About
20
Publications
3,848
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
887
Citations
Introduction
Current institution
Publications
Publications (20)
We present a computational framework for mixed-mode cohesive fracture simulation based on the virtual element method (VEM). To represent an arbitrary crack path, the element splitting scheme is developed on a polygonal mesh to capitalize its flexibility in element shape. For the accurate evaluation of a crack-tip stress field and crack propagation...
Fiber-reinforced soft materials have emerged as promising candidates in various applications such as soft robotics and soft fibrous tissues. To enable a systematic approach to design fiber-reinforced materials and structures, we propose a general topology optimization framework for the computational optimized design of hyperelastic structures with...
A wide range of modern science and engineering applications are formulated as optimization problems with a system of partial differential equations (PDEs) as constraints. These PDE-constrained optimization problems are typically solved in a standard discretize-then-optimize approach. In many industry applications that require high-resolution soluti...
We put forward a general machine learning-based topology optimization framework, which greatly accelerates the design process of large-scale problems, without sacrifice in accuracy. The proposed framework has three distinguishing features. First, a novel online training concept is established using data from earlier iterations of the topology optim...
The original version of this article unfortunately contains several errors introduced by the typesetter during the publishing process and which have been corrected.
We present a virtual element method (VEM)-based topology optimization framework using polyhedral elements, which allows for convenient handling of non-Cartesian design domains in three dimensions. We take full advantage of the VEM properties by creating a unified approach in which the VEM is employed in both the structural and the optimization phas...
We present a B-bar formulation of the virtual element method (VEM) for the analysis of both nearly incompressible and compressible materials. The material stiffness is decomposed into dilatational and deviatoric parts, and only the deviatoric part of the material stiffness is utilized for stabilization of the element stiffness matrix. A feature of...
To consistently coarsen arbitrary unstructured meshes, an adaptive mesh morphogenesis process is used in conjunction with the virtual element method. The morphogenesis procedure is performed by clustering elements based on a posteriori error estimation. Additionally, an edge straightening scheme is introduced to reduce the number of nodes and impro...
While the literature on numerical methods (e.g. finite elements and, to a certain extent, virtual elements) concentrates on convex elements, there is a need to probe beyond this limiting constraint so that the field can be further explored and developed. Thus, in this paper, we employ the virtual element method for non-convex discretizations of ela...
We present a general framework to solve elastodynamic problems by means of the virtual element method (VEM) with explicit time integration. In particular, the VEM is extended to analyze nearly incompressible solids using the B‐bar method. We show that, to establish a B‐bar formulation in the VEM setting, one simply needs to modify the stability ter...
We present a structural topology optimization framework considering material nonlinearity by means of a tailored hyperelastic formulation. The nonlinearity is incorporated through a hyperelastic constitutive model, which is capable of capturing a range of nonlinear material behavior under both plane strain and plane stress conditions. We explore bo...
This paper introduces a general recovery-based a posteriori error estimation framework for the Virtual Element Method (VEM) of arbitrary order on general polygonal/polyhedral meshes. The framework consists of a gradient recovery scheme and a posteriori error estimator based on the recovered displacement gradient. A skeletal error, which accurately...
We present a general virtual element method (VEM) framework for finite elasticity, which emphasizes two issues: element-level volume change (volume average of the determinant of the deformation gradient) and stabilization. To address the former issue, we provide exact evaluation of the average volume change in both 2D and 3D on properly constructed...
We investigate a recently proposed variational principle with rigid-body constraints and present an extension of its implementation in three dimensional finite elasticity problems. Through numerical examples, we illustrate that the proposed variational principle with rigid-body constraints is applicable to both single field and mixed finite element...
This paper presents a new variational principle in finite elastostatics applicable to arbitrary elastic solids that may contain constitutively rigid spatial domains (e.g., rigid inclusions). The basic idea consists in describing the constitutive rigid behavior of a given spatial domain as a set of kinematic constraints over the boundary of the doma...
Nonlinear elastic materials are of great engineering interest, but challenging to model with standard finite elements. The challenges arise because nonlinear elastic materials are characterized by non-convex stored-energy functions as a result of their ability to undergo large reversible deformations, are incompressible or nearly incompressible, an...