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Abstract

This paper describes a method for the “Analysis and 
Prediction of Performance for Evolving Architectures” 
(APPEAR). The method aims at performance estimation 
of adapted parts of software product families during the 
architecting phase. It combines both structural and 
statistical techniques in a flexible way, that is, it allows 
choosing which part of the component is structurally 
described, modeled and simulated, and which part is 
statistically evaluated. The method was exemplified by 
case studies in the Consumer Electronics and the Medical 
Imaging System domains. The results of the initial 
validation of the method are encouraging.

1. Introduction 

Early estimation of software performance makes it 
possible to verify the feasibility of products of a product 
family before their implementation, thus saving money 
and effort otherwise devoted to developing potentially 
infeasible products. The possibility to evaluate the 
software performance (e.g. response time, latency, 
average CPU utilization, execution time) at an early stage 
can help, for instance, in evaluating the impact of 
architectural decisions beforehand and in quickly 
selecting the most appropriate one. 

Software architects need thus a method to estimate the 
performance of software early, during the architecting 
phase. This method should be a) fast in comparison to 
software implementation and subsequent measurements, 
b) simple so that less time and fewer human resources are 
required, c) general so that it can be applied to any type of 
software, and d) accurate in order to provide useful 
results. 

To date, two types of methods were used for 
performance evaluation: a) purely simulation-based 
models and b) mathematical models (e.g., queuing 
networks [18], [19]). Both types turned out to be 
unsuitable for evaluating the performance of complex 
embedded systems. The first type of the methods suffers 
from the combinatorial explosion of details, whereas the 
second often makes too specific assumptions about the 
system under consideration. These assumptions do not 
hold for many systems, and thus models based on these 
assumptions can be both inaccurate and inadequate. 

The APPEAR (Analysis and Prediction of 
Performance for Evolving Architectures) method [7], [8] 
combines the best elements of several existing estimation 
techniques. The method employs both simulation and 
statistical models. The former describe the evolving 
performance-relevant parts that are not yet implemented. 
The latter are used to abstract from details that are not 
performance-relevant and to model those parts of a 
system that remain unchanged for a long time during the 
evolution of components. Abstracting from irrelevant 
details helps one reduce the modeling complexity. This 
mix is supported by the fact that fewer and fewer 
software-intensive systems are currently being developed 
from scratch.  

This paper is structured as follows. Section 2 
summarizes related work. Section 3 presents the 
requirements for the APPEAR method. Section 4 
describes the basic constituents and essential steps of the 
method. Section 5 presents the application of the 
APPEAR method to performance prediction of a 
component of a Medical Imaging software system. 
Section 6 describes the application of APPEAR to the 
Teletext decoder of a modern TV set. Finally, Section 7 
summarizes the paper and sketches the future work. 



2. Related work 

Significant research effort has been taken in the 
performance-engineering domain. The main 
investigations were aimed at the development of methods 
for the early performance estimation of software-intensive 
systems, and at defining the theoretical basis for software 
performance engineering [18].  

Classical approaches [18], [19] to performance 
estimation use queuing network models, derived from the 
structural description of the architecture and performance-
critical use cases. Other approaches concern specific 
architecture description styles [2]. In [21], Wu et al. use 
pre-calibrated performance models of software 
components to predict the performance of component 
assemblies. These models abstract from performance 
irrelevant details and use a component-based modeling 
language (CBML) for the specification. These models are 
also based on layered queuing networks. In [1], UML 
design diagrams are translated into queuing networks. Liu 
et al. [16] abstract from irrelevant details of complex 
applications and build performance models from a design 
description. These models input the results of simple 
benchmarks and yield the performance estimates.  

The aforementioned modeling techniques treat the 
behavior of a component in a restrictive manner, as they 
describe it in terms of queuing networks that are not 
always an adequate behavior description formalism. 
Moreover, the availability of the entire code of software 
and figures about its resource consumption and overhead 
are often unrealistic. These techniques are hardly 
applicable to modern component-based software, as they 
neglect input parameters and consider scenarios instead of 
components. 

A well-known practice for early performance analysis 
is the construction of a simulation model that captures the 
performance-critical parts of the software. The results 
from such a model, executed using different parameters, 
are either estimates for performance attributes or 
intermediate data that can be used for building other 
mathematical models. For instance, an interesting 
approach is proposed in [12]. The executable prototype (a 
simulation model) generates traces that are expressed in a 
specific syntax (angio-traces). These traces are used for 
building performance prediction models, based on layered 
queuing networks.  

In [3], Avritzer et al. describe the early estimation of 
the performance impact of a small change in a rule-based 
system. A simulation model is constructed to estimate the 
CPU utilization, based on rule firings (inter-arrival times). 
The results of this simulation are compared with the 
measurements taken from the system before the change to 
estimate the performance degradation. This degradation is 

expressed in terms of unprocessed alarms (tasks) in a 
system due to long task queues and limited CPU capacity. 

Stochastic Petri nets are also widely used for the 
evaluation of software performance. An approach to the 
generation of Petri nets from UML collaboration and 
statechart diagrams is proposed in [14]. These Petri nets 
are then used to estimate different performance 
characteristics. Gilmore et al. propose in [10] to use 
colored stochastic Petri nets (PEPA nets) for the 
performance modeling of Web-services. Lopez-Grao et 
al., in [17], and Canevet et al., in [6], translate UML 
activity diagrams to Petri nets to be used for performance 
analysis.

In [13], Jain advocates the use of measurements, 
simulation, and analytical modeling to analyze the 
performance of computer systems. The results provided 
by any of these techniques should not be trusted until 
confirmed by at least one of the other techniques. 

An approach presented in [11] is similar to the one 
presented in this paper. This approach also considers the 
use of linear regression for performance prediction. 

Another inspiration source for our method was the 
approach described in [5]. Bontempi et al. suggest using 
linear and non-linear regression (e.g., lazy learning [4]) to 
predict the performance of embedded software. The 
models are calibrated using performance-relevant 
parameters of both software and hardware and the values 
of performance measurements.  

However, both approaches [5] and [11] do not fully 
support the performance estimation of component-based 
software at the architecting phase, as the entire program 
code must be available. We extended these approaches 
such that the performance models are built on the basis of 
architectural and design specifications, without requiring 
the entire code to be available. 

3. Requirements 

The aim of the “Analysis and Prediction of 
Performance for Evolving Architectures” (APPEAR) 
method is to support architects in analyzing the 
performance of future versions of components during the 
early phases of product development. By future versions 
of components we mean adapted versions of existing 
software or new components that are “sufficiently 
similar” (see section 4.4) to the existing ones to allow the 
use of statistical prediction techniques. 

We interviewed a number of software architects about 
the requirements to a valid performance prediction 
method. The most essential requirements are the 
following: 



1. Allow performance prediction of the adapted 
components to enable 

Early estimation of the impacts of 
architectural decisions on the performance,  
Finding the appropriate architectural 
solutions for performance-critical 
components, and 
Comparison of different architectural 
solutions with respect to the performance. 

2. Provide insight into the performance-relevant 
behavior of the components by means of 

Identification of performance critical 
parameters, 
Construction of behavioral models 
(simulation models) of the components, and 
Localization of performance bottlenecks. 

3. Ensure a reasonable level of accuracy for 
performance prediction. The required accuracy level 
is product dependent. Our survey revealed that 
architects consider an accuracy of 50% to 80% as a 
definite improvement with respect to the currently 
used methods. 

4. Obtain performance predictions fast in comparison to 
the time needed for the implementation of a new 
component and subsequent measurements. 

4. Description of the APPEAR method 

This section sketches the APPEAR method and 
enumerates a few assumptions that enable its application. 

4.1. Signature type and signature instance 

The signature of a component is a set of parameters 
that provide sufficient information for performance 
estimation. In this paper, the performance is considered in 
terms of response and execution times. In principle, the 
APPEAR method can also be applied for other 
performance metrics that relate to resource consumption 
(e.g., average memory demand). 

We treat the performance metric P  as a function over 
the signature: 

:P S C . (1.1) 

In this formula, 1 2, ,..., NS S S S  is a signature type, 

a vector with real elements iS , and C is a performance 

metric such as response time. An example of the signature 
type of a hypothetical software component is as follows: 

S = {Number of memory allocation calls, Number 
of disk calls, Number of network calls} 

The signature type typically correponds with 
parameters (input parameters, service calls, etc.) that have 
a serious influence on the performance. It is important to 

distinguish between the signature type (see above) and a 
signature instance that contains actual values for a 
concrete use-case, e.g. s = {132, 57, 21}. 

4.2. Essence of the method 

This section overviews the basic principles of the 
APPEAR method.  

The APPEAR method suggests the following view of 
the software stack. The software comprises two parts (see 
Figure 1): (1) components and (2) a Virtual Service 
Platform (VSP). The first consist of evolving components 
that are specific for different products of a product family, 
whereas the second encompasses stable components that 
do not significantly evolve during the software lifecycle 
of a product. 

Components

 Environment

VSP

ResponsesStimuli

Services Interactions

1Sv NSv

Figure 1. APPEAR view of the software stack 

Each use case of interest is represented by a pair 
stimulus-response. As a result of an input stimulus, a 
component can invoke several VSP services to perform 
the necessary functionality. After completing these calls, 
the component produces a response to the environment. 
The timing dependency between the stimulus and 
response can be characterized by some performance 
measure. 

The APPEAR method constructs a prediction model, 
which is fitted to the measurements from the existing 
component(s) by means of regression techniques [4], [9], 
[15], and [20]. This model reflects the correlation 
between the performance metric of interest and signature 
instances of the existing components. The correlation can 
be used to extrapolate the performance of adapted 
components during the architecting phase, as the existing 
and adapted components use the common VSP and share 
the same signature type. 

To gain insight into the execution architecture and its 
performance, it is also advisable to construct a high-level 
simulation model of the component(s) under 
consideration. Such a model should capture performance-
relevant properties of the component(s). 



The APPEAR method includes two phases: (1) 
calibrating the prediction model on the existing 
components and (2) applying this prediction model to the 
adapted component to estimate its performance. 

4.2.1 Phase 1. First, it is necessary to identify the 
signature type and construct a statistically valid prediction 
model. A prediction model is said to be statistically valid 
if it satisfies a number of statistical tests indicating its 
quality. The prediction model needs to be calibrated on 
the signature instances. This can be accomplished 
according to the following procedure (see Figure 2): 
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Figure 2. Calibration of the prediction model 

Step 1, Use cases definition. Based on the requirements 
specification, the architect chooses a relevant set of use 
cases. These use cases are used to extract signature 
instances, i.e. obtaining the values of the signature 
parameters. 
Step 2, Virtual Service Platform identification. Based 
on the architectural specification, the software stack is 
subdivided into two parts: components and VSP.  
Step 3, Measurements. For the use cases chosen in step 
1, the performance of the existing component is 
measured, for example, by instrumenting and profiling 
the code. The collected measurements are treated then as 
the values of a dependent variable, a variable that needs 
predicting. 
Step 4, Identification of the initial signature type. The 
initial set of performance relevant parameters is deduced 
from the analysis of execution profiles, architectural 
documentation, etc. 
Step 5, Construction of the initial simulation model.
Based on the available architecture description, a 
simulation model needs to be built to extract the signature 
instances, i.e. to determine the values of the performance 
relevant parameters that can be observed at architecture 
level. 

Step 6, Signature instance extraction. The simulation 
model calculates one signature instance per use case for 
the defined set of the use cases. These signature instances 
are then stored together with the corresponding 
measurements obtained during step 3. 
Step 7, Prediction model calibration. The results of 
steps 3 and 6 form the calibration data for building a 
model that predicts the performance, depending on the 
signature instance. Each sample of this data corresponds 
to a use case. 
Step 8, Tuning of simulation model and signature 
type. It can be the case that the prediction model is not 
statistically valid during step 7. This means that either the 
signature type is chosen wrongly or the simulation model 
misses performance relevant details. Steps 6-8 must 
therefore be repeated until the prediction model becomes 
statistically valid. 

4.2.2 Phase 2. After having the prediction model 
calibrated, the performance can be predicted for adapted 
components according to the following procedure (see 
Figure 3): 

Prediction model
S1 S2 S3 S4 S5
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Figure 3. Performance prediction for the adapted 
component

Step 9, Definition of use cases for an adapted 
component. For the adapted component, the architect 
determines a set of use cases that needs performance 
prediction. According to these use cases, the initial 
simulation model of the existing component is modified 
(if needed), with the signature type kept intact. 
Step 10, Signature instance extraction for the adapted 
component. By executing the simulation model, the 
signature instance is calculated for the use cases defined 
in step 9. This signature instance can be used for 
predicting the performance, if the adapted component is 
sufficiently similar (see section 4.4) to the existing one. 



Step 11, Predicting the performance of the adapted 
component. By applying the prediction model calibrated 
at phase 1 to the signature instance obtained during step 
10, the performance of the adapted component is 
estimated. The architect must further interpret this 
estimate with respect to performance requirements. 

4.3. Assumptions 

The following assumptions must be fulfilled to apply 
the APPEAR method: 

1. The performance of a component depends only on 
its internals and VSP, but not on other 
components. 

2. The services of the VSP are independent. There 
are no interactions that significantly influence the 
performance, e.g. via exclusive access to shared 
resources.

3. The order of service calls does not matter. 
4. The adapted and existing components are similar 

(see section 4.4). Otherwise, the prediction can 
fail, because the observation data are not 
applicable anymore. 

5. The product (family) evolves gradually. During 
the evolution of a product family, a significant 
portion of the software remains unchanged. 

6. A sufficient number of components are available 
for training the prediction model. 

7. The software is instrumented to collect 
performance measurements. 

4.4. Similarity of software components 

The accuracy and trustworthiness of predictions 
obtained using the APPEAR method are questionable. An 
adapted component may have different behavior than the 
existing ones; e.g., it may use the VSP in a different 
manner. As a result, the prediction model may provide 
incorrect results. Moreover, the architects do not have any 
measurements to validate these predictions, as the 
component is not implemented yet. Consequently, they 
need other means to judge the trustworthiness and 
accuracy of the estimates.  

We define the notion of component similarity as 
follows: 

The existing and adapted components are similar if the 
performance of the adapted component can be predicted 
with a known accuracy and confidence using the 
prediction model fitted on the existing component. 

The architects can ascertain the similarity of existing 
and adapted components by the following formula:  

Similar ST SI IC  (1.2) 
In formula (1.2), Similar  is a Boolean variable that 

indicates whether the components are similar or not. The 

IC, ST, and SI Boolean variables denote the three 
similarity criteria, as explained in Table 1. These 
similarity criteria are discussed in the subsequent 
sections. 

Table 1. The three similarity criteria 

Variable Aspect Meaning 
ST Signature 

types 
The signature types are the 
same for the existing and 
adapted components. 

SI Signature 
instances

The signature instances 
extracted from the 
simulation model of the 
adapted component are close 
to the ones from the existing 
component. 

IC Internal 
component 
calculations

The internal calculations are 
the same for the existing and 
adapted components. 

4.4.1 Signature types. The existing and adapted 
components must have exactly the same signature type. 
The prediction model can only input the signature 
parameters that were used for its calibration. These 
signature parameters are determined on the basis of the 
existing component.  

4.4.2 Signature instances. Trustworthy predictions can 
only be obtained for the signature instances that are close 
to the ones used to fit this prediction model [15], [20]. It 
is therefore necessary to check the distance between the 
signature instances generated for the existing and adapted 
component.  

4.4.3 Internal component calculations. It is not always 
the case that the most of performance is determined by 
the VSP. Both existing and adapted components can have 
timing dependencies or CPU-intensive internal 
calculations that contribute to the overall performance. 
These internal calculations and timing dependencies may 
be component-specific. 

5. Performance prediction for Medical 
Imaging software system 

This section describes our experience in building 
APPEAR models for prediction of the response time of 
the “Reviewing” component of a Medical Imaging 
system. 

5.1. Identification of the Virtual Service Platform 



After selecting the most relevant use cases, the 
architects assisted us in the identification of a VSP (see 
step 2 from section 4.2.1). According to the structure of 
the "Reviewing" component (see Figure 4), the VSP 
includes the following subcomponents: "Graphics", 
“Image Board Controller”, and “Database”. 

User Interface

Viewing
modules

Graphics Database

Service
Manager

Image
Board

Controller

Stable
(Service Platform)

Variable

Figure 4. Virtual Service Platform (VSP) of the 
Medical imaging component. 

These subcomponents are a) defined by the underlying 
hardware and b) common for other components (e.g., 
image acquisition). The subcomponents above this level 
are regularly improved, and, thus, belong to the variable 
part. 

5.2. Signature extraction 
The examined use cases dealt with images or image 

sets. An image is a single medical image of a particular 
patient. An image set is a collection of images obtained 
between the activation and termination of an acquisition 
process. A file contains all image sets of a patient. 

The most time-consuming calls to the VSP were the 
main candidates for signature parameters. The execution 
time of most time consuming calls was directly related to 
the number of images or to the number of image sets.
Some calls to the “Image Board Controller” and to the 
“Graphics” subcomponents were also the most time 
consuming ones. Both types of calls concerned updating 
the state of the image processing hardware (“Update”)
and graphics (“Paint”) that overlay the medical images. 

Finally, the signature type can be represented as a 
vector consisting of four elements: 

Signature = {#Image Sets, #Images, #Update, 
#Paint}

5.3. Construction of simulation model 

This section describes steps 5 and 8 of the APPEAR 
method (see section 4.2.1). The simulation model inputs 
external parameters of the software: the number of 
images, the attributes of the images, user commands, etc. 

When a user command is handled, the simulation model 
generates a signature instance. 

The behavior of the “Reviewing” component is 
described in terms of state machine (see Figure 5). 

Set_Image_mode
Set_Mode

Set_File_mode

File_Set_mode

Image_Set_mode

Set_command

File_command File_Mode

Image_command

Image_mode

File_Image_mode

Image_File_mode

Figure 5. State machine describing the system 
behavior 

The system can function in three modes: “Image”, 
“Set”, and “File”. In these modes, an image, image set or 
file are displayed and browsed, respectively. In the 
“Image” mode, a single image is displayed. In the other 
two modes, an image set and a file are displayed in an 
interleaved manner. 

Some user commands trigger the switching between 
modes. Other user commands can be invoked while the 
system is in a particular state. Both the execution of a 
command in a certain state and the change of the state 
result in generating the signature instance.  

5.4. The prediction model 
This section describes the construction and validation 

of the prediction model for the “Reviewing” component. 
The prediction model was constructed by linear 
regression (using the S-PLUS tool [15]) and calibrated on 
signature instances generated by the simulation model. 
The model was validated in the following way: ten 
arbitrarily chosen points were taken out from the 
measurements, and the model was calibrated on the 
remaining data points. First, the quality of the model was 
assessed by analyzing statistical characteristics of the 
model such as the 2R -coefficient, maximal absolute 
error, and a few residual diagnostic plots. Second, 
response times for the excluded points were predicted and 
compared with the measurements. 

Due to the peculiarities of the “Reviewing” 
component, the number of image sets and the number of 
images could not be varied independently, but only 
according to the following expression: 



# 1, # 1

# 1, # 1

ImageSets  if  Images  

Images  if  ImageSets  
 (1.3) 

As a result of this dependency, the prediction model 
had a complex form: 

0 1 2

3

0 1 2

3

# #

# # 1

# #

# # 1

Images Update

Paint, if Images
Response

ImageSets Update

Paint, if ImageSets

 (1.4) 

In formula (1.4), i  and i  denote the two sets of 

linear regression coefficients. 
For both cases, the prediction model exhibited high 

prediction quality: residual distribution was close to the 
normal distribution, and 2R -coefficients had the values 
of 0.94 and 0.99, respectively. 
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Figure 6. Prediction error distribution 

The first case provided the average relative 
error E 0.0151 . The prediction error distribution is 
depicted in Figure 6. 

For the second case, the error distribution was similar, 
and E 0.0865 .

The obtained results have significantly higher quality 
than for the previous experiment described in [7] due to 
(1) finding the dependency between the number of images 
and the number of image sets and (2) refining the 
prediction model accordingly. 

6. Performance prediction for Consumer 
Electronics software 

We applied the APPEAR method to the existing and 
adapted versions of the Teletext decoder of a modern TV 
set. The execution time needed to acquire Teletext data by 
the adapted version of the Teletext decoder was estimated 
using the prediction model calibrated on the existing 
version of the Teletext decoder. The predictions were 
then compared to the measurements from the 

implementation of the adapted Teletext decoder. More 
details about this experiment can be found in [8]. 

6.1. Overview of the Teletext decoder 

Each Teletext transmission [22] comprises packets that 
together can form pages. Some packets are not directly 
related to a particular page, but rather to a magazine or a 
broadcast service. Different types of packets are discerned 
by packet numbers, which lie in a range 0 to 31. Packets 
with numbers greater than 24 are additionally discerned 
with designation codes: numbers in the range 0 to 15. 
Depending on the designation code, the function of a 
particular packet may change. 

Teletext packets are transmitted during Vertical 
Blanking Intervals (VBI). In each VBI, up to sixteen 
packets can be transmitted. 

All packets received during a single VBI must be 
processed before the next one. This fact introduces a soft 
deadline for the duration of a VBI that equals 20 ms. 

There are several presentation levels of Teletext data– 
1, 1.5, 2.5, and 3.5– that determine the information 
transmitted by a broadcaster and enhancements that can 
be made to a Teletext page. In addition, Teletext can 
support two types of navigation: (1) First Level One 
Facilities (FLOF) and (2) Table of Pages (TOP). Both 
TOP and FLOF implement hypertext-like navigation. 

The simplified structure of the Teletext sub-system and 
its dependencies on the environment are sketched in 
Figure 7. 

Teletext
Acquisition

Packet
Decoding

Real-time
OS

Page
Storage

Teletext
Displaying

Service calls VSP level

Figure 7. Structure of the Teletext subsystem 

The Teletext acquisition component, a part of the 
Teletext sub-system, builds upon the VSP formed by the 
following components: the real-time operating system, the 
Packet Decoding component, and the Page Storage 
component. 

The arrows in Figure 7 depict the ‘uses’ relationship. 
The dashed line corresponds to the abstraction level of the 
VSP. The bold rectangles denote the components that are 
relevant to the performance analysis of the Teletext 
acquisition component. The normal rectangles denote the 



components that do not influence Teletext acquisition 
(e.g., Teletext Displaying component).  

After acquiring all data packets arriving in a single 
VBI, a high priority task decodes and stores the packets. 
This task will be referred to as the Teletext VBI routine in 
the rest of this paper. The task is implemented within the 
Teletext acquisition component as its internal operation. It 
uses the service calls provided by the Real-time OS, 
Packet Decoding and Page Storage components. Teletext 
packets are decoded by the Packet Decoding component 
and then stored within the Page Storage component in a 
local page cache. They are moved to a global page store 
when all the packets of a particular page are received. 

6.2. Experiment scheme 

Two versions of the Teletext acquisition component 
were considered. The first one supports Teletext 
presentation level 1.5 and the FLOF navigation only, 
whereas the second one supports Teletext presentation 
level 2.5 and both TOP and FLOF navigation systems. 
We will hereinafter refer to these components as the 
Teletext 1.5 and Teletext 2.5 acquisition components, 
respectively.

The aim of the experiment was to predict the execution 
time of the Teletext VBI routine (see section 6.1) of the 
Teletext 2.5 acquisition component using the prediction 
model calibrated on the Teletext 1.5 acquisition 
component. It was required that the maximal prediction 
error did not exceed 1 ms, because the Teletext VBI 
routine had a soft deadline of 20 ms. 

The experiment was conducted as follows. First, we 
applied the first phase of the APPEAR method to the 
Teletext 1.5 acquisition component. We then predicted 
the performance of the Teletext 2.5 acquisition 
component by constructing the corresponding simulation 
model and using the already calibrated prediction model. 
Finally, we compared the predictions with the actual 
measurements from the implementation of the Teletext 
2.5 component.  

6.3. Definition of use cases 

The use case considered was watching a TV channel 
that carried Teletext information. This means that the TV 
set performed in a steady state and was collecting the 
Teletext data without any interference. Thirty use cases 
were chosen arbitrarily among the real broadcasts 
transmitted via cable to drive both the implementation 
and the simulation model. 

6.4. Simulation model for the Teletext 1.5 decoder 

The simulation model mimics the behavior of the 
Teletext acquisition component. Most of the functionality 
of this component is implemented within the Teletext VBI 
routine (see section 6.1). This routine accepts the packets 
received in a certain VBI and invokes the corresponding 
packet processing routine for each packet. 

WaitingForNextField

[AllPacketsProcessed]

ProcessNextPacket
entry/mag=DecodeMag(Packet_Data);
packetn=DecodePacketNumber(Packet_Data);

ProcessHeaderPacket

[packetn==0]

ProcessBodyPacket

[packetn>=1
&&packetn <=28]

ProcessPacket29

[packetn==29]

ProcessPacket830

[error ||
(packetn==30
&&mag!=0)]

DropPacket

[!AllPacketsProcessed]/Packet_Data=getNextPacket()

exit/UpdateSignature() exit/UpdateSignature() exit/UpdateSignature()

exit/UpdateSignature()exit/UpdateSignature()

[packetn==30
&&mag==0)]

Figure 8. The high-level behavior of the Teletext 
acquisition routine 

Figure 8 presents the UML state chart that describes 
the behavior of the Teletext VBI routine. The packet
processing routine corresponds to the ProcessNextPacket
composite state. Both packet and magazine numbers of 
recently-arrived packets are decoded. Depending on these 
numbers, further processing is delegated to one of the 
following states: ProcessHeaderPacket,
ProcessBodyPacket, DropPacket, ProcessPacket29, or 
ProcessPacket830. Notice that these states correspond to 
functionality executed higher in the call hierarchy than 
the VSP level. The invocations of service calls are not 
depicted in Figure 8 for the sake of simplicity. 

The simulation model inputs the descriptions of events 
that correspond to packet arrivals in a particular VBI. It 
calculates a signature instance for this VBI, based on the 
packets received. 

Because the long-term history proved to significantly 
influence the performance of the Teletext acquisition, it 
also had to be modeled. The Page Storage component 



maintains this long-term history by tracking all packets 
and pages received after the channel switch. 

Notice that the Page Storage component belongs to the 
VSP. Although the pure APPEAR method, described in 
section 4, models explicitly only components that do not 
belong to the VSP, this component also had to be 
modeled explicitly to obtain a statistically valid prediction 
model. 

6.5. Signature type 

The identified signature type accounts for different 
types of packets, their encoding, the way they are stored, 
and etc. The signature type consists of thirteen signature 
parameters in total. Notice that the value of one signature 
parameter had to be extracted from the simulation model 
of the Page Storage component (a part of the VSP), 
whereas the rest of the signature parameters were 
extracted from the simulation model of the Teletext 
acquisition component. 

6.6. Calibration of prediction the model 

The linear regression tool S-Plus [15] was used to 
calibrate the prediction model. The prediction model has 
the following structure: 
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In formula (1.5), y  is the predicted execution time; 

i  are linear regression coefficients; iS are signature 

parameters (see section 6.5). 
After calibrating the model (1.5), the following results 

were obtained. The multiple 2R -coefficient is 0.974. This 
means that the model explains well the variation of the 
execution time of the Teletext field routine. Moreover, all 
regression coefficients proved to be significant, with a 
significance level of 0.05. 

6.7. Simulation model for the Teletext 2.5 decoder 

The simulation model of the Teletext 2.5 acquisition 
component resembles the one of the Teletext 1.5 
component (see Figure 8). The differences between the 
two components amount to the following: 
1. Handling of packets 27 of a page with a non-decimal 

page number (e.g. Magazine Inventory Page). 
2. Handling of a packet 28 with a designation code 

greater then one, or packet 27 with a designation 
code greater then three. 

The modification of the Teletext 1.5 simulation model 
to obtain a simulation model for Teletext 2.5 took only 
one man-day. 

6.8. Results 

The implementation and simulation model of the 
Teletext 2.5 decoder were driven by the same broadcasts. 
The predictions were compared to the measurements from 
the implementation.  
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Figure 9. Prediction errors for entire broadcasts 

The probability density and histogram of the 
prediction errors are shown in Figure 9, which covers all 
acquired VBI’s. In this plot, the y-axis is the probability 
density, whereas the x-axis is the prediction error 
measured in seconds. 

Figure 9 demonstrates that the bulk (more than 98%) 
of prediction errors lies within a 1 ms range for the 
entire broadcasts. This fact means that the required 
accuracy (see section 6.2) is achieved for 98% of VBI’s. 
Please notice that this range widens, if one considers 
packets specific for Teletext 2.5 and TOP navigation 
only. 

Predictions made for the entire broadcasts (see Figure 
9) suffer an average relative error of only 11%. For VBI’s 
that are specific for Teletext presentation level 2.5 and the 
TOP navigation only, this error increased to 16%. 

7. Conclusions 

The APPEAR method, presented in this paper, allows 
the early estimation of the performance of an adapted 
component, based on the measurements from and 
simulation model of the existing component(s). 

We exemplified the method by two industrial case 
studies. First, we applied it to a medical imaging 
software. The prediction quality was checked by cross-
validation, i.e., a part of measurements was used to 
calibrate the prediction model, whereas the other was 
used to make predictions for. Second, we applied the 
method to two versions of the existing Teletext software. 



One version was used to construct and calibrate the 
prediction model, whereas the other was used to predict 
the performance. In both cases, the predictions were 
compared with the measurements to ascertain the quality 
of the prediction. 

The results of the APPEAR method validation 
appeared to be positive. The prediction accuracy was 
acceptable with respect to the requirements of the 
architects (e.g., see section 6.2). 

We consider the following points for further 
investigation: 

1. Performance estimation for component 
compositions. It must be possible to estimate the 
performance of a component composition, given 
the performance models of the components. 

2. Evolution of the platform. Both components and 
platforms can evolve. During this evolution, it is 
important to maintain the predictability of 
performance. 
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