Helmut W Kessels

Helmut W Kessels
Netherlands Institute for Neuroscience | NIN

About

33
Publications
8,097
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,443
Citations

Publications

Publications (33)
Article
Full-text available
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer’s Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resi...
Article
Full-text available
Expressions such as 'sleep on it' refer to the resolution of distressing experiences across a night of sound sleep. Sleep is an active state during which the brain reorganizes the synaptic connections that form memories. This Perspective proposes a model of how sleep modifies emotional memory traces. Sleep-dependent reorganization occurs through ne...
Article
Full-text available
Oligomeric clusters of amyloid-β (Aβ) are one of the major biomarkers for Alzheimer’s disease (AD). However, proficient methods to detect Aβ-oligomers in brain tissue are lacking. Here we show that synthetic M13 bacteriophages displaying Aβ-derived peptides on their surface preferentially interact with Aβ-oligomers. When exposed to brain tissue iso...
Article
Early postnatal life is a sensitive period of synaptic development that shapes brain structure and function later in life. Exposure to stress during this critical time window can alter brain development and may enhance the susceptibility to psychopathology and neurodegenerative disorders later in life. The developmental effects of early life stress...
Article
Full-text available
Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative diseases, characterized by amyloid beta (Aβ) and hyperphosphorylated tau accumulation in the brain. Recent studies indicated that memory retrieval, rather than memory formation, was impaired in the early stage of AD. Our previous study reported that pharmacological activation o...
Article
Full-text available
Our knowledge on synaptic transmission in the central nervous system has often been obtained by evoking synaptic responses to populations of synapses. Analysis of the variance in synaptic responses can be applied as a method to predict whether a change in synaptic responses is a consequence of altered presynaptic neurotransmitter release or postsyn...
Article
Full-text available
Background: Approximately one-third of elderly individuals remain cognitively intact, despite substantial Alzheimer's Disease (AD) neuropathological changes. The exact, molecular underpinnings towards resilience in AD remain to be elucidated. Here, we investigate changes in gene expression in the prefrontal cortex of resilient individuals and comp...
Preprint
Soluble oligomeric amyloid-β (Aβ) is a prime suspect to cause cognitive deficits in Alzheimer's disease and weakens synapses by removing AMPA-type glutamate receptors (AMPARs). We show that synapses of CA1 pyramidal neurons become vulnerable to Aβ when they express AMPAR subunit GluA3. We found that Aβ-oligomers reduce the levels of GluA3 immobiliz...
Article
Full-text available
Beta-amyloid (Aβ) depresses excitatory synapses by a poorly understood mechanism requiring NMDA receptor (NMDAR) function. Here, we show that increased PSD-95, a major synaptic scaffolding molecule, blocks the effects of Aβ on synapses. The protective effect persists in tissue lacking the AMPA receptor subunit GluA1, which prevents the confounding...
Article
Full-text available
Background: The strength of synaptic transmission onto a neuron depends on the number of functional vesicle release sites (N), the probability of vesicle release (Pr), and the quantal size (Q). Statistical tools based on the quantal model of synaptic transmission can be used to acquire information on which of these parameters is the source of plas...
Article
Full-text available
Viral vectors are attractive tools to express genes in neurons. Transduction of neurons with a recombinant, replication-deficient Sindbis viral vector is a method of choice for studying the effects of short-term protein overexpression on neuronal function. However, to which extent Sindbis by itself may affect neurons is not fully understood. We ass...
Article
Full-text available
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a high prevalence among the elderly and a huge personal and societal impact. Recent epidemiological studies have indicated that the incidence and age of onset of sporadic AD can be modified by lifestyle factors such as education, exercise, and (early) stress expo...
Article
Full-text available
Excitatory synaptic transmission is mediated by AMPA-type glutamate receptors (AMPARs). In CA1 pyramidal neurons of the hippocampus two types of AMPARs predominate: those that contain subunits GluA1 and GluA2 (GluA1/2), and those that contain GluA2 and GluA3 (GluA2/3). Whereas subunits GluA1 and GluA2 have been extensively studied, the contribution...
Article
Full-text available
Accumulating evidence indicates that cerebellar long-term potentiation (LTP) is necessary for procedural learning. However, little is known about its underlying molecular mechanisms. Whereas AMPA receptor (AMPAR) subunit rules for synaptic plasticity have been extensively studied in relation to declarative learning, it is unclear whether these rule...
Article
Significance In Alzheimer’s disease, soluble clusters of amyloid-β (Aβ) are believed to degrade synapses and impair memory formation. The removal of AMPA receptors from synapses was previously shown to be a critical step in Aβ-driven synapse loss. In this report, we establish that AMPA receptors that contain subunit GluA3 play a central role in Aβ-...
Article
Full-text available
Tripeptidyl peptidase II (TPP2) is a serine peptidase involved in various biological processes including antigen processing, cell growth, DNA repair and neuropeptide mediated signalling. The underlying mechanisms of how a peptidase can influence this multitude of processes still remain unknown. We identified rapid proteomic changes in neuroblastoma...
Article
Full-text available
Hierarchical social status greatly influences behavior and health. Human and animal studies have begun to identify the brain regions that are activated during the formation of social hierarchies. They point towards the prefrontal cortex (PFC) as a central regulator, with brain areas upstream of the PFC conveying information about social status, and...
Article
Amyloid beta (Aβ), a key component in the pathophysiology of Alzheimer's disease, is thought to target excitatory synapses early in the disease. However, the mechanism by which Aβ weakens synapses is not well understood. Here we showed that the PDZ domain protein, protein interacting with C kinase 1 (PICK1), was required for Aβ to weaken synapses....
Article
The brain is programmed to drive behavior by precisely wiring the appropriate neuronal circuits. Wiring and rewiring of neuronal circuits largely depends on the orchestrated changes in the strengths of synaptic contacts. Here, we review how the rules of synaptic plasticity change during development of the brain, from birth to independence. We focus...
Article
NMDA receptor (NMDAR) activation controls long-term potentiation (LTP) as well as long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. A long-standing view proposes that a high level of Ca entry through NMDARs triggers LTP; lower Ca entry triggers LTD. Here we show that ligand binding to NMDARs is sufficient...
Article
The mechanisms by which β-amyloid (Aβ), a peptide fragment believed to contribute to Alzheimer's disease, leads to synaptic deficits are not known. Here we find that elevated oligomeric Aβ requires ion flux-independent function of NMDA receptors (NMDARs) to produce synaptic depression. Aβ activates this metabotropic NMDAR function on GluN2B-contain...
Article
Full-text available
The hippocampus plays a central role in learning and memory. Although synaptic delivery of AMPA-type glutamate receptors (AMPARs) contributes to experience-dependent synaptic strengthening, its role in hippocampus-dependent learning remains elusive. By combining viral-mediated in vivo gene delivery with in vitro patch-clamp recordings, we found tha...
Article
Loss of one type of sensory input can cause improved functionality of other sensory systems. Whereas this form of plasticity, cross-modal plasticity, is well established, the molecular and cellular mechanisms underlying it are still unclear. Here, we show that visual deprivation (VD) increases extracellular serotonin in the juvenile rat barrel cort...
Article
Full-text available
Increased levels of brain amyloid-beta, a secreted peptide cleavage product of amyloid precursor protein (APP), is believed to be critical in the aetiology of Alzheimer's disease. Increased amyloid-beta can cause synaptic depression, reduce the number of spine protrusions (that is, sites of synaptic contacts) and block long-term synaptic potentiati...
Article
Full-text available
Excessive synaptic loss is thought to be one of the earliest events in Alzheimer's disease. Amyloid beta (Abeta), a peptide secreted in an activity-modulated manner by neurons, has been implicated in the pathogenesis of Alzheimer's disease by removing dendritic spines, sites of excitatory synaptic transmission. However, issues regarding the subcell...
Article
Understanding how the subcellular fate of newly synthesized AMPA receptors (AMPARs) is controlled is important for elucidating the mechanisms of neuronal function. We examined the effect of increased synthesis of AMPAR subunits on their subcellular distribution in rat hippocampal neurons. Virally expressed AMPAR subunits (GluR1 or GluR2) accumulate...
Article
The ability to change behavior likely depends on the selective strengthening and weakening of brain synapses. The cellular models of synaptic plasticity, long-term potentiation (LTP) and depression (LTD) of synaptic strength, can be expressed by the synaptic insertion or removal of AMPA receptors (AMPARs), respectively. We here present an overview...
Article
Full-text available
Long-term potentiation (LTP), a cellular model of learning and memory, produces both an enhancement of synaptic function and an increase in the size of the associated dendritic spine. Synaptic insertion of AMPA receptors is known to play an important role in mediating the increase in synaptic strength during LTP, whereas the role of AMPA receptor t...
Article
A central question in the study of LTP has been to determine what role it plays in memory formation and storage. One valuable form of learning for addressing this issue is associative fear conditioning. In this paradigm an animal learns to associate a tone and shock, such that subsequent presentation of a tone evokes a fear response (freezing behav...

Network

Cited By