
1 23

Neurochemical Research
 
ISSN 0364-3190
Volume 38
Number 10
 
Neurochem Res (2013) 38:2190-2200
DOI 10.1007/s11064-013-1128-7

Neuroprotective Effects of Hydroalcoholic
Extract of Ocimum sanctum Against H2O2
Induced Neuronal Cell Damage in SH-
SY5Y Cells via Its Antioxidative Defence
Mechanism
M. P. Venuprasad, Kandikattu Hemanth
Kumar & Farhath Khanum



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



ORIGINAL PAPER

Neuroprotective Effects of Hydroalcoholic Extract of Ocimum
sanctum Against H2O2 Induced Neuronal Cell Damage
in SH-SY5Y Cells via Its Antioxidative Defence Mechanism

M. P. Venuprasad • Kandikattu Hemanth Kumar •

Farhath Khanum

Received: 15 March 2013 / Revised: 1 August 2013 / Accepted: 8 August 2013 / Published online: 31 August 2013

� Springer Science+Business Media New York 2013

Abstract Oxidative stress mediates the cell damage in

several ailments including neurodegenerative conditions.

Ocimum sanctum is widely used in Indian ayurvedic

medications to cure various ailments. The present study

was carried out to investigate the antioxidant activity and

neuroprotective effects of hydroalcoholic extract of O.

sanctum (OSE) on hydrogen peroxide (H2O2)-induced

oxidative challenge in SH-SY5Y human neuronal cells.

The extract exhibited strong antioxidant activity against

DPPH, 2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic

acid) radical and hydroxyl radicals with IC50 values of

395 ± 16.2, 241 ± 11.5 and 188.6 ± 12.2 lg/ml respec-

tively, which could be due to high amount of polyphenols

and flavonoids. The observed data demonstrates 41.5 %

cell survival with 100 lM H2O2 challenge for 24 h, which

was restored to 73 % by pre-treatment with OSE for 2 h. It

also decreased the lactate dehydrogenase leakage and

preserved the cellular morphology. Similarly OSE inhib-

ited lipid peroxidation, DNA damage, reactive oxygen

species generation and depolarization of mitochondrial

membrane. The extract restored superoxide dismutase and

catalase enzyme/protein levels and further downregulated

HSP-70 over-expression. These findings suggest that OSE

ameliorates H2O2 induced neuronal damage via its anti-

oxidant defence mechanism and might be used to treat

oxidative stress mediated neuronal disorders.

Keywords Ocimum sanctum � Oxidative stress �
SH-SY5Y cells � Neuroprotection � DNA damage �
HSP-70

Introduction

Brain is a vital organ in human body which is more pre-

disposed to oxidative stress than any other organ due to its

high metabolic rate and high content of polyunsaturated

fatty acids. The imbalance between oxidants and antioxi-

dants leads to disruption of redox signaling leading to

oxidative stress. The most common reactive oxygen spe-

cies (ROS) include superoxide (O2
�2), hydrogen peroxide

(H2O2), peroxyl (ROO�) and reactive hydroxyl (OH�) rad-

icals [1]. Excessive generation of free radicals affects

human health by macromolecular damage, such as DNA,

cell membrane, proteins and cellular components which

consequently induce degeneration, destruction and toxicity

of various molecules that play an important role in

metabolism [2]. The stress induced oxidative damage has

been implicated in neurodegenerative diseases such as

Alzheimers and Parkinsons disease [3].

Ocimum sanctum L. (Lamiaceae) is a well documented

Indian traditional medicinal herb used for the treatment of

various stress-related conditions and is distributed world-

wide. The major bioactive phytochemical constituents of

O. sanctum are ursolic acid, rosmarinic acid, flavonoids

and tannins, eugenol, luteolin, apigenin, b-caryophyllene,

methyl eugenol, b-pinene and Ocimumosides [4–6]. O.

sanctum is an ‘‘elixir of life’’ and has been demonstrated

to possess diverse pharmaceutical effects. It is used as

diaphoretic and to cure gastric and hepatic disorders [7,

8]. O. sanctum has also been reported as radio protective,

immuno modulatory and nootropic agent [9–12]. The

terpenoid and fatty acid derivatives of O. sanctum have

been reported to possess antimicrobial, anticancer and

anti-HIV activities [13–15]. Recently we have evaluated

the antifatigue activity of ethanolic extract of Ocimum

[16].
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Oxidative stress mediated death of dopaminergic neu-

rons has been observed particularly in Parkinsonism.

Hence in the present investigation we mimicked the Par-

kinsonism symptoms in dopaminergic SH-SY5Y human

neurons by H2O2 challenge [17, 18]. Although literature

pertaining to neuroprotective activity of O. sanctum is

reported, there is no data available on the modulation of the

oxidative stress induced neuronal cell damage by the Oc-

imum extract. Therefore, we made an attempt to explore the

neuroprotective and antioxidant potential of ethanolic

extract of O. sanctum leaves against H2O2 induced neu-

ronal cell damage.

Materials and Methods

Chemicals and Reagents

DMEM-F12 from HIMEDIA (Bangalore, India), MTT,

20,70-DCFH2DA, rhodamine 123, RIPA buffer, protease and

phosphate inhibitor cocktail were obtained from Sigma (St

Louis, MO, USA) while H2O2 was procured from Merck

(Bangalore, India) all the other chemicals were of analyt-

ical grade and procured from Rankem (Bangalore, India).

Preparation of O. sanctum Extract (OSE)

The O. sanctum L. leaf material was obtained from the

local market of Mysore, India, and identified by Ex-Prof.

Chandrashekharappa, Department of Botany, JSS College,

Mysore, India. The leaves were shade dried, finely pow-

dered and macerated at room temperature with 70 % eth-

anol by keeping the powder and solvent ratio of 1:10 (w/v).

The extraction was continued till the samples were decol-

orized and the extracts were pooled and concentrated using

a rotary vacuum evaporator. The concentrate was finally

freeze dried and yield was 5.84 %. The final powder was

dissolved in dimethyl sulfoxide, filtered through 0.2 lm

membrane filter (Millipore, India) and used in the sub-

sequent experiments.

Estimation of Polyphenols and Flavonoids

The total phenolic contents were determined according to

the methods of Kujala et al. [19] using Folin-Ciocalteu

reagent (FCR) where as gallic acid was used as a standard

antioxidant. To 3 ml of appropriately diluted extract,

0.5 ml of FCR was added, followed by incubation at room

temperature (10 min) and addition of 7 % Na2CO3 (2 ml)

solution. The mixture was boiled for 1 min and color

intensity was observed at 650 nm (Shimadzu, Kyoto,

Japan). The results were expressed in lg gallic acid

equivalent (GAE)/mg extract.

The flavonoid content was determined according to the

method of Delcour and Varebeke [20]. Briefly, to 1 ml of

appropriately diluted extracts, 5 ml of chromogen reagent

(0.1 % cinnamaldehyde solution in a cooled mixture of

75 ml methanol and 25 ml concentrated HCl) was added

and incubated for 10 min and the absorbance was recorded

at 640 nm. The total flavonoid content was expressed in lg

catechin equivalents (CE)/mg extract.

DPPH Radical Scavenging Activity

The hydrogen donating/radical scavenging activity of OSE

was assessed by DPPH� scavenging activity according to

the method of Blois [21]. The solution of DPPH (500 lM)

was prepared with methanol and mixed with different

concentration of OSE or butylated hydroxy toluene (BHT)

standard. The absorbances were read spectrophotometri-

cally at 517 nm after 30 min of incubation and then per-

centage of decolourisation was determined and the

scavenging activity was determined by calculating IC50

values using the equation

DPPH�scavenging effect %ð Þ ¼ ðODcontrol � ODsamplesÞ=
ODcontrol � 100Þ

Iron Chelating Activity

The chelating of ferrous ions by OSE was estimated

according to Dinis et al. [22]. Briefly, the extract was added

to a solution of 2 mM FeCl2 (0.05 ml). The reaction was

initiated by the addition of 5 mM Ferrozine (0.2 ml) and

the mixture was incubated at room temperature for 10 min.

Absorbance of the solution was measured spectrophoto-

metrically at 562 nm. The percentage inhibition of ferro-

zine–Fe2? complex formation was calculated as:

A0 � Asð Þ=As½ � � 100

where A0 was the absorbance of the control, and As was

the absorbance of the extract or EDTA (positive control).

Hydroxyl Radical Scavenging Activity

This assay was employed according to Kunchandy and Rao

[23]. The assay is based on quantification of the degrada-

tion product of 2-deoxyribose by condensation with thio-

barbituric acid (TBA). The Fenton reaction was initiated to

generate hydroxyl radicals (OH�) which degrade DNA

deoxyribose, using Fe3?-ascorbate-EDTA-H2O2.The reac-

tion mixture composed of 2-deoxy-2-ribose (2.8 mM);

KH2PO4–KOH buffer (20 mM, pH 7.4); FeCl3 (100 lM);

EDTA (100 lM); H2O2 (1.0 mM); ascorbic acid (100 lM)

and various concentrations (0–200 lg/ml) of OSE/standard

(ascorbic acid). After incubation for 1 h at 37 �C, 0.5 ml of
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the reaction mixture was added to 1 ml 2.8 % trichloro-

acetic acid, then 1 ml 1 % aqueous TBA was added and the

mixture was incubated at 90 �C for 15 min to develop the

colored product which was measured at 532 nm and the

results were expressed in terms of IC50 values.

ABTS Radical Scavenging Activity

ABTS (2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic

acid) radical) was performed according to Re et al. [24].

The stock solutions of 7 mM ABTS and 2.4 mM potassium

persulfate solution was prepared. The working solution was

then prepared by mixing the two stock solutions in equal

quantities and allowing them to react for 12 h at room

temperature in dark. The solution was then diluted by

mixing 1 ml ABTS solution with 60 ml of methanol to

obtain an absorbance of 0.706 ± 0.001 units at 734 nm.

Plant extracts (1 ml) and BHT-standard were allowed to

react with 1 ml of the ABTS solution and the absorbance

was measured at 734 nm. The percentage inhibition [%]

was calculated as

I % ¼ Ablank� Asampleð Þ= Ablank½ � � 100Þ:

where, ‘A’ blank is the absorbance of ABTS radi-

cal ? methanol; ‘A’ sample is the absorbance of ABTS

radical ? sample extract/standard.

Cell Culture and Treatments

The SH-SY5Y human neuroblastoma cell line was

obtained from National Centre for Cell Sciences, Pune,

India. Cells were cultured into petri plates, flasks or dishes

as required in DMEM/F-12 mixture supplemented with

10 % FBS, 2 mM L-glutamine, antibiotic and antimycotic

solution Sigma (St Louis, MO, USA) in a humid atmo-

sphere of 5 % CO2 and 95 % air at 37 �C. The media was

changed on alternative day and freshly prepared 100 lM

H2O2 was added for 24 h to the cells with or without pre-

treatment with OSE for 2 h before any experiment. All the

experiments were carried out in 0.5 % serum media.

Analysis of Cell Viability

The metabolic status of the mitochondria of SH-SY5Y cells

was analyzed by the MTT [3-(4, 5-dimethylthiazol-2-yl)-2,

5-diphenyltetrazolium bromide] assay. The cells were cul-

tured in 96-well plates at a density of 1 9 104 cell/ml

(100 ll) and incubated for 24 h before treatments. The cells

were then subjected to the treatments of interest. After 24 h

of adherence, MTT (0.5 mg/ml) was added to each well.

Further the cells were incubated for 2 h at 37 �C and the

formed insoluble formazan crystals were dissolved by

addition of 100 ll of DMSO. The resulting absorbance was

measured at 540 nm using a VERSA max Hidex plate

chameleonTM V (Finland). Wells without cells were used as

blanks and were subtracted as background from each sam-

ple and the results were expressed as percentage of control.

Lactate Dehydrogenase (LDH) Release Assay

Further, the cytotoxicity was confirmed by measuring the

extracellular LDH released in the medium with a LDH-

estimation kit (Agappe-11407002) according to the proto-

col provided by the manufacturer. LDH activity was mea-

sured through the oxidation of lactate to pyruvate with

simultaneous reduction of nicotinamide adenine dinucleo-

tide (NAD?) at a wavelength of 340 nm. The rate of

increase in enzyme activity due to the formation of reduced

nicotinamide adenine dinucleotide (NADH) is directly

proportional to the LDH activity in the sample. The SH-

SY5Y cells were plated in 24-well plates at a density of

4 9 105 cells/ml (500 ll) and cultured for 24 h followed by

treatments of interest. After treatment period, 10 ll of 2 %

Triton X-100 was added to lyse the untreated cells, which

were selected as the total LDH activity. The cells were

precipitated by centrifugation at 1,000g for 5 min at 4 �C

and the supernatant (100 ll) was mixed with 900 ll of

reaction mixture. The cell damage was evaluated by mea-

suring the leakage of intracellular LDH into the medium.

Observations of Morphological Changes

The cells were seeded in 60 mm 9 15 mm size petri

dishes (3 9 105 cells/ml) (3 ml) and cultured till conflu-

ency and treated with 100 lM H2O2 for 24 h with or

without pre-treatment of OSE for 2 h. The cellular mor-

phology was observed and photographed using a phase

contrast microscope (Olympus, Japan) equipped with Cool

SNAP� Pro color digital camera.

Estimation of Superoxide Dismutase (SOD)

and Catalase (CAT)

The cells (1 9 107 cells/ml) (15 ml) were cultured in

75 cm2 flasks and treated as described earlier. After treat-

ments the cells were collected by trypsinization, lysed

(50 mM potassium phosphate buffer, pH 7.4, 2 mM EDTA

and 0.1 % Triton X-100) by sonication and the cell debris

was removed by centrifugation at 13,000g for 10 min at

4 �C. The protein content in the supernatant was measured

by Bradford method [25] with BSA as the standard. The

activity of the antioxidant enzyme SOD was estimated

according to the kit supplier protocol (Randox, Cat no. SD.

125, Canada). While, CAT was estimated by measuring the

decay of 6 mM H2O2 solution at 240 nm by the spectro-

photometric degradation method [26].
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Estimation of Intracellular ROS

The intracellular ROS was measured spectrofluorimetri-

cally by oxidation-sensitive dye DCFH2DA [28]. SH-SY5Y

cells were seeded in 24-well plates (4.0 9 105 cells/ml)

and treated as described earlier. After treatment, DCFH2DA

(5 mg/ml) was added to the cells and incubated for 30 min.

Further the cells were washed twice with PBS and the

fluorescence was detected at an excitation wavelength of

485 nm and an emission wavelength of 535 nm using Hi-

dex plate chameleonTM V (Finland).

Estimation of Lipid Peroxidation

The lipid peroxidation products were measured as the

malondialdehyde content according to Ohkawa et al. [27].

SH-SY5Y cells were cultured in 75 cm2 flasks at a con-

centration of 1.0 9 107 cells/ml and incubated at 37 �C.

After confluence, the cells were treated as mentioned ear-

lier, after treatments the cells were harvested and lysed

(1.15 % KCl with 1 % Triton X-100) by sonication. A

100 ll of the cell lysate was mixed with 0.2 ml of 8.1 %

SDS, 1.5 ml of 20 % acetic acid (pH 3.5), and 1.5 ml of

0.8 % thiobarbituric acid and the volume was made up to

4.0 ml with distilled water and boiled for 2 h. After cool-

ing, the contents were centrifuged at 500g for 10 min, the

supernatants were separated and the absorbance was mea-

sured at 532 nm.

Measurement of Mitochondrial Membrane Potential

(MMP)

The mitochondrial health was estimated in terms of MMP

using the fluorescent probe rhodamine 123. The cells were

cultured in 24 well plates (4.0 9 105 cells/ml) and on cover

slips in petri dishes (3 9 105 cells/ml) coated with poly L-

lysine for fluorimetric measurement and imaging, respec-

tively. The cells were treated as described earlier. After

treatments rhodamine 123 (10 lg/ml) was added to the

cells and incubated for 60 min at 37 �C. The cells were

washed twice with PBS and the fluorescence was estimated

at an excitation wavelength of 485 nm and an emission

wavelength of 535 nm using Hidex plate chameleonTM V

(Finland). The cells grown on cover slips were photo-

graphed using fluorescence microscope (Olympus micro-

scope, Japan) equipped with Cool SNAP� Pro color digital

camera.

Single Cell Gel Electrophoresis (SCGE) Assay

The DNA damage was measured by alkaline comet assay

as described by Singh et al. [29]. SH-SY5Y cells were

(4 9 105 cells/ml) treated with 100 lM H2O2 with or

without pretreatment of OSE (75 lg/assay). Later the cell

were collected and the cell suspensions were mixed with

100 ll of 0.7 % (w/v) low melting agarose (LMA) and

pipetted on to the frosted slides pre-coated with 1.0 % (w/

v) normal melting agarose. After agarose solidification, the

slides were covered with another 100 ll of 0.7 % (w/v)

LMA and immersed in lysis buffer (2.5 M NaCl, 100 mM

EDTA, 10 mM Tris–HCl buffer, 0.1 % SDS and 1 %

Triton X-100 and 10 % DMSO; pH 10.0) for 90 min. Then,

the slides were transferred to unwinding buffer (3 M

NaOH, 10 mM EDTA; pH 13.0) in an electrophoresis tank

for DNA unwinding. Later the slides were run with an

electric current of 25 V/300 mA for 20 min and the slides

were washed twice with neutralizing buffer (0.4 M Tris–

HCl; pH 7.5). Further the DNA damage was photographed

from the slides stained with ethidium bromide (20 lg/ml)

with fluorescence microscope (Olympus microscope,

Japan) equipped with Cool SNAP� Pro color digital cam-

era. The tail length was determined by Image Pro� plus

software and per cent inhibition of tail length was esti-

mated with OSE treatment.

Immunoblotting

The cells (1 9 107 cells/ml) were seeded in 75 cm2 flasks

and treated as mentioned earlier. After treatment, the cells

were washed twice with PBS and then lysed using ice-cold

RIPA buffer with protease and phosphatase inhibitor

cocktail. Cell lysates were centrifuged at 12,000g for

10 min at 4 �C, and the protein concentrations were

determined as mentioned earlier. The proteins were sepa-

rated by 8–12 % SDS-PAGE and transferred to nitrocel-

lulose membrane. The membrane was blocked overnight at

4 �C with 5 % (v/v) non-fat dry milk in Tris-buffered

saline with Tween-20 (TBS-T) (10 mM Tris–HCl,

150 mM NaCl, and 0.1 % Tween-20, pH 7.5) and incu-

bated with primary antibodies namely a-Tubulin (sc-5286),

HSP-70 (sc-66048), SOD (sc-8637), CAT (sc-34280),

(Santa Cruz Biotechnology, CA, USA) at 1:1,000 dilution

for 3 h with shaking. The membranes were then washed in

TBS-T followed by incubation for 2 h at room temperature

in dark with horseradish peroxidase (HRP) conjugated

rabbit anti-goat, goat anti-mouse and goat anti-rabbit sec-

ondary antibodies (DAKO, Denmark) at 1:10000 dilutions.

The membranes were washed again and the immunoreac-

tivity was detected by using the enhanced chemilumines-

cence peroxidase substrate kit (CPS-160, Sigma, St Louis,

MO, USA).

Statistical Analysis

The results were represented as the mean ± SD. Statistical

significance was analyzed with one-way analysis of
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variance followed by a Tukey’s HSD-post hoc test. Dif-

ferences with P value less than 0.05 were considered sta-

tistically significant.

Results and Discussion

Polyphenol and Flavonoid Content

Polyphenols and flavonoids are the principle bioactive

constituents of herbal extracts and several studies have

illustrated the neuroprotective and anti-stress activity of

these compounds [30, 31]. O. sanctum possess a broad

spectrum of polyphenols such as apigenin, luteolin, apige-

nin-7-O-ß-D-rutinopyranoside, luteolin-7-O-ß-D-glucopy-

ranoside, vicenin-2, vitexin, isovitexin, orientin, isoorientin,

aesculetin, aesculin, chlorogenic acid and caffeic acid [32].

In the present study we found 148.9 mg/g gallic acid

equivalents of polyphenols and 14.16 mg/g catechin

equivalents of flavonoids contents which may account for

the bioactivity of the present investigation. Previous study

by Kaul et al., [33] had demonstrated the atherogenic effect

of polyphenols extracted from O. sanctum.

Antioxidant and Free Radical Scavenging Activity

of OSE

The antioxidant activities of herbal extracts were estimated

by an array of free radical scavenging methods such as

DPPH�, iron chelating, ABTS and hydroxyl radical assays.

Here, we observed that OSE scavenges DPPH�, Fe2?, ABTS

and HO� radicals. The maximum inhibition was observed

with increasing concentration of extract and the IC50 values

were represented in Table 1. Our results are in line with

several studies which demonstrate the protective ability of

herbal extracts against radical mediated stress [34, 35].

Protective Effect of OSE Against H2O2 Induced

Cytotoxicity

Several herbal extracts have been shown to inhibit the

H2O2 induced neuronal cell damage [36, 37]. In the present

study we have evaluated the protective effect of OSE

against H2O2 challenge by MTT reduction assay in cul-

tured SH-SY5Y cells. The assay is based on the principle

that mitochondrial dehydrogenase reduces the MTT dye to

formazan. The H2O2 (25–200 lM) treatment decreased the

cell proliferation in a dose-dependent manner with 41.5 %

viability at 100 lM H2O2 challenge which was used for

further assays (Fig. 1a). However, the cells pretreated with

different concentrations of OSE (10–75 lg) for 2 h before

100 lM H2O2 treatment (24 h) showed significant

improvement in cell survival up to 73.2 % with 75 lg of

OSE (Fig. 1b).

Protective Effect of OSE Against Plasma Membrane

Damage

The cytotoxicity of H2O2 and the protective activity of

OSE were further evaluated by LDH assay, which is based

on the principle that the leakage of cytosolic LDH

increases as the number of dead cells increases. SH-SY5Y

cells were pretreated with 75 lg/ml of OSE for 2 h, before

treatment with 100 lM H2O2 for 24 h (Fig. 1c). The results

show that the release of LDH of 45.7 % of total enzyme

with 100 lM H2O2 challenge which indicates that H2O2

induces cytotoxicity in the SH-SY5Y cells. In contrast,

OSE pretreatment lowered the LDH release up to 15 % as

compared with 100 lM H2O2-treated cells. The observed

results demonstrate the protective effect of OSE against

100 lM H2O2-induced neurotoxicity. The protective effect

of OSE was further more confirmed morphologically by

bright field microscope. The 100 lM H2O2-challenged

neurons exhibited cell shrinkage and disappearance of the

cellular processes which was partially protected with pre-

treatment of OSE (Fig. 1d). The OSE extract was dissolved

in DMSO and the final concentration added in the culture

medium did not exceeded 0.01 % and the same concen-

tration of DMSO has been used for control cells as well as

100 lM H2O2 treated group. The DMSO did not showed

any effect to the control cells as well as the toxicity elicited

by H2O2.

Effect of OSE on Antioxidant Enzymes

Antioxidant enzymes play a vital role in detoxification of

free radicals generated due to oxidative damage of the cell

thus maintains the redox status. The antioxidant enzyme

SOD dismutates the O2
�2 radicals whereas H2O2 is con-

verted to H2O and O2 by the catalytic activity of catalase

and glutathione system. Compelling evidence demonstrates

the decrease in antioxidant enzyme levels in Parkinson’s

disease [38]. Supplementation of diet rich of antioxidant

principles enhances the defence system to detoxify the

oxidative molecules [39]. In the present study we measured

the SOD and CAT activity by spectrophotometric

Table 1 Antioxidant and free radical scavenging activities of OSE

Assay Activity IC50 (lg/ml)

DPPH radical scavenging 395 ± 16.2

Metal chelating 241 ± 11.5

Hydroxyl radical scavenging 188.6 ± 12.2

ABTS radical scavenging 97.6 ± 5.1

Each value represents the mean ± SD of three determinations
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degradation method (Fig. 2a, b), which shows that the

oxidative damage generated by H2O2 leads to decreased

enzyme activity of SOD and CAT. The pretreatment of

OSE significantly restored the antioxidant enzyme levels

which indicate the antioxidant defence of the active

ingredients of OSE. Our observed results are in accordance

with recent reports on anti-stress activity of OS via its

antioxidant potential [40, 41].

Inhibitory effect of OSE on H2O2 induced ROS

generation and lipid peroxidation

Further we investigated the effect of OSE on H2O2 induced

ROS generation using fluorescent probe DCFH2DA. The

non-ionic, non-polar fluorescent probe, DCFH2DA, crosses

the cell membranes and is hydrolyzed by intracellular

esterases to nonfluorescent DCFH. Whereas, the ROS

oxidizes DCFH to highly fluorescent dichlorofluorescein

(DCF) [42]. The DCF fluorescence intensity was observed

maximum of 153.5 ± 5.2 % of control in the cells treated

with 100 lM H2O2, whereas, the pretreatment of OSE

significantly decreased the DCF fluorescence up to

123.92 ± 3.8 % of control against 100 lM H2O2 stress

(Fig. 3a). These results are in concomitant with our recent

findings which demonstrates the ROS scavenging activity

of Cyperus extract against 100 lM H2O2 induced neuronal

stress [37]. Of late Zhao et al. [43] had also demonstrated

the neuroprotective effect of apigenin one of the major

constituent of Ocimum, which ameliorates Alzheimer’s

symptoms via regulation of ROS and mitochondrial

damage.

Oxidative stress leads to generation of lipid peroxida-

tion products which generates DNA reactive aldehydes

such as 4-hydroxynoneal and malondialdehyde which are

reported to play a role in carcinogenesis [44]. In the

present investigation we observed the increase in lipid

peroxidation products with 100 lM H2O2 treatment,

which was decreased with pretreatment of OSE (Fig. 3b).

Our results are in line with a recent report that Ocimum

extract inhibits the lipid peroxidation against chronic

unpredictable stress and swimming induced lipid peroxi-

dation [16, 41].
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d Effects of OSE pretreatment

for 2 h on 24 h treatment of

100 lM H2O2 induced

morphological alterations in

SH-SY5Y neurons by phase-

contrast microscopy. All the

groups were treated with 0.01 %

DMSO. The data are

represented as mean ± SD of

three independent experiments.
#P \ 0.05 versus control group,

*P \ 0.05 versus 100 lM H2O2

treated group, ## Non

significant versus control group.

Scale bar = 50 lm
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Effect of OSE on H2O2 Induced Inhibition of MMP

Mitochondrial damage has been observed in Parkinson’s

disease by inhibition of complex I activity which results

in mitochondrial impairment [45]. In the present study

mitochondrial health was estimated by measuring, the

accumulation of fluorescent probe, rhodamine 123 by

MMP assay. The lipophilic cationic dye partitions into

mitochondria and interacts with the negative charges on

the inner membrane of mitochondria. Whereas the radi-

cal induced damage of mitochondria partitions the dye to

the cytosol. Hence, mitochondrial accumulation of the

dye is proportional to mitochondrial health and mem-

brane potential. In the present study we observed the

dissipation of MMP with 100 lM H2O2 treatment to

69.96 ± 2.5 % of control. These results demonstrate that

H2O2 induces the mitochondrial damage by depolariza-

tion of mitochondria. Whereas pretreatment of OSE

restored the MMP to 88.25 ± 2.8 % of control which

indicates the protective effect of OSE against 100 lM

H2O2 induced mitochondrial damage (Fig. 4a, b). In an

earlier study Halder et al. [46] has demonstrated the

ameliorative effect of Ocimum extract against H2O2

induced ultra structural changes of human lens epithelial

cells.

Protective Effect of OSE on H2O2 Induced DNA

Damage

Various reports also demonstrate the damage of macro-

molecules such as proteins, lipids and DNA by oxidative

modification in Parkinson’s disease [45, 47]. The lipid

products generated due to oxidative stress are highly

reactive and have been implicated to induced DNA damage

[48]. The comet assay is a sensitive, rapid and widely used

screening test for evaluating ROS induced DNA damage.

In the present study we evaluated the H2O2 induced DNA

damage and its protective effect by OSE. The cells treated

with 100 lM H2O2, showed increase in tail length up to

*65 lm, which indicates the DNA damage. (Fig. 5a, b)

Pretreatment of the cells with OSE remarkably decreased

the tail length to *40 lm which shows significant inhib-

itory effects against 100 lM H2O2-mediated DNA damage.

Our results are in line with Ovesna et al. [15] and Khanna

et al. [49] on protective effects of Ocimum against chlor-

pyrifos induced DNA damage.
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Protective Effect of OSE on H2O2 Induced Expression

of SOD, CAT and HSP-70

The effect of OSE against H2O2 stress was further evaluated

by immunoblotting key enzymes of stress such as SOD, CAT

and HSP-70 (Fig. 6) which play a vital role in cellular

defence by detoxifying superoxide and H2O2 [2]. The anti-

oxidant biomarkers SOD and CAT were down-regulated

with 100 lM H2O2 treatment whereas OSE pre-treatment

significantly restored the same. These immunoblot results
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corroborate with earlier estimations of SOD and CAT

enzyme activities. HSP-70, the molecular chaperone, gets

over-expressed during stress conditions to combat proteo-

lytic damage of cells [50]. In the present study we observed

that OSE pretreatment down-regulated HSP-70 expression

which is over-expressed with 100 lM H2O2 challenge which

suggests the anti-stress activity mediated by OSE. In a recent

study our group has demonstrated the protective activity of

Cyperus rotundus against peroxynitrite induced neuronal

damage by regulation of antioxidant marker proteins [51].

Conclusion

In the present study we observed the antioxidant and

neuroprotective effects of OSE. The results demonstrate

that OSE inhibits H2O2 induced neuronal death, ROS

generation, lipid peroxidation and DNA damage. The

extract restored MMP and SOD, CAT enzyme/protein

levels and also inhibited HSP-70 over-expression. These

data suggests that OSE may be employed to treat stress

induced neurodegeneration. However, further in vitro

studies are necessary to better clarify its neuroprotective

mechanism of action.
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