
Hendrik Ranocha- Professor at Johannes Gutenberg University Mainz
Hendrik Ranocha
- Professor at Johannes Gutenberg University Mainz
About
113
Publications
19,992
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,885
Citations
Introduction
Hendrik Ranocha is a Professor in Numerical Mathematics at Johannes Gutenberg University Mainz, Germany.
His research is focused on the analysis and development of numerical methods for partial and ordinary differential equations. In particular, he is interested in the stability of these schemes and mimetic & structure-preserving techniques, allowing the transfer of results from the continuous level to the discrete one.
Current institution
Additional affiliations
March 2022 - August 2023
April 2016 - September 2019
March 2021 - February 2022
Publications
Publications (113)
High-order numerical methods for conservation laws are highly sought after due to their potential efficiency. However, it is challenging to ensure their robustness, particularly for under-resolved flows. Baseline high-order methods often incorporate stabilization techniques that must be applied judiciously---sufficient to ensure simulation stabilit...
Using a recent characterization of energy-preserving B-series, we derive the explicit conditions on the coefficients of a Runge-Kutta method that ensure energy preservation (for Hamiltonian systems) up to a given order in the step size, which we refer to as the pseudo-energy-preserving (PEP) order. We study explicit Runge-Kutta methods with PEP ord...
We study the recently-proposed hyperbolic approximation of the Korteweg-de Vries equation (KdV). We show that this approximation, which we call KdVH, possesses a rich variety of solutions, including solitary wave solutions that approximate KdV solitons, as well as other solitary and periodic solutions that are related to higher-order water wave mod...
HOHQMesh generates unstructured all-quadrilateral and hexahedral meshes with high order boundary information for use with spectral element solvers. Model input by the user requires only an optional outer boundary curve plus any number of inner boundary curves that are built as chains of simple geometric entities (lines and circles), user defined eq...
A common way to numerically solve Fokker–Planck equations is the Chang–Cooper method in space combined with one of the Euler methods in time. However, the explicit Euler method is only conditionally positive, leading to severe restrictions on the time step to ensure positivity. On the other hand, the implicit Euler method is robust but nonlinearly...
We use the framework of upwind summation-by-parts (SBP) operators developed by Mattsson (2017, doi:10.1016/j.jcp.2017.01.042) and study different flux vector splittings in this context. To do so, we introduce discontinuous-Galerkin-like interface terms for multi-block upwind SBP methods applied to nonlinear conservation laws. We investigate the beh...
A posteriori error estimates based on residuals can be used for reliable error control of numerical methods. Here, we consider them in the context of ordinary differential equations and Runge-Kutta methods. In particular, we take the approach of Dedner & Giesselmann (2016) and investigate it when used to select the time step size. We focus on step...
We develop structure-preserving numerical methods for the Serre-Green-Naghdi equations, a model for weakly dispersive free-surface waves. We consider both the classical form, requiring the inversion of a non-linear elliptic operator, and a hyperbolic approximation of the equations, allowing fully explicit time stepping. Systems for both flat and va...
Using a recent characterization of energy-preserving B-series, we derive the explicit conditions on the coefficients of a Runge-Kutta method that ensure energy preservation (for Hamiltonian systems) up to a given order in the step size, which we refer to as the pseudo-energy-preserving (PEP) order. We study explicit Runge-Kutta methods with PEP ord...
There is a pressing demand for robust, high-order baseline schemes for conservation laws that minimize reliance on supplementary stabilization. In this work, we respond to this demand by developing new baseline schemes within a nodal discontinuous Galerkin (DG) framework, utilizing upwind summation-by-parts (USBP) operators and flux vector splittin...
We combine the recent relaxation approach with multiderivative Runge–Kutta methods to preserve conservation or dissipation of entropy functionals for ordinary and partial differential equations. Relaxation methods are minor modifications of explicit and implicit schemes, requiring only the solution of a single scalar equation per time step in addit...
Modified Patankar--Runge--Kutta (MPRK) methods are linearly implicit time integration schemes developed to preserve positivity and a linear invariant such as the total mass in chemical reactions. MPRK methods are naturally equipped with embedded schemes yielding a local error estimate similar to Runge--Kutta pairs. To design good time step size con...
We consider entropy conservative and dissipative discretizations of nonlinear conservation laws with implicit time discretizations and investigate the influence of iterative methods used to solve the arising nonlinear equations. We show that Newton’s method can turn an entropy dissipative scheme into an anti-dissipative one, even when the iteration...
Many modern discontinuous Galerkin (DG) methods for conservation laws make use of summation by parts operators and flux differencing to achieve kinetic energy preservation or entropy stability. While these techniques increase the robustness of DG methods significantly, they are also computationally more demanding than standard weak form nodal DG me...
In this work, we develop a class of high‐order multiderivative time integration methods that is able to preserve certain functionals discretely. Important ingredients are the recently developed Hermite‐Birkhoff‐Predictor‐Corrector (HBPC) methods and the technique of relaxation for numerical methods of ordinary differential equations (ODEs). We expl...
In this work, we develop a class of high-order multiderivative time integration methods that is able to preserve certain functionals discretely. Important ingredients are the recently developed Hermite-Birkhoff-Predictor-Corrector methods and the technique of relaxation for numerical methods of ODEs. We explain the algorithm in detail and show nume...
A posteriori error estimates based on residuals can be used for reliable error control of numerical methods. Here, we consider them in the context of ordinary differential equations and Runge-Kutta methods. In particular, we take the approach of Dedner & Giesselmann (2016) and investigate it when used to select the time step size. We focus on step...
Nishikawa (2007) proposed to reformulate the classical Poisson equation as a steady state problem for a linear hyperbolic system. This results in optimal error estimates for both the solution of the elliptic equation and its gradient. However, it prevents the application of well-known solvers for elliptic problems. We show connections to a disconti...
We study a temporal step size control of explicit Runge-Kutta (RK) methods for compressible computational fluid dynamics (CFD), including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the Euler equations. We demonstrate that error-based approaches are convenient in a wide range of applications and compare them to m...
We guide the reader on a journey through mathematical modeling and numerical analysis, emphasizing the crucial interplay of both disciplines. Targeting undergraduate students with basic knowledge in dynamical systems and numerical methods for ordinary differential equations, we explore a model from mathematical biology where numerical methods fail...
We consider entropy conservative and dissipative discretizations of nonlinear conservation laws with implicit time discretizations and investigate the influence of iterative methods used to solve the arising nonlinear equations. We show that Newton's method can turn an entropy dissipative scheme into an anti-dissipative one, even when the iteration...
Nishikawa (2007) proposed to reformulate the classical Poisson equation as a steady state problem for a linear hyperbolic system. This results in optimal error estimates for both the solution of the elliptic equation and its gradient. However, it prevents the application of well-known solvers for elliptic problems. We show connections to a disconti...
We present BSeries.jl, a Julia package for the computation and manipulation of B-series, which are a versatile theoretical tool for understanding and designing discretizations of differential equations. We give a short introduction to the theory of B-series and associated concepts and provide examples of their use, including method composition and...
The Julia programming language has evolved into a modern alternative to fill existing gaps in scientific computing and data science applications. Julia leverages a unified and coordinated single-language and ecosystem paradigm and has a proven track record of achieving high performance without sacrificing user productivity. These aspects make Julia...
We study temporal step size control of explicit Runge-Kutta methods for compressible computational fluid dynamics (CFD), including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the Euler equations. We demonstrate that error-based approaches are convenient in a wide range of applications and compare them to more cla...
Patankar-type schemes are linearly implicit time integration methods designed to be unconditionally positivity-preserving. However, there are only little results on their stability or robustness. We suggest two approaches to analyze the performance and robustness of these methods. In particular, we demonstrate problematic behaviors of these methods...
High order entropy stable schemes provide improved robustness for computational simulations of fluid flows. However, additional stabilization and positivity preserving limiting can still be required for variable-density flows with under-resolved features. We demonstrate numerically that entropy stable Discontinuous Galerkin (DG) methods which incor...
Entropy-conserving numerical fluxes are a cornerstone of modern high-order entropy-dissipative discretizations of conservation laws. In addition to entropy conservation, other structural properties mimicking the continuous level such as pressure equilibrium and kinetic energy preservation are important. This note proves that there are no numerical...
High order entropy stable schemes provide improved robustness for computational simulations of fluid flows. However, additional stabilization and positivity preserving limiting can still be required for variable-density flows with under-resolved features. We demonstrate numerically that entropy stable DG methods which incorporate an "entropy projec...
We present Trixi.jl, a Julia package for adaptive high-order numerical simulations of hyperbolic partial differential equations. Utilizing Julia’s strengths, Trixi.jl is extensible, easy to use, and fast. We describe the main design choices that enable these features and compare Trixi.jl with a mature open source Fortran code that uses the same num...
For the general class of residual distribution (RD) schemes, including many finite element (such as continuous/discontinuous Galerkin) and flux reconstruction methods, an approach to construct entropy conservative/ dissipative semidiscretizations by adding suitable correction terms has been proposed by Abgrall ((2018) [1]). In this work, the correc...
Entropy-conserving numerical fluxes are a cornerstone of modern high-order entropy-dissipative discretizations of conservation laws. In addition to entropy conservation, other structural properties mimicking the continuous level such as pressure equilibrium and kinetic energy preservation are important. This note proves that there are no numerical...
Many modern discontinuous Galerkin (DG) methods for conservation laws make use of summation by parts operators and flux differencing to achieve kinetic energy preservation or entropy stability. While these techniques increase the robustness of DG methods significantly, they are also computationally more demanding than standard weak form nodal DG me...
We study the numerical error in solitary wave solutions of nonlinear dispersive wave equations. A number of existing results for discretizations of solitary wave solutions of particular equations indicate that the error grows quadratically in time for numerical methods that do not conserve energy, but grows only linearly for conservative methods. W...
We present BSeries.jl, a Julia package for the computation and manipulation of B-series, which are a versatile theoretical tool for understanding and designing discretizations of differential equations. We give a short introduction to the theory of B-series and associated concepts and provide examples of their use, including method composition and...
We develop error-control based time integration algorithms for compressible fluid dynamics (CFD) applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime. Focusing on discontinuous spectral element semidiscretizations, we design new controllers for existing methods and for some new embedded...
Many important differential equations model quantities whose value must remain positive or stay in some bounded interval. These bounds may not be preserved when the model is solved numerically. We propose to ensure positivity or other bounds by applying Runge–Kutta integration in which the method weights are adapted in order to enforce the bounds....
SummationByPartsOperators.jl is a Julia library of summation-by-parts (SBP) operators, which are discrete derivative operators developed to get provably stable (semi-) discretizations, paying special attention to boundary conditions. Discretizations included in this framework are finite difference, Fourier pseudospectral, continuous Galerkin, and d...
Patankar-type schemes are linearly implicit time integration methods designed to be unconditionally positivity-preserving by going outside of the class of general linear methods. Thus, classical stability concepts cannot be applied and there is no satisfying stability theory for these schemes. We develop a new approach to study stability properties...
We present Trixi.jl, a Julia package for adaptive high-order numerical simulations of hyperbolic partial differential equations. Utilizing Julia's strengths, Trixi.jl is extensible, easy to use, and fast. We describe the main design choices that enable these features and compare Trixi.jl with a mature open source Fortran code that uses the same num...
Recently, it was discovered that the entropy-conserving/dissipative high-order split-form discontinuous Galerkin discretizations have robustness issues when trying to solve the simple density wave propagation example for the compressible Euler equations. The issue is related to missing local linear stability, i.e., the stability of the discretizati...
We present a statistical survey of large-amplitude, asymmetric plasma and magnetic field enhancements detected outside the diamagnetic cavity at comet 67P/Churyumov–Gerasimenko from December 2014 to June 2016. Based on the concurrent observations of plasma and magnetic field enhancements, we interpret them to be magnetosonic waves. The aim is to pr...
We develop a general framework for designing conservative numerical methods based on summation by parts operators and split forms in space, combined with relaxation Runge-Kutta methods in time. We apply this framework to create new classes of fully-discrete conservative methods for several nonlinear dispersive wave equations: Benjamin-Bona-Mahony (...
We study nonlinear hyperbolic conservation laws with non-convex flux in one space dimension and, for a broad class of numerical methods based on summation by parts operators, we compute numerically the kinetic functions associated with each scheme. As established by LeFloch and collaborators, kinetic functions (for continuous or discrete models) un...
One of the challenges when simulating astrophysical flows with self-gravity is to compute the gravitational forces. In contrast to the hyperbolic hydrodynamic equations, the gravity field is described by an elliptic Poisson equation. We present a purely hyperbolic approach by reformulating the elliptic problem into a hyperbolic diffusion problem, w...
This paper proposes a new, conservative fully discrete scheme for the numerical solution of the regularized shallow water Boussinesq system of equations in the cases of periodic and reflective boundary conditions. The particular system is one of a class of equations derived recently and can be used in practical simulations to describe the propagati...
We develop error-control based time integration algorithms for compressible fluid dynamics (CFD) applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime. Focusing on discontinuous spectral element semidiscretizations, we design new controllers for existing methods and for some new embedded...
Since integration by parts is an important tool when deriving energy or entropy estimates for differential equations, one may conjecture that some form of summation by parts (SBP) property is involved in provably stable numerical methods. This article contributes to this topic by proposing a novel class of A stable SBP time integration methods whic...
We study the numerical error in solitary wave solutions of nonlinear dispersive wave equations. A number of existing results for discretizations of solitary wave solutions of particular equations indicate that the error grows quadratically in time for numerical methods that do not conserve energy, but grows only linearly for conservative methods. W...
We present a statistical survey of large amplitude, asymmetric plasma, and magnetic field enhancements at comet 67P/Churyumov-Gerasimenko from December 2014 to June 2016. The aim is to provide a general overview of these structures' properties over the mission duration. At comets, nonlinear wave evolution plays an integral part in the development o...
Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge–Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or higher, and many other classes of schemes. We prove t...
Many important initial value problems have the property that energy is nonincreasing in time. Energy stable methods, also referred to as strongly stable methods, guarantee the same property discretely. We investigate requirements for conditional energy stability of explicit Runge--Kutta methods for nonlinear or nonautonomous problems. We provide bo...
Ordinary differential equations (ODEs) are used to model a vast range of physical and other phenomena. They also arise in the discretization of partial differential equations. In most cases, solutions of differential equations must be approximated by numerical methods. The study of the properties of numerical methods for ODEs comprises an important...
Ordinary and partial differential equations (ODEs and PDEs) are used to model many important phenomena. In most cases, solutions of these models must be approximated by numerical methods. Most of the relevant algorithms fall within a few classes of methods, with the properties of individual methods determined by their coefficients. The choice of ap...
In computational fluid dynamics, the demand for increasingly multidisciplinary reliable simulations, for both analysis and design optimization purposes, requires transformational advances in individual components of future solvers. At the algorithmic level, hardware compatibility and efficiency are of paramount importance in determining viability a...
Recently, it was discovered that the entropy-conserving/dissipative high-order split-form discontinuous Galerkin discretizations have robustness issues when trying to solve the simple density wave propagation example for the compressible Euler equations. The issue is related to missing local linear stability, i.e. the stability of the discretizatio...
The paper proposes a new, conservative fully-discrete scheme for the numerical solution of the regularised shallow water Boussinesq system of equations in the cases of periodic and reflective boundary conditions. The particular system is one of a class of equations derived recently and can be used in practical simulations to describe the propagatio...
Recently, relaxation methods have been developed to guarantee the preservation of a single global functional of the solution of an ordinary differential equation. Here, we generalize this approach to guarantee local entropy inequalities for finitely many convex functionals (entropies) and apply the resulting methods to the compressible Euler and Na...
One of the challenges when simulating astrophysical flows with self-gravity is to compute the gravitational forces. In contrast to the hyperbolic hydrodynamic equations, the gravity field is described by an elliptic Poisson equation. We present a purely hyperbolic approach by reformulating the elliptic problem into a hyperbolic diffusion problem, w...
We study nonlinear hyperbolic conservation laws with non-convex flux and, for a broad class of numerical methods based on summation by parts operators, we compute numerically the kinetic functions associated with each scheme. As established by LeFloch and collaborators, kinetic functions (for continuous or discrete models) uniquely characterize the...
The recently-introduced relaxation approach for Runge–Kutta methods can be used to enforce conservation of energy in the integration of Hamiltonian systems. We study the behavior of implicit and explicit relaxation Runge–Kutta methods in this context. We find that, in addition to their useful conservation property, the relaxation methods yield othe...
When considering hardware platforms, not just time-to-solution can be of importance but also the energy necessary to reach it. This is not only the case with battery powered mobile devices but also with HPC cluster systems due to financial and practical limits on power consumption and cooling. With a variety of hardware options available, the quest...
We develop general tools to construct fully-discrete, conservative numerical methods and apply them to several nonlinear dispersive wave equations: Benjamin-Bona-Mahony (BBM), Fornberg-Whitham, Camassa-Holm, Degasperis-Procesi, Holm-Hone, and the BBM-BBM system. These full discretizations conserve all linear invariants and one nonlinear invariant f...
Many important differential equations model quantities whose value must remain positive or stay in some bounded interval. These bounds may not be preserved when the model is solved numerically. We propose to ensure positivity or other bounds by applying Runge-Kutta integration in which the method weights are adapted in order to enforce the bounds....
Explicit Runge–Kutta methods are classical and widespread techniques in the numerical solution of ordinary differential equations (ODEs). Considering partial differential equations, spatial semidiscretizations can be used to obtain systems of ODEs that are solved subsequently, resulting in fully discrete schemes. However, certain stability investig...
Recently, relaxation methods have been developed to guarantee the preservation of a single global functional of the solution of an ordinary differential equation. We generalize this approach to guarantee local entropy inequalities for finitely many convex functionals (entropies) and apply the resulting methods to the compressible Euler and Navier-S...
The framework of inner product norm preserving relaxation Runge-Kutta methods [D. I. Ketcheson, SIAM J. Numer. Anal., 57 (2019), pp. 2850-2870] is extended to general convex quantities. Conservation, dissipation, or other solution properties with respect to any convex functional are enforced by the addition of a relaxation parameter that multiplies...
When considering different hardware platforms, not just the time-to-solution can be of importance but also the energy necessary to reach it. This is not only the case with battery powered and mobile devices but also with high-performance parallel cluster systems due to financial and practical limits on power consumption and cooling. Recent developm...
Since integration by parts is an important tool when deriving energy or entropy estimates for differential equations, one may conjecture that some form of summation by parts (SBP) property is necessarily involved in provably stable numerical methods. This article contributes to this topic by proposing a novel class of $A$ stable SBP time integratio...
Recently, an approach known as relaxation has been developed for preserving the correct evolution of a functional in the numerical solution of initial-value problems, using Runge-Kutta methods. We generalize this approach to multistep methods, including all general linear methods of order two or higher, and many other classes of schemes. We prove t...
In this article, discrete variants of several results from vector calculus are studied for classical finite difference summation by parts operators in two and three space dimensions. It is shown that existence theorems for scalar/vector potentials of irrotational/solenoidal vector fields cannot hold discretely because of grid oscillations, which ar...
The recently-introduced relaxation approach for Runge-Kutta methods can be used to enforce conservation of energy in the integration of Hamiltonian systems. We study the behavior of implicit and explicit relaxation Runge-Kutta methods in this context. We find that, in addition to their useful conservation property, the relaxation methods yield othe...
High-order methods for conservation laws can be highly efficient if their stability is ensured. A suitable means mimicking estimates of the continuous level is provided by summation-by-parts (SBP) operators and the weak enforcement of boundary conditions used in both the finite difference and the discontinuous Galerkin spectral element framework. I...
In computational fluid dynamics, the demand for increasingly multidisciplinary reliable simulations, for both analysis and design optimization purposes, requires transformational advances in individual components of future solvers. At the algorithmic level, hardware compatibility and efficiency are of paramount importance in determining viability a...
In computational fluid dynamics, the demand for increasingly multidisciplinary reliable simulations, for both analysis and design optimization purposes, requires transformational advances in individual components of future solvers. At the algorithmic level, hardware compatibility and efficiency are of paramount importance in determining viability a...
Many important initial value problems have the property that energy is non-increasing in time. Energy stable methods, also referred to as strongly stable methods, guarantee the same property discretely. We investigate requirements for conditional energy stability of explicit Runge-Kutta methods for nonlinear or non-autonomous problems. We provide b...
In this article, discrete variants of several results from vector calculus are studied for classical finite difference summation by parts operators in two and three space dimensions. It is shown that existence theorems for scalar/vector potentials of irrotational/solenoidal vector fields cannot hold discretely because of grid oscillations, which ar...
For the general class of residual distribution (RD) schemes, including many finite element (such as continuous/discontinuous Galerkin) and flux reconstruction methods, an approach to construct entropy conservative semidiscretisations by adding suitable correction terms has been proposed recently by Abgrall (J. Comp. Phys. 372: pp. 640-666, 2018). H...
For practical applications, the long time behaviour of the error of numerical solutions to time-dependent partial differential equations is very important. Here, we investigate this topic in the context of hyperbolic conservation laws and flux reconstruction schemes, focusing on the schemes in the discontinuous Galerkin spectral element framework....
The framework of inner product norm preserving relaxation Runge-Kutta methods (David I. Ketcheson, Relaxation Runge-Kutta Methods: Conservation and Stability for Inner-Product Norms, 2019) is extended to general convex quantities. Conservation, dissipation, or other solution properties with respect to any convex functional are enforced by the addit...
Some properties of numerical time integration methods using summation by parts (SBP)operators and simultaneous approximation terms are studied. These schemes can be interpreted as implicit Runge-Kutta methods with desirable stability properties such as A-, B-, L-, and algebraic stability [1–4]. Here, insights into the necessity of certain assumptio...
Some properties of numerical time integration methods using summation by parts operators and simultaneous approximation terms are studied. These schemes can be interpreted as implicit Runge-Kutta methods with desirable stability properties such as $A$-, $B$-, $L$-, and algebraic stability. Here, insights into the necessity of certain assumptions, r...
Explicit Runge-Kutta methods are classical and widespread techniques in the numerical solution of ordinary differential equations (ODEs). Considering partial differential equations, spatial semidiscretisations can be used to obtain systems of ODEs that are solved subsequently, resulting in fully discrete schemes. However, certain stability investig...
For discretisations of hyperbolic conservation laws, mimicking properties of operators or solutions at the continuous (differential equation) level discretely has resulted in several successful methods. While well-posedness for nonlinear systems in several space dimensions is an open problem, mimetic properties such as summation-by-parts as discret...
The nonlinear magnetic induction equation with Hall effect can be used to model magnetic fields, e.g. in astrophysical plasma environments. In order to give reliable results, numerical simulations should be carried out using effective and efficient schemes. Thus, high-order stable schemes are investigated here. Following the approach provided recen...
Entropy stability is a well-known design principle for numerical methods in gas dynamics. Entropy conservative numerical fluxes can be used as ingredients in two kinds of schemes: Firstly, as building blocks in the subcell flux differencing form of Fisher and Carpenter (2013) and secondly (enhanced by dissipation) as numerical surface fluxes in fin...
The correction procedure via reconstruction (CPR, also known as flux reconstruction), is a high-order numerical scheme for conservation laws introduced by Huynh (2007), unifying some discontinuous Galerkin, spectral difference and spectral volume methods. A general framework of summation-by-parts (SBP) operators with simultaneous approximation term...
We focus on spectral viscosity in the framework of correction procedure via reconstruction (CPR, also known as flux reconstruction) using summation-by-parts (SBP) operators. In Ranocha et al. (J Comput Phys 342:13–28, 2017), [10], Ranocha et al. (J Comput Phys 311:299–328, 2016), [9], the authors used SBP operators in the CPR framework and were abl...
For practical applications, the long time behaviour of the error of numerical solutions to time-dependent partial differential equations is very important. Here, we investigate this topic in the context of hyperbolic conservation laws and flux reconstruction schemes. For linear problems with constant coefficients, it is well-known in the literature...
The flux reconstruction is a framework of high order semidiscretisations used for the numerical solution of hyperbolic conservation laws. Using a reformulation of these schemes relying on summation-by-parts (SBP) operators and simultaneous approximation terms, artificial dissipation/spectral viscosity operators and connections to modal filtering ar...
For discretisations of hyperbolic conservation laws, mimicking properties of operators or solutions at the continuous (differential equation) level discretely has resulted in several successful methods. While well-posedness for nonlinear systems in several space dimensions is an open problem, mimetic properties such as summation-by-parts as discret...
OpenCL offers many advantages in computational physics in comparison to traditional MPI/OpenMP parallelization. We present an MPI/OpenCL based plasma simulation code, as an example of how computational physics can benefit from OpenCL. The code utilizes a hybrid modeling approach which combines elements from both fluid and particle-in-cell (PIC) met...
It has been known for a long time that high order methods can be very efficient for the numerical solution of hyperbolic balance laws if their stability is ensured. A suitable way to investigate stability of linear partial differential equations is given by the energy method, relying on integration by parts. In order to transfer these methods to th...
Explicit Runge–Kutta methods are standard tools in the numerical solution of ordinary differential equations (ODEs). Applying the method of lines to partial differential equations, spatial semidiscretisations result in large systems of ODEs that are solved subsequently. However, stability investigations of high-order methods for transport equations...
High-order methods for conservation laws can be highly efficient if their stability is ensured. A suitable means mimicking estimates of the continuous level is provided by summation-by-parts (SBP) operators and the weak enforcement of boundary conditions. Recently, there has been an increasing interest in generalised SBP operators both in the finit...
High-order methods for conservation laws can be highly efficient if their stability is ensured. A suitable means mimicking estimates of the continuous level is provided by summation-by-parts (SBP) operators and the weak enforcement of boundary conditions. Recently, there has been an increasing interest in generalised SBP operators both in the finit...