed by analyzing statistical characteristics of the
model such as the 2R -coefficient, maximal absolute
error, and a few residual diagnostic plots. Second,
response times for the excluded points were predicted and
compared with the measurements.

Due to the peculiarities of the “Reviewing”
component, the number of image sets and the number of
images could not be varied independently, but only
according to the following expression:

1, # 1

1, # 1

ImageSets if Images

Images if ImageSets
 (1.3)

As a result of this dependency, the prediction model
had a complex form:

0 1 2

3

0 1 2

3

#

1

#

1

Images Update

Paint, if Images
Response

ImageSets Update

Paint, if ImageSets

 (1.4)

In formula (1.4), i and i denote the two sets of

linear regression coefficients.
For both cases, the prediction model exhibited high

prediction quality: residual distribution was close to the
normal distribution, and 2R -coefficients had the values
of 0.94 and 0.99, respectively.

-110 -70 -30 10 50
Prediction Error

0.000

0.002

0.004

0.006

0.008

0.010

P
ro

ba
bi

lit
y

de
ns

ity

Figure 6. Prediction error distribution

The first case provided the average relative
error E 0.0151 . The prediction error distribution is
depicted in Figure 6.

For the second case, the error distribution was similar,
and E 0.0865 .

The obtained results have significantly higher quality
than for the previous experiment described in [7] due to
(1) finding the dependency between the number of images
and the number of image sets and (2) refining the
prediction model accordingly.

6. Performance prediction for Consumer
Electronics software

We applied the APPEAR method to the existing and
adapted versions of the Teletext decoder of a modern TV
set. The execution time needed to acquire Teletext data by
the adapted version of the Teletext decoder was estimated
using the prediction model calibrated on the existing
version of the Teletext decoder. The predictions were
then compared to the measurements from the

implementation of the adapted Teletext decoder. More
details about this experiment can be found in [8].

6.1. Overview of the Teletext decoder

Each Teletext transmission [22] comprises packets that
together can form pages. Some packets are not directly
related to a particular page, but rather to a magazine or a
broadcast service. Different types of packets are discerned
by packet numbers, which lie in a range 0 to 31. Packets
with numbers greater than 24 are additionally discerned
with designation codes: numbers in the range 0 to 15.
Depending on the designation code, the function of a
particular packet may change.

Teletext packets are transmitted during Vertical
Blanking Intervals (VBI). In each VBI, up to sixteen
packets can be transmitted.

All packets received during a single VBI must be
processed before the next one. This fact introduces a soft
deadline for the duration of a VBI that equals 20 ms.

There are several presentation levels of Teletext data–
1, 1.5, 2.5, and 3.5– that determine the information
transmitted by a broadcaster and enhancements that can
be made to a Teletext page. In addition, Teletext can
support two types of navigation: (1) First Level One
Facilities (FLOF) and (2) Table of Pages (TOP). Both
TOP and FLOF implement hypertext-like navigation.

The simplified structure of the Teletext sub-system and
its dependencies on the environment are sketched in
Figure 7.

Teletext
Acquisition

Packet
Decoding

Real-time
OS

Page
Storage

Teletext
Displaying

Service calls VSP level

Figure 7. Structure of the Teletext subsystem

The Teletext acquisition component, a part of the
Teletext sub-system, builds upon the VSP formed by the
following components: the real-time operating system, the
Packet Decoding component, and the Page Storage
component.

The arrows in Figure 7 depict the ‘uses’ relationship.
The dashed line corresponds to the abstraction level of the
VSP. The bold rectangles denote the components that are
relevant to the performance analysis of the Teletext
acquisition component. The normal rectangles denote the

components that do not influence Teletext acquisition
(e.g., Teletext Displaying component).

After acquiring all data packets arriving in a single
VBI, a high priority task decodes and stores the packets.
This task will be referred to as the Teletext VBI routine in
the rest of this paper. The task is implemented within the
Teletext acquisition component as its internal operation. It
uses the service calls provided by the Real-time OS,
Packet Decoding and Page Storage components. Teletext
packets are decoded by the Packet Decoding component
and then stored within the Page Storage component in a
local page cache. They are moved to a global page store
when all the packets of a particular page are received.

6.2. Experiment scheme

Two versions of the Teletext acquisition component
were considered. The first one supports Teletext
presentation level 1.5 and the FLOF navigation only,
whereas the second one supports Teletext presentation
level 2.5 and both TOP and FLOF navigation systems.
We will hereinafter refer to these components as the
Teletext 1.5 and Teletext 2.5 acquisition components,
respectively.

The aim of the experiment was to predict the execution
time of the Teletext VBI routine (see section 6.1) of the
Teletext 2.5 acquisition component using the prediction
model calibrated on the Teletext 1.5 acquisition
component. It was required that the maximal prediction
error did not exceed 1 ms, because the Teletext VBI
routine had a soft deadline of 20 ms.

The experiment was conducted as follows. First, we
applied the first phase of the APPEAR method to the
Teletext 1.5 acquisition component. We then predicted
the performance of the Teletext 2.5 acquisition
component by constructing the corresponding simulation
model and using the already calibrated prediction model.
Finally, we compared the predictions with the actual
measurements from the implementation of the Teletext
2.5 component.

6.3. Definition of use cases

The use case considered was watching a TV channel
that carried Teletext information. This means that the TV
set performed in a steady state and was collecting the
Teletext data without any interference. Thirty use cases
were chosen arbitrarily among the real broadcasts
transmitted via cable to drive both the implementation
and the simulation model.

6.4. Simulation model for the Teletext 1.5 decoder

The simulation model mimics the behavior of the
Teletext acquisition component. Most of the functionality
of this component is implemented within the Teletext VBI
routine (see section 6.1). This routine accepts the packets
received in a certain VBI and invokes the corresponding
packet processing routine for each packet.

WaitingForNextField

[AllPacketsProcessed]

ProcessNextPacket
entry/mag=DecodeMag(Packet_Data);
packetn=DecodePacketNumber(Packet_Data);

ProcessHeaderPacket

[packetn==0]

ProcessBodyPacket

[packetn>=1
&&packetn <=28]

ProcessPacket29

[packetn==29]

ProcessPacket830

[error ||
(packetn==30
&&mag!=0)]

DropPacket

[!AllPacketsProcessed]/Packet_Data=getNextPacket()

exit/UpdateSignature() exit/UpdateSignature() exit/UpdateSignature()

exit/UpdateSignature()exit/UpdateSignature()

[packetn==30
&&mag==0)]

Figure 8. The high-level behavior of the Teletext
acquisition routine

Figure 8 presents the UML state chart that describes
the behavior of the Teletext VBI routine. The packet
processing routine corresponds to the ProcessNextPacket
composite state. Both packet and magazine numbers of
recently-arrived packets are decoded. Depending on these
numbers, further processing is delegated to one of the
following states: ProcessHeaderPacket,
ProcessBodyPacket, DropPacket, ProcessPacket29, or
ProcessPacket830. Notice that these states correspond to
functionality executed higher in the call hierarchy than
the VSP level. The invocations of service calls are not
depicted in Figure 8 for the sake of simplicity.

The simulation model inputs the descriptions of events
that correspond to packet arrivals in a particular VBI. It
calculates a signature instance for this VBI, based on the
packets received.

Because the long-term history proved to significantly
influence the performance of the Teletext acquisition, it
also had to be modeled. The Page Storage component

maintains this long-term history by tracking all packets
and pages received after the channel switch.

Notice that the Page Storage component belongs to the
VSP. Although the pure APPEAR method, described in
section 4, models explicitly only components that do not
belong to the VSP, this component also had to be
modeled explicitly to obtain a statistically valid prediction
model.

6.5. Signature type

The identified signature type accounts for different
types of packets, their encoding, the way they are stored,
and etc. The signature type consists of thirteen signature
parameters in total. Notice that the value of one signature
parameter had to be extracted from the simulation model
of the Page Storage component (a part of the VSP),
whereas the rest of the signature parameters were
extracted from the simulation model of the Teletext
acquisition component.

6.6. Calibration of prediction the model

The linear regression tool S-Plus [15] was used to
calibrate the prediction model. The prediction model has
the following structure:

13

0
1

i
i

y s . (1.5)

In formula (1.5), y is the predicted execution time;

i are linear regression coefficients; iS are signature

parameters (see section 6.5).
After calibrating the model (1.5), the following results

were obtained. The multiple 2R -coefficient is 0.974. This
means that the model explains well the variation of the
execution time of the Teletext field routine. Moreover, all
regression coefficients proved to be significant, with a
significance level of 0.05.

6.7. Simulation model for the Teletext 2.5 decoder

The simulation model of the Teletext 2.5 acquisition
component resembles the one of the Teletext 1.5
component (see Figure 8). The differences between the
two components amount to the following:
1. Handling of packets 27 of a page with a non-decimal

page number (e.g. Magazine Inventory Page).
2. Handling of a packet 28 with a designation code

greater then one, or packet 27 with a designation
code greater then three.

The modification of the Teletext 1.5 simulation model
to obtain a simulation model for Teletext 2.5 took only
one man-day.

6.8. Results

The implementation and simulation model of the
Teletext 2.5 decoder were driven by the same broadcasts.
The predictions were compared to the measurements from
the implementation.

-0.002 -0.001 0.000 0.001 0.002 0.003 0.004 0.005 0.006

Prediction errors

0

200

400

600

800

1000

1200

P
ro

ba
bi

lit
y

de
ns

ity
Figure 9. Prediction errors for entire broadcasts

The probability density and histogram of the
prediction errors are shown in Figure 9, which covers all
acquired VBI’s. In this plot, the y-axis is the probability
density, whereas the x-axis is the prediction error
measured in seconds.

Figure 9 demonstrates that the bulk (more than 98%)
of prediction errors lies within a 1 ms range for the
entire broadcasts. This fact means that the required
accuracy (see section 6.2) is achieved for 98% of VBI’s.
Please notice that this range widens, if one considers
packets specific for Teletext 2.5 and TOP navigation
only.

Predictions made for the entire broadcasts (see Figure
9) suffer an average relative error of only 11%. For VBI’s
that are specific for Teletext presentation level 2.5 and the
TOP navigation only, this error increased to 16%.

7. Conclusions

The APPEAR method, presented in this paper, allows
the early estimation of the performance of an adapted
component, based on the measurements from and
simulation model of the existing component(s).

We exemplified the method by two industrial case
studies. First, we applied it to a medical imaging
software. The prediction quality was checked by cross-
validation, i.e., a part of measurements was used to
calibrate the prediction model, whereas the other was
used to make predictions for. Second, we applied the
method to two versions of the existing Teletext software.

One version was used to construct and calibrate the
prediction model, whereas the other was used to predict
the performance. In both cases, the predictions were
compared with the measurements to ascertain the quality
of the prediction.

The results of the APPEAR method validation
appeared to be positive. The prediction accuracy was
acceptable with respect to the requirements of the
architects (e.g., see section 6.2).

We consider the following points for further
investigation:

1. Performance estimation for component
compositions. It must be possible to estimate the
performance of a component composition, given
the performance models of the components.

2. Evolution of the platform. Both components and
platforms can evolve. During this evolution, it is
important to maintain the predictability of
performance.

8. Acknowledgment

The work presented in this paper was conducted within
the AIMES project (EWI.4877) and funded by STW.

We are grateful to Sjir van Loo from Philips Research
Laboratories for constructive discussions about the
APPEAR method. We would also like to thank Rob van
Ommering, Chritiene Aarts, Wim van der Linden, Marc
Stroucken, and Pierre van de Laar from Philips Research
Laboratories for their technical support.

9. References

[1] A. Alsaadi “A Performance Analysis approach based on the
UML class diagram”, In proceedings of the 4th International
Workshop on Software and Performance (WOSP), USA, 2004.
[2] F. Aquilani, S. Balsamo and P. Inverardi, "An Approach to
Performance Evaluation of Software Architectures", Research
Report, CS-2000-3, Dipartimento di Informatica Universita Ca'
Foscari di Venezia, Italy, March 2000.
[3] A.Avritzer, J.P. Ros, E.J. Weyuker “Estimating the CPU
utilization of a rule-based system”, In proceedings of the 4th

International Workshop on Software and Performance WOSP,
California, USA, 2004.
[4] G. Bontempi, “Local Learning Techniques for Modeling,
Prediction and Control”, PhD thesis, IRIDIA- Universite’ Libre
de Bruxelles, Belgium,1999.
[5] G. Bontempi, W. Kruijtzer, “A Data Analysis Method for
Software Performance Prediction”, In the proceeding of DATE
2002 on Design, automation and test in Europe, France, 2002.
[6] C. Canevet, S.Gilmore, J. Hillston, L. Kloul, P. Stevens
“Analysing UML 2.0 activity diagrams in the software
performance engineering process”, In proceedings of the 4th

International Workshop on Software and Performance WOSP,
California, USA, 2004.

[7] E.M. Eskenazi, A.V.Fioukov, D.K.Hammer, H.Obbink, B.
Pronk, Analysis and Prediction of Performance for Evolving
Architectures, In Proceedings of Workshop on Software
Infrastructures for Component-Based Applications on Consumer
Devices, Lausanne, Switzerland, September 2002.
[8] E.M. Eskenazi, A.V.Fioukov, D.K.Hammer, Performance
Prediction for Industrial Software with the APPEAR method, In
proceedings of STW PROGRESS workshop, Netherlands, 2003.
[9] J.H. Friedman, “Multivariate Adaptive Regression Splines”,
Tech. Report 102, Department of Statistics, Stanford University,
USA, August 1990.
[10] S. Gilmore, J. Hillston, L. Kloul, M. Ribaudo “Software
performance modeling using PEPA nets”, In proceedings of the
4th International Workshop on Software and Performance
(WOSP), USA, 2004.
[11] P. Giusto , G. Martin , E. Harcourt, Reliable estimation of
execution time of embedded software, Proceedings of the DATE
2001 on Design, automation and test in Europe, Germany, 2001.
[12] C.E. Hrischuk, C.M. Woodside and J.A. Rolia, "Trace
Based Load Characterization for Generating Software
Performance Models", IEEE Trans. on Software Engineering,
Vol. 25, Nr. 1, pp 122-135, Jan. 1999.
[13] R. Jain, The art of computer systems performance analysis,
Techniques for Experimental Design, Measurement, Simulation
and Modeling, John Wiley & Sons, 1991.
[14] P. King and R. Pooley, “Derivation of Petri Net
Performance Models from UML Specifications of
Communications Software”, Proc. 11th Int. Conf. on Tools and
Techniques for Computer Performance Evaluation (TOOLS),
Schaumburg, USA, 2000.
[15] A. Krause, M. Olson, “The basics of S-Plus”, 3rd Edition,
Springer Verlag, 2002.
[16] Y. Liu, A. Fekete, I. Gorton “Predicting the performance of
middleware-based applications at the design level”, In
proceedings of the 4th International Workshop on Software and
Performance (WOSP), USA, 2004.
[17] J. P. Lopez-Grao, J. Merseguer, J. Campos “From UML
Activity Diagrams to stochastic Petri nets: application to
software performance engineering”, In proceedings of the 4th

International Workshop on Software and Performance (WOSP),
USA, 2004.
[18] C. Smith and L. Williams, “Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software”,
Addison-Wesley, 2001.
[19] B. Spitznagel and D. Garlan, “Architecture-based
performance analysis”, in Proceedings of 10th International
Conference on Software Engineering and Knowledge
Engineering, Knowledge Systems Institute, 1998.
[20] N. A. Weiss, “Introductionary Statistics”, Addison-Wesley,
1995.
[21] X. Wu, M. Woodside “Performance Modeling from
Software Components”, In proceedings of the 4th International
Workshop on Software and Performance (WOSP), USA, 2004.
[22] ETS 300 706: “Enhanced Teletext Specification”.

