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Abstract: This paper proposes a multi-threshold image segmentation method based on modified salp 
swarm algorithm (SSA). Multi-threshold image segmentation method has good segmentation effect, 
but the segmentation precision will be affected with the increase of threshold number. To avoid the 
above problem, the slap swarm optimization algorithm (SSA) is presented to choose the optimal 
parameters of the fitting function and we use levy flight to improve the SSA. The solutions are 
assessed using the Kapur's entropy, Otsu and Renyi entropy fitness function during the optimization 
operation. The performance of the proposed algorithm is evaluated with several reference images and 
compared with different group algorithms. The results have been analyzed based on the best fitness 
values, peak signal to noise ratio (PSNR), and feature similarity index measures (FSIM). The 
experimental results show that the proposed algorithm outperformed other swarm algorithms. 

Keywords: multi-threshold color image segmentation; Kapur's entropy method; slap swarm 
optimization; levy flight 
 

1. Introduction  

Image segmentation has always been an important research object of image processing. The 
purpose of image segmentation is to better segment the desired target area. So far, there are many 
kinds of image segmentation methods, such as thresholding, feature clustering, pixel segmentation 
and artificial neural network. Among image segmentation methods, the threshold segmentation has 
the characteristics of simplicity and rapidity and is widely used. The color image segmentation 
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method is divided into bi-level segmentation and multi-threshold segmentation. The image is divided 
into two parts: Foreground and background, which is called bi-level segmentation method. In order 
to divide more regions, it is necessary to select multiple thresholds for the image flavor multi-region, 
which is called multi-threshold segmentation. Therefore, the multi-threshold color image 
segmentation becomes the main research problem, and the main segmentation method is 
between-class variance, maximum entropy, Renyi entropy, etc. Applying multi-threshold 
segmentation to color image segmentation can obtain a more accurate segmentation image, which is 
very important in image segmentation. 

A color pixel embeds dissimilar color constituents, and the concoction of them in color images 
enhanced the massive integral computational complexities in the context of segmentation [1–3]. In 
order to improve the segmentation precision of multi-threshold image segmentation method, 
optimization algorithm is used to optimize the multi-threshold image segmentation method [4–7]. 
Meta-heuristics algorithms handled the optimization problems by mimicking physical or biological 
phenomena [8]. In the last couple of years, few works have been accomplished in favor of multilevel 
segmentation of colored images due to the exponentially increasing complexities involved in the 
computation of threshold values [9]. Evolutionary techniques such as ACO [10]. ACO imitated ants 
to find the shortest path social behavior, PSO algorithm [11–15] simulated the behavior of birds in 
navigation and hunting. Other group optimization algorithms were: Artificial Bee Colony 
Algorithm proposed by Karaboga in 2015 [16–18] which can be optimized by imitating the 
behavior of bees to collect nectar, which can adapt to the transformation of the environment; the 
Firefly Algorithm [18–22] was proposed by Xin-she Yang. By imitating the phototaxis of fireflies, 
it can be optimized by moving the light source. Bat Algorithm [23–27] was an efficient global search 
method. The algorithm searches for the optimal solution by approximating the optimal solution in 
iteration; Whale optimization algorithm [28–30] proposed stimulating humpback whales to hunt. The 
algorithm has strong ability of global search and local optimization. Although there are differences 
between evolutionary optimization and population optimization, the common point is that the 
optimal value of a restricted domain can be found [31]. Although each algorithm has its own 
advantages, no-free lunch [32] has proved that no one algorithm can solve all optimization problems. 
The above algorithm was able to have the best optimization ability, but the slap swarm algorithm has 
better global searching ability [33,34], it imitated the behavior of the slap swarm, can effective to 
hunt prey. It has two advantages: (1) SSA is swarmed based optimization technique. The entry wise 
product shows similarity with PSO, but the parameter is very efficient in determining the search 
space due to its longer step size in the lengthy execution; (2) SSA has excellent searching ability, 
local optimization is more accurate. At the same time, the number of parameters tuned is lesser as 
compared to PSO, FPA and WOA. This makes SSA more suitable for a variety of optimization 
procedures. However, SSA algorithm has problems in different problems, so many scholars improve 
SSA algorithm to improve its optimization ability through improvement strategies. Sayed G.I. 
proposed a novel chaotic salp swarm algorithm that can solve the stagnation in local optima and low 
convergence rate of SSA [35]. The experiment result can significantly boost the performance of 
original SSA. Mohammed H.Q. proposed an enhanced salp swarm algorithm [36]. The algorithm can 
be improved the inadequate results of the SSA. So, in order to better solve practical problems, the 
strategy method is used to improve the traditional algorithm, which can better improve the 
optimization ability. 

Threshold segmentation based on histogram is a simple and most popular image segmentation 
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technology [37]. Threshold technology can be roughly divided into local threshold technology and 
global threshold technology. The global threshold selection technique is most popular for its 
simplicity and efficiency. Among the global threshold technologies, Kapur [38] and Otsu [39] are the 
most popular. Otsu method maximizes the inter-class variance function, while Kapur method 
maximizes the posterior entropy of the segmented class to find the optimal threshold [40,41]. Since 
exhaustive search is used to find thresholds, the computational complexity of Kapur and Otsu 
methods increases exponentially with the increase of thresholds [42]. Kapur's entropy, between-class 
variance and Renyi's entropy techniques were often used in thresholding segmentation and can be 
easily extended to multilevel thresholding. They are very efficient for bi-level thresholding, but are 
very time consuming when the number of thresholds grows exponentially. So many swarm 
intelligence algorithms based on Kapur's entropy, between-class variance and Renyi's cross are used 
for multilevel thresholding problem. In 2011, Tan and Khang Siang presented a novel histogram 
thresholding-fuzzy C-means hybrid (HTFCM) approach that could find different application in 
pattern recognition as well as in computer vision [43]. After that, in 2013, two swarm intelligence 
algorithms, particle swarm optimization (PSO) and artificial bee colony (ABC), have been used for 
multilevel thresholding. Kapur's entropy and between-class variance have been investigated as 
objective functions [44]. In 2016, Bhandari, Ashish Kumar, et al. introduced the comparative 
performance study of different objective functions using quick search and other optimization 
algorithms to solve the color image segmentation problem via multilevel thresholding [45]. Recently, 
S. Pare et al. presented new multilevel thresholding methods using Tsallis's entropy, which were 
based on cuckoo search (CS) algorithm and Gray-Level Co-occurrence Matrix [46]. For Kapu's 
entropy, Bhandari, Ashish Kumar, et al. proposed two successful swarm-intelligence-based global 
optimization algorithms, cuckoo search (CS) algorithm and wind driven optimization (WDO) for 
multilevel thresholding using Kapur's entropy has been employed [47]. After that Khairuzzaman 
proposed a new approach of multilevel thresholding based on Grey Wolf Optimizer using Kapur's 
entropy [48]. Liang Hongnan proposed a Tsallis entropy image segmentation based modified 
grasshopper optimization algorithm [49]. The proposed segmentation approach has a fewer iterations 
and a higher segmentation accuracy. He Lifang proposed a modified firefly algorithm (MFA) to find 
the optimal multilevel threshold values for color image [50]. This method improved the precision of 
image segmentation by using optimization algorithm. S. Pare proposed gray-level co-occurrence 
matrix (GLCM) based color image Segmentation [51]. This method used the optimization 
algorithm to optimize multi-threshold GLCM, which has good image segmentation accuracy and 
simple structure. Zhikai Xing proposed an improved salp swarm algorithm to solve the threshold 
selection problem of multi-threshold GLCM [52]. This algorithm effectively improves the image 
segmentation accuracy of GLCM algorithm. Recently, Mishra proposed optimal threshold values 
have been calculated using bat algorithm and maximizing different objective function values based 
on Kapur's entropy [53]. 

Although there is no perfect optimization algorithm, the optimization algorithm can be 
improved to make it more suitable for solving engineering problems. The strategies commonly 
used by scholars are as follows Levy-flight. Levy flight (LF) was a random walk strategy whose 
step length obeyed the Levy distribution [54]. Rongyu L proposed the Lévy particle swarm 
optimization [55]. The proposed method solved the problem that the particle swarm optimization 
(PSO) has some demerits, such as relapsing into local extremum, slow convergence velocity and low 
convergence precision in the late evolutionary. Mesa A used Levy flight improve the cuckoo 
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search [56]. Results showed that applying CS-LF yielded better facility locations compared to 
particle swarm optimization and other existing algorithms. Mousavirad S. J. proposed a simple 
but efficient population-based metaheuristic algorithm called Human Mental Search (HMS) [57]. 
The mental search of HMS that explored the region around each solution based on Levy flight. 

Now, many optimization algorithms are applied to the more threshold image segmentation 
problem [58]. This paper presents a new method of multilevel thresholding based on a slap swarm 
optimization algorithm (SSA). The proposed method selects the optimal set of thresholds using 
Otsu's between class variance, Kapur's entropy function or Renyi's entropy method. The main 
contributions of this paper are: (1) the application of MSSA for optimal multilevel thresholding using 
Otsu, Kapur methods and Renyi. The result of experimentation suggests that MSSA gives better 
result compared to SSA, WOA and FPA based methods, and (2) the computational complexity of 
multilevel thresholding is greatly reduced. 

The remainder of this article is organized as follows. Section 2 describes the multilevel 
thresholding problem. It also describes Kapur's entropy, Otsu's between class variance and Renyi's 
enropy thresholding problem. Section 3 gives an overview of MSSA followed by its mathematical 
model. Section 4 describes the experimental environment of the proposed method and demonstrates 
the effectiveness of the proposed method by experimental results. Finally, the conclusions are 
provided in section 5. 

2. Problem assessment of multilevel thresholding 

An efficient way of performing the image analysis for image segmentation is provided by the 
multilevel thresholding that the pixels of grayscale image or the colored image into distinct classes 
depending on their intensity values. Appropriate classes of an image can be selected by choosing the 
optimal threshold value T ∗  by bi-level thresholding as followed by: 
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<  
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The problem can be extended to multi-level threshold segmentation with multiple thresholds 
and the original image can be divided into multiple classes: 
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where iN  is the ith class, n is the number of threshold values, and ( 1, , )it i n=   is the ith 

threshold value. 

2.1. Kapur's entropy method 

Kapoor's entropy method is based on information theory, which seeks the optimal threshold by 
maximizing the entropy or entropy sum of each characteristic class. Due to its superior 
performance, kapoor entropy method has attracted many researchers' attention and been widely 
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used in image segmentation. 
Let there be N pixels and L gray levels in a given image, then the probability of each gray 

level i is the relative occurrence frequency of the gray level i, normalized by the total number of 
gray levels： 

1

0

, 0, , 1
( )

i
i L

i

h
p i L

h i
−

=

= = −
∑



 
(3) 

where ( )h i  is the number of pixels with gray level i. 
For bi-level threshold may be described by Eq (4): 

0 1( )f t H H= +  (4) 

where 
1 1

0 0
0 00 0

=- ln ,
t t

i i
i

i i

p pH pϖ
ϖ ϖ

− −

= =

=∑ ∑  and 
1 1

1 1
0 0

=- ln ,
L L

i i
i

i t i t

p pH pϖ
ϖ ϖ

− −

= =

=∑ ∑ . The optimal threshold 

value t∗  can be found by maximizing Eq (5): 
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Further, Kapur's entropy can be easily extended for the multilevel thresholding problem as 
given by [41,42]: 
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In order to search m optimal threshold values 1 2[ , , , ]mt t t  for a given image, we try to 
maximize the objective function: 

0

= arg max( )
m
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=
∑

 
(7) 

2.2. Between-class variance method (Otsu's method) 

In order to search m optimal threshold values 1 2[ , , , ]mt t t  for a given image, we try to 

maximize the objective function. 
The Otsu based between-class variance method was used to determine the optimal threshold. 

Otsu's method can be described as follows: Suppose an image can be represented by L gray levels 
(1,2..., L), and there are N pixels. The number of pixels at level i is denoted by 1f , then 
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1 2 iN f f f= + + . Then, the occurrence probability of gray level i is defined as: 
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In bi-level thresholding, the optimum threshold t divides the image into two classes, and the 
cumulative probabilities of each class can be described as follows: 
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The mean levels of two classes can be defined as follows: 
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Let Tµ  be the mean levels of the whole image and is defined by  

1
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The between-class variance of whole classes can be represented by 

0 1( )f t σ σ= +  (12) 

where 2
0 0 0= ( )Tσ ϖ µ µ−  and 2

1 1 1= ( )Tσ ϖ µ µ− . For bi-level thresholding, the Otsu's method finds 
an optimal threshold t∗  by maximizing the between-class variance, that is 

= arg max( ( ))t f t∗
 (13) 

The Otsu's method can be also extended to multi-level thresholding. Assuming that there are m 
thresholds, which divide the image into m + 1 classes. The extended between-class variance is 
calculated by 

0
( )

m

i
i

f t σ
=

=∑
 

(14) 

The sigma terms are determined using Eq (15) and the mean levels are calculated by Eq (16): 
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The optimum thresholds M are found by maximizing the between-class variance by Eq (17): 
1
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2.3. Renyi's entropy method 

Renyi's entropy calculates the entropy absolute value and entropy difference between the target 
region and the background region, and obtains the threshold value of the larger region. The Renyi 
entropy of the entire class can be expressed as 

O BH H H= +  (18) 
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where the parameter q is a real number not equal to one associated with the extensibility of the 
system, and it is dependent. The threshold value t∗  can be found by maximizing: 

= arg max( )O Bt H H∗ +  (20) 

Further, Renyi's entropy can be easily extended for the multi-level thresholding problem as 
given by: 
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In order to search M optimal threshold values 1 2[ , , , ]Mt t t  for a given image, we try to 
maximize the objective function: 

0
= arg max( )

M

M
i

t H∗

=
∑

 
(22) 

3. Modified slap swarm algorithm 

Salps belong to the family of Salpidae and have transparent barrel-shaped body. Their tissues 
are highly similar to jelly fishes [59]. They also move very similar to jelly fish, in which the water is 
pumped through body as propulsion to move forward. In the deep oceans, shapes often form a swarm 
called shop chain. This chain is illustrated in Figure 1. The main reason for this behavior is not very 
clear yet, but some researchers believe that this is done for achieving better locomotion using rapid 
coordinated changes and foraging. 
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Figure 1. Slap chain. 

3.1. The mathematical model of slap 

In order to establish the mathematical model of salp chain, the population is first divided into 
two groups: leaders and followers. The leader is the shape at the front of the chain, while the rest of 
the salps are seen as followers. As the names of these salps suggest, leaders lead the swarm and 
followers follow each other. 

The position of salps is defined in the dimensional search space, where n is the number of 
variables for a given problem. Therefore, all salp positions are stored in a two-dimensional matrix x, 
and it is assumed that there is a food source F in the search space as the target of the group. 

To update the position of the leader the following equation is proposed: 

1 2 31
j

1 2 3

(( ) ) 0

(( ) ) 0
j j j j

j j j j

F c ub lb c lb c
X

F c ub lb c lb c
+ − + ≥=  − − + <

 (23) 

where 1
jX  shows the position of the first salp (leader) in the jth dimension, jF  is the position of the 

food source in the jth dimension, jub  indicates the upper bound of jth dimension, jlb  indicates the 

lower bound of jth dimension, 1c , 2c  and 3c  are random numbers. Equation (23) shows that the 

leader only updates its position with respect to the food source. The coefficient 1c  is the most 

important parameter in SSA because it balances exploration and exploitation defined as follows: 
24

1=2
L
lc e

 − 
   (24) 

where l is the current iteration and L is the maximum number of iterations. 

The parameter 2c  and 3c  are random numbers uniformly generated in the interval of [0,1]. In 

fact, they dictate if the next position in jth dimension should be towards positive infinity or negative 
infinity as well as the step size. 

To update the position of the followers, the following equations utilized: 
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2
0

1
2

i
jx at v t= +  (25) 

where i 2≥ , i
jx  shows the position of ith follower slap in jth dimension, t is time, 0v  is the initial 

speed, and final

0

va=
v  final 0x-xv=

t
. 

Because the time in optimization is iteration, the discrepancy between iterations is equal to 1, 

and considering 0 =0v , this equation can be expressed as follows: 

i i i-1
j j j

1x = x -x
2
（ ） (26) 

With Eqs (23) and (26), the slap chains can be simulated. 

3.2. Levy flight trajectory 

Levy's flight was first proposed by levy and then detailed by Benoit Mandelbrot. In fact, Levy 
flight is a random step that describes the Levy distribution [60]. Many studies have shown that the 
behavior of many animals and insects is a classic feature of levy's flight. Levy flight is a special 
random step length method, as shown in Figure 2, which is the simulation of Levy flight trajectory. It 
always has a small step size, but occasionally has a large pulse [61]. 

 

Figure 2. Levy's flight path. 

The formula for levy flight is as follows: 

~ ,1 3Levy u t λ λ−= < ≤  (27) 

The formula for generating Levy random step proposed by Mantegna is as follows: 
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1/s
v β

µ
=  (28) 

where parameter =1.5β , 2=N(0, )µµ σ  and 2v=N(0, )µσ  are gamma functions. 
The variance of the parameters as follows: 
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3.3. Modified slap swarm algorithm 

The slap swarm optimization algorithm can solve the problem of low dimensional single mode 
optimization with simple and efficient solution. However, when dealing with high dimensional and 
complex image processing problems, traditional SSA is not very satisfactory. In order to improve the 
global search capability of SSA, an improved optimization algorithm of SSA is proposed in this 
paper [62]. Levy flight can maximize the diversity of search domains, so that the algorithm can 
efficiently search the location of food sources and achieve local optimization. The levy flight can 
help SSA get better optimization results, therefore to slap leader position update formula 
optimization, can be used to express the following mathematical formula: 

1 31
j

1 3

(( ) )*Levy 0

(( ) )*Levy 0
j j j j

j j j j

F c ub lb lb c
X

F c ub lb lb c
+ − + ≥=  − − + <

 (30) 

Table 1. Pseudo code of the MSSA algorithm. 

Algorithm 1: Modified slap swarm algorithm 

Initialize the salp population ( 1, 2, , )ix i n=   considering ub and lb 

While (end condition is not satisfied) 

Calculate the fitness of each search agent Eq (7) 

F = the best search agent 

Update 1c  by Eq (24) 

For each salp ( ix ) 

If (I==1) 

Update the position of the leading salp by Eq (30) 

Else 

Update the position of the follower salp by Eq (26) 

End 

End 

Amend the salps based on the upper and lower bounds of variables 

End 

Return F 



710 

Mathematical Biosciences and Engineering  Volume 17, Issue 1, 700–724. 

Initialization the Parameter Of the 
MSSA

Read Image

Calculate the Image Histogram

Set the optimal threshold

Calculate the fitness function

The leader slap move to the fitness

Update the Slap swarms

Determining whether it is 
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N
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Y

 

Figure 3. The flowchart of the modified slap swarm algorithm. 

The SSA algorithm has a simple structure, but it is prone to fall into local optimization when 
dealing with practical engineering problems. Therefore, we choose levy flight strategy to improve it, 
increase the jumping ability of salp individuals, and improve their optimization ability. Levy flight 
can significantly improve SSA's global search capability and avoid falling into a local optimal value. 
This method not only improves the search intensity of SSA, but also improves the diversity of 
algorithm. The optimization algorithm ensures that the algorithm can find the optimal value and 
avoid falling into the local optimal value. By increasing diversity, the algorithm has better global 
search ability [63]. The framework of the proposed algorithm is given in Table 1. The flowchart of 
the modified slap swarm algorithm can be seen from Figure 3. 

The computational complexity of the proposed method MSSA-Kapur depends on the number of 
each combination (L), the number of threshold (K), the number of generations (g), the population 
number (n) and the parameters dimensions (d). Therefore, the overall computational complexity is O 
(Kapur, MSSA) = g × (O (Updating the position of all search agents) + O (Evaluate the fitness of all 
agents) + O (Calculate the oppositional position of all search agents and evaluate its fitness) + O 
(Sort searchagents in population and oppositional population). As we all know, Kapur’s 
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computational complexity on L combination is ( )KO L . The computational complexity of updating the 
position of all search agents is O (n*d). Evaluating the fitness of all agents is ( )KO n L× . Calculating 
the oppositional position of all search agents and evaluate its fitness is C. Sorting search agents in 
population and oppositional population is (2 log 2 )O n n× . Therefore, the final computational 
complexity of the proposed method is as follow: 
 ( , ) ( ( 2 log 2 )) ( ( 2( log 2 )))K K KO Kapur MSSA O g n d n L n L n n O n g d L n≈ × × + × + × + × = × × + + (31) 

4. Experiments and results 

4.1. Experiment setup 

When applied to solve a specific problem, because of the different search strategies and 
mathematical formula, different nature inspired algorithm has optimal performance. In other words, 
optimization is the method to calculate the value of a function and find the optimal result by 
maximizing and minimizing an objective function in a given domain. Therefore, the objective 
function plays an important role in the optimization problem. Therefore, in this paper, the algorithm 
with the SSA, WOA, different optimization algorithms such as FPA has carried on the comparative 
study. In addition, in order to assess the effectiveness and robustness of the proposed approach, this 
paper also studied the recently proposed method variance between (Otsu method) and multilevel 
threshold based on Renyi entropy function technique. The image has three basic color components: 
Red, green and blue, so we need to search for the optimal threshold of each component. The 
comparison algorithm is representative of multilevel threshold algorithm, as shown in Table 2. 

Table 2. Parameters and references of the comparison algorithms. 

Algorithm Parameters Value 

SSA 2c  
3c  

rand 
rand 

WOA [53] 
a 
b 
l 

[0.2] 
1 

[﹣1,1] 

FPA [54] P 0.5 

MSSA Levy 0.8 

In this section, Kapur entropy, inter-class variance method and Renyi entropy are used to 
conduct a large number of experimental evaluations on the performance of MSSA algorithm. The 
experiment used six standard test color images from the Berkeley image database. The test image 
and its corresponding histogram are shown in Figure 4. All images are 481 × 321 in size. All 
algorithms are developed using MATLAB Release 2016. In order to eliminate random errors, each 
color image is compared with each algorithm 30 times. It is well known that the parameter has 
important influence on the performance of swarm intelligence algorithm. For this reason, a large 
number of experimental studies have been carried out in this paper, and appropriate parameter values 
have been found. In all algorithms, the population size is set to 25 and the maximum iteration 
quantity is 500. 
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(a) A (b) B (c) C 

   
(d) the histogram of A (e) the histogram of B (f) the histogram of C 

   
(g) D (h) E (i) F 

   
(j) the histogram of D (k) the histogram of E (l) the histogram of F 

Figure 4. The test images and their histogram. 

In order to judge the image segmentation results, we choose peak signal to noise ratio (PSNR) 
and feature similarity (FSIM) to measure the performance of the segmentation results. PSNR is 
used to calculate the PSNR of the original image and the segmented image. PSNR index can be 
calculated by: 

25520log( )( )PSNR dB
RMSE

=  (32) 

where 

2

1 1

ˆ( ( , ) ( , ))
RMSE

N N

i j
I i j I i j

M N
= =

−
=

×

∑∑  (33) 

where M, N is the size of the color image, I is the original color image, and Î  is the segmented 
color image. 
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The Feature similarity (FSIM) is used to estimate the structural similarity of the original image 
and the segmented image. We define FSIM as: 

( ) ( )
=

( )
L mx

mx

S x PC x
FSIM

PC x
∈Ω

∈Ω

⋅∑
∑

 (34) 

where Ω represent the entire color image, and ( )LS x  indicates the similarity between the segmented 
color image obtained through multilevel thresholding task and input color image. The FSIM 
parameter of color RGB image is defined as: 

1 ( , )O O

O
FSIM FSIM x y

O
= ∑  (35) 

where Ox  and Oy  represent oth channel of the original image and segmented image respectively, o 
is the channel number. 

4.2. Experiment 1: Levy parameter selection 

In order to observe the influence of parameters on the optimization algorithm, Tables 3–6 show 
the PSNR of Levy variants against the original optimizers at rational values for β parameter. We use 
the Kapur entropy as the fitness function. We can see that performance is unclear which can be 
explained by the fact that output random steps under the circumstances become either very small 
leading to expense of optimization iterations without attaining the optimum or very large that makes 
the optimizer oscillate. At the same time, it can be seen obviously that the values of MSSA are 
superior to the traditional optimization algorithm. It shows that levy flight can effectively improve 
the segmentation accuracy of image segmentation algorithm. When the parameter β = 0.8, the values 
of MSSA are the best among all comparison algorithms. Therefore, in the subsequent experiments, 
the parameter of MSSA is set to β = 0.8. 

Table 3. Comparison of Levy variants against the original optimizers at rational values 
for β = 0.5 parameter. 

Image MSSA  SSA  

 Mean Std. Mean Std. 

A 28.9190 5.5867 × 10−11 27.8686 2.21 × 10−9 

B 24.9273 1.5333 × 10−12 23.9794 2.79 × 10−11 

C 23.7616 3.9162 × 10−11 22.6902 1.24 × 10−9 

D 26.6027 2.8067 × 10−13 25.6218 6.79 × 10−12 

E 20.6912 1.2211 × 10−12 19.7514 1.54 × 10−11 

F 23.9493 4.0909 × 10−11 22.9523 7.00 × 10−10 

4.3. Experiment 2: Convergence of the algorithm 

The convergence of the six images depicted in Figure 5. In order to facilitate observation, we 
normalize the convergence data of each algorithm, and set the maximum iteration number to 100. It 
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can be detected from the figure that the proposed MSSA has fast convergence compared with other 
algorithms. It can be seen from a, b and f that the search ability of MSSA algorithm is similar to that 
of other algorithms at the beginning, but with the exploration of space, the ability of MSSA is 
reflected, and the optimal value is superior to other comparison algorithms. It can be seen from c, d 
and e that MSSA has a faster convergence rate, and MSSA still explores the search domain to find a 
better solution when other algorithms have found the optimal value. 

Table 4. Comparison of Levy variants against the original optimizers at rational values 
for β = 0.8 parameter. 

Image MSSA  SSA  
 Mean Std. Mean Std. 

A 29.9526 2.9717 × 10−14 27.8912 3.84 × 10−10 

B 25.9981 2.0843 × 10−18 23.9940 1.05 × 10−10 

C 24.7661 1.2541 × 10−15 22.7290 1.78 × 10−9 

D 27.6916 2.5714 × 10−15 25.5991 2.78 × 10−11 

E 21.7911 1.9751 × 10−19 19.7523 1.23 × 10−10 

F 24.9787 8.2283 × 10−12 22.9031 2.66 × 10−9 

Table 5. Comparison of Levy variants against the original optimizers at rational values 
for β = 1.5 parameter. 

Image MSSA  SSA  
 Mean Std. Mean Std. 

A 28.8749 1.3605 × 10−11 27.9187 1.40 × 10−9 

B 24.9654 4.0404 × 10−2 23.9903 5.14 × 10−11 

C 23.7294 5.512 × 10−5 22.6848 6.91 × 10−10 

D 26.6370 6.2145 × 10−8 25.6276 2.01 × 10−11 

E 20.7518 1.1844 × 10−8 19.7890 7.02 × 10−11 

F 23.8870 3.6885 × 10−10 22.9460 3.13 × 10−9 

Table 6. Comparison of Levy variants against the original optimizers at rational values 
for β = 2 parameter. 

Image MSSA  SSA  

 Mean Std. Mean Std. 

A 28.9017 1.5781 × 10−9 27.8793 4.67 × 10−9 

B 24.9242 7.7521 × 10−8 23.9069 3.00 × 10−11 

C 23.6895 6.8541 × 10−9 22.6930 2.96 × 10−9 

D 26.6007 7.1541 × 10−10 25.6517 1.41 × 10−11 

E 20.7361 9.8492 × 10−11 19.7746 3.58 × 10−11 

F 23.9653 6.3069 × 10−9 22.9677 8.32 × 10−10 

4.4. Experiment 3:Mmaximizing Kapur's entropy 

In this experiment, the results obtained by SSA, WOA, FPA and MSSA algorithm based on 
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Kapur's entropy are analyzed at different threshold levels (k = 4, 5, 6, 7) for the test images. The 
optimal threshold values for each of the color components (R), (G), and (B) of SSA, WOA, FPA and 
MSSA algorithm and objective function values are shown in Tables S1 and S2. For a RGB color 
image, the peak signal to noise ratio (PSNR) value is equal to the average of PSNR values of three 
basic components. Table S3 compares the PSNR and FSIM values of the segmented results. Higher 
values of PSNR and FSIM signify better and accurate segmentation. For a visual qualitative analysis, 
the performance of the proposed technique at different segmentation levels is represented in Figures 
S1–S6 for color natural images. 

As can be seen from the values in the Table S3, when K = 4, the FSIM and PSNR values of each 
algorithm are small, while PSNR and FSIM are gradually increasing with the increase of the number 
of threshold values, indicating that the increase of the number of threshold values can effectively 
improve the segmentation accuracy. As shown in Table S3, the higher threshold value makes FSIM 
approximate to the original image, and the segmentation result is better. Therefore, the MSSA 
algorithm can solve the optimization problem of the number of high thresholds, which means that the 
image segmentation accuracy is improved. 

4.5. Experiment 4: Maximizing between-class variance method 

In this experiment, to show the merits of the proposed MSSA technique, the results are 
compared with SSA, WOA and FPA use maximizing between-class variance method. Tables S4 and 
S5 present the optimal thresholds and objective values of segmentation result of SSA, WOA, FPA 
and MSSA algorithm over the six test images. Table S6 indicates the PSNR and FSIM values 
obtained through different approaches for all the color images. From Figures S7–S12, the visual 
results show that this method achieves good segmentation effect in color image segmentation by 
accurately identifying complex objects and backgrounds at each level of segmentation. 

From Tables S4 and S5, it can be observed that the threshold K of each algorithm is basically 
the same as the low threshold value, indicating that the calculation amount is small, and each 
algorithm can find the optimal threshold effectively. It can be seen from the results in Table S6 that, 
for all test images, MSSA's search results are obviously better and more reliable than SSA, WOA and 
FPA because of its accurate search ability, especially at the high threshold level (K). WOA and FPA's 
solution renewal strategy may have led to poor results.  

4.6. Experiment 5: Mmaximizing entropy method 

In this experiment, in order to further demonstrate the advantages of the proposed MSSA 
algorithm, we compared it with other multi-level segmentation methods by using the maximum 
Renyi entropy function. Tables S7 and S8 show the number and optimal thresholds of the comparison 
algorithm. The PSNR and FSIM obtained are shown in Table S9, from which it can be seen that 
MSSA has better values than SSA, WOA and FPA due to its precise search capability, especially at 
high threshold level (K). The segmentation image obtained through the algorithm of inter-class 
variance objective function is shown in Figures S13–S18. 

From Tables S7 and S8, it can be seen that the optimal threshold value is superior to other 
algorithms when the algorithm is a high threshold. As can be seen from Table S9, in image 
segmentation, the results obtained with the MSSA-based optimization algorithm are mostly slightly 
better than those obtained with the Renyi's entropy method, such as SSA, WOA and FPA. 
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(a) the convergence of A (b) the convergence of B 

  

(c) the convergence of C (d) the convergence of D 

  

(e) the convergence of E (f) the convergence of F 

Figure 5. Convergence curves of the compared algorithms for six images. 
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Figure 6. PSNR results of Kapur algorithm. 
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5. Comparisons and results 

5.1. Comparison of MSSA with other algorithm 

Tables S1, S2, S4, S5, S7 and S8 are the target function values of SSA, WOA, FPA and MSSA 
algorithms based on Kapur entropy, minimum cross entropy and inter-class variance. As can be seen 
from Tables S3, S6 and S9 when K = 4, the fitness function values of each algorithm are basically the 
same. When K = 6 and 7, the fitness function values of MSSA algorithm are obviously better than 
the comparison algorithm. Tables S3, S6 and S9 are FSIM and PSNR values of each algorithm. As 
can be seen from Tables S3, S6 and S9, FSIM and PSNR values of the MSSA algorithm are the best, 
indicating that the segmentation results are the most similar to the original image and have a good 
segmentation effect. However, FPA has a poor segmentation effect, and data analysis shows that it 
fails to segment images well. Therefore, MSSA algorithm has a good segmentation capability. 

It can be seen from the image results that for all natural images at K = 4, the results obtained by 
the method proposed in this paper are almost the same as those obtained by other algorithms. 
However, when the number of thresholds increases, the segmentation ability of MSSA algorithm is 
reflected, and its segmentation effect is better than other comparison algorithms. It can be observed 
from the image, MSSA of image segmentation effect is best, not present segmentation area error, 
color rendering there appeared deviation, show that the algorithm not only on the numerical value is 
higher, at the same time, after the color image segmentation of rendering the same. 

5.2. Comparison between Kapur's entropy, between-class variance and Renyi's entropy 

In order to compare the segmented performance of MSSA algorithm based on Kapur's entropy, 
between-class variance and Renyi's entropy. The curves of PSNR and FSIM values of the algorithm 
are shown in the Figures 6–11. From Figures 6–11, it is clear that the PSNR and SSIM values of 
MSSA algorithm based on Kapur's entropy are higher than those obtained by between-class variance 
and Renyi's entropy method. Through the above analysis, it shows that MSSA algorithm using 
Kapur's entropy has better segmented performance than MSSA algorithm using between-class 
variance and Renyi's entropy. 

K=
4

K=
5

K=
6

K=
7

K=
4

K=
5

K=
6

K=
7

K=
4

K=
5

K=
6

K=
7

K=
4

K=
5

K=
6

K=
7

K=
4

K=
5

K=
6

K=
7

K=
4

K=
5

K=
6

K=
7

A B C D E F

 

Figure 7. PSNR results of Kapur algorithm. 
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Figure 8. PSNR results of Renyi algorithm. 
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Figure 9. FSIM results of Kapur algorithm. 
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Figure 10. FSIM results of Otsu algorithm. 
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Figure 11. FSIM results of Renyi algorithm. 

Table 7. The comparison results for the Kapur-MSSA versus other optimizers. 

Algorithm BDE PRI GCE VOI CPU time 

Ground truth 5.5862 0.9658 0.0906 1.0121 - 

Kapur-WOA 9.9772 0.6168 0.3325 4.5721 3.1114 

Kapur-FPA 10.6636 0.3164 0.4323 6.6578 4.2514 

Kapur-SSA 9.6466 0.5276 0.4044 4.5414 4.2214 

Otsu-WOA 9.4578 0.5645 0.3451 5.2124 5.2156 

Otsu-FPA 9.2124 0.6451 0.4231 4.2154 6.1245 

Otsu-SSA 9.4538 0.6637 0.4241 4.2483 6.4352 

Otsu-MSSA 8.8362 0.7135 0.2810 3.4604 2.2476 

Renyi-WOA 9.6735 0.6765 0.4307 4.3492 6.3553 

Renyi-FPA 11.1807 0.3440 0.4728 7.0503 4.6627 

Renyi-SSA 10.9581 0.6472 0.3337 4.6746 3.3039 

Renyi-MSSA 8.8169 0.7274 0.2786 3.5537 2.9269 

Kapur-MSSA 8.3161 0.7774 0.2586 3.2826 2.2214 

We use an extensive comparative study on test images by using performance metrics like 
Probability Rand Index (PRI), Variation of Information (VoI), Global Consistency Error (GCE), and 
Boundary Displacement Error (BDE) [64]. Table 7 shows the average results of PRI, BDE, GCE, VoI 
and CPU time of ground truth results of the test images. The results displayed in Table 7, that the 
proposed technique outperforms all other compared algorithms. The MSSA technique has obtained 
results close to the ground truth images. Higher values of PRI indicate better segmentation 
performance. While lower values of BDE, GCE, and VoI show better segmentation. It can be seen 
from the table that the numerical value of MSSA algorithm is the best, indicating that its 
segmentation result is the closest to groundtruth and the segmentation effect is the best. The results 
of FPA algorithm are poor, and the results of WOA and SSA algorithm are basically the same. MSSA 
algorithm not only improves the optimization ability of SSA algorithm, but also is better than other 
comparison algorithms. Kapur's results are better than those of Otsu and Renyi, indicating that Kapur, 
as a fitness function, can improve segmentation accuracy. So, Kapur-MSSA algorithm can well solve 
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the problem of multi-threshold image segmentation. It can be seen from CPU time, the time of Kapur 
algorithm is significantly less than that of Otsu and Renyi algorithm. Kapur-MSSA algorithm takes 
the least time and reduces operator time while ensuring segmentation accuracy. 

5.3. Statistical analysis 

Wilcoxon signature rank test [65] was used to test the statistical significance between 
kapur-based MSSA method and SSA, WOA, FPA and other inspired methods. The significance value 
alpha was 0.05 and the sample space was 30. Tables S10–S12 gives the Wilcoxon test results with p 
values for evaluation. As can be seen from Tables S10–S12, MSSA is superior to other methods, 
because p values are statistically significant in all cases. In most cases MSSA based Kapur multilevel 
thresholding algorithm performs better than the other algorithms. 

6. Conclusion 

In this paper, a new multi-threshold Kapur's entropy segmentation algorithm based on MSSA is 
proposed, which can effectively solve the problem of image segmentation. The proposed SSA 
simulates the salp swarm behavior to select the optimum thresholds for multilevel thresholding. We 
proposed SSA based on levy flight to better solve the balance between the exploration and 
exploitation. In order to verify the good performance of the proposed algorithm, more heuristic 
algorithms are adopted to find the best threshold segmentation algorithm, and the excellent 
performance in image segmentation is evaluated by PSNR and FSIM. Experimental results illustrate 
that MSSA is superior to other comparison algorithms. And then we compared MSSA and SSA for 
Kapur's entropy, between-class variance and Renyi's entropy optimization optimal values of the 
segmentation algorithm. As a result, from the experiment we can find the Kapur's entropy 
segmentation algorithm obtained FSIM and PSNR value superior to other algorithms. 

As a scope of further research, Multi-threshold Kapur entropy based on MSSA algorithm has a 
good segmentation ability for Berkeley image library. When processing images with complex 
backgrounds, the improved algorithm is prone to fall into the local optimum and cannot obtain a 
better threshold. In order to solve this problem, on the basis of MSSA, we continue to study different 
improvement strategies to improve SSA, so as to improve the optimization ability of SSA algorithm 
and better solve the problem of multi-threshold image segmentation. In the future, this image 
segmentation method will be applied to solve practical image segmentation problems, such as 
medical images, satellite images and plant phenotype images. 
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