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Abstract
With the widespread deployment of wireless 

technologies and IoT, 5G wireless networks will 
support various communication connectivity and 
services for the huge number of wireless smart/
intelligent devices and machines. The challenge 
lies in assisting wireless networks to intelligent-
ly learn experience, autonomously optimize net-
work configurations and smartly make decisions 
to support massive wireless smart devices with 
minimum human intervention, so the diverse and 
colorful service requirements can be satisfied with 
the optimum performance. Machine learning, as 
one of the powerful artificial intelligence tools, is 
capable of efficiently supporting wireless smart 
devices by assisting them to smartly observe the 
environment, analyze data and make decisions 
with the intelligence. Hence, in this article, we 
briefly review the major concepts of common 
machine learning techniques and present their 
potential applications in intelligent wireless net-
works, including spectrum sensing, channel esti-
mation, device clustering, behavior prediction, 
position tracking, data demission reduction, 
adaptive routing, energy harvesting/efficiency, 
resource management, and so on. Furthermore, 
we propose deep reinforcement learning for intel-
ligent resource management in intelligent wireless 
networks in an exemplary case study. Simulation 
results demonstrate the effectiveness and advance 
of machine learning in intelligent wireless net-
works.

Introduction
With the various application services of devices, 
things and machines (e.g., mobile phones, vehi-
cles, sensors and industrial machines) in wireless 
networks, the family of wireless communication 
and networking technologies has been emerg-
ing as a promising vision for fifth generation (5G) 
wireless networks through realizing industrial and 
factory automation [1–3]. With these advanced 
technologies, wireless networks are capable of 
interconnecting a large number of smart devic-
es (potentially on the order of tens of billions) 
with the intelligent and reconfigure ability, and 
smartly make decisions by itself with a “brain” for 
high-level intelligence [1]. Hence, it has a myriad 
of applications in various domains, such as smart 
home/city/grid, e-health, intelligent transporta-
tion, automatic industry, meter auto reporting, 
remote sensing, and so on, which greatly improve 
the quality of our lives.

Despite the above distinct benefits, facilitating 
and implementing intelligent wireless networks 
gives rise to several key challenges. First, consid-
ering the large amount of data generated by the 
huge number of smart devices, the applications of 
intelligent wireless networks face the challenges of 
collecting, accessing and processing the massive 
amount of data, as well as to exploit and analyze 
the big amount of data toward the behavior and 
characteristics discovery of wireless networks [1, 
4, 5]. Moreover, due to the extreme range of ser-
vice requirements of wireless smart devices and 
the complex/dynamic environments, its applica-
tions are still not smart enough to tackle optimized 
physical layer designs, sophisticated learning, com-
plicated decision making and efficient resource 
management tasks in future wireless networks [1]. 
To fulfill the potential benefits of intelligent wire-
less networks and deal with the growing challeng-
es, recent trends in research on machine learning 
have drawn attention as a promising solution.

Machine learning, as one of the most powerful 
artificial intelligence tools, has already been wide-
ly applied in computer vision, signal/language 
processing, social behavior analysis, projection 
management, and so on [6]. Explicitly, it uses sta-
tistical techniques to analyze observations/data/ 
experience by finding the patterns and underlying 
structures, in order to give devices the ability to 
“learn” automatically without human intervention 
and adjust actions accordingly. Machine learning 
mainly consists of three categories: supervised 
learning, unsupervised learning and reinforcement 
learning [6]. Supervised learning algorithms are 
provided with labeled training samples, while 
unsupervised learning algorithms are not provid-
ed with labels (i.e., no output variables). Rein-
forcement learning algorithms learn how to map 
situations to actions to maximize a reward by 
interacting with its environment. 

As shown in Fig. 1, thanks to the application 
of machine learning, the intelligent wireless net-
work is capable of smartly tackling the detection 
and sensing tasks (e.g., robust detection, efficient 
data collection), data analysis and discovery tasks 
(e.g., knowledge discovery, behavior prediction) 
as well as decision making tasks (e.g., resource 
management, policy control) from the physical 
layer to the application layer in intelligent wireless 
networks. In itself, machine learning offers a ver-
satile set of algorithms to analyze numerous data/
observations and discover the depth knowledge. 
This effectively assists intelligent wireless networks 
intelligently adapt network protocols and decision 
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making for different services in different complex 
scenarios, and solves various technical problems, 
such as signal processing, parameter optimiza-
tion, behavior analysis, mobile management and 
resource management [1, 4, 5, 7-15]. However, 
how to adapt and exploit the family of machine 
learning algorithms to address the above men-
tioned problems in intelligent wireless networks 
remains a significant challenge.

In this article, the goal is to pay more atten-
tion to the research on applying machine learning 
techniques to solve the key challenges in intelli-
gent wireless networks. Table I presents the fami-
ly-tree of the three categories of machine learning 
(i.e., supervised, unsupervised and reinforcement 
learning) and their potential applications in intel-
ligent wireless networks, where each of the fol-

lowing sections will introduce the basic algorithms 
of one category of machine learning and then 
discuss several typical examples of applying such 
algorithms for intelligent wireless networks. After 
that, we present an exemplary case study on intel-
ligent resource management based on deep rein-
forcement learning in intelligent wireless networks 
and evaluate the performance improvement of 
transmission scheduling accordingly. Finally, we 
conclude the article.

Supervised Learning for  
Parameter Estimation

In supervised learning, a set of labeled features 
or data is used to build the learning model. The 
model uses the training data to learn the relation 

FIGURE 1.  Functional diagram of intelligent wireless networks based on machine learning.

TABLE 1. Machine learning techniques and applications in intelligent wireless networks.

Category Tasks Algorithms Applications and References

Supervised 
learning

Classification
Support vector machine, K-nearest 
neighbors

Security/interference detection, image/service 
behavior classification, spectrum sensing [2, 4, 9, 10]

Regression
Linear regression, support vector 
regression, Gaussian process regression

Channel estimation, mobility prediction, cross-layer 
handover [9, 10, 12]

Unsupervised 
learning

Clustering K-means clustering, neural network
Device clustering, filtering designs, localization, service 
segmentation [5, 10, 13, 14]

Dimension 
reduction

Principal component analysis, isometric 
mapping

Big data visualization, interference filtering, data 
compression, feature elicitation [4, 10, 11, 14]

Reinforcement 
learning

Policy/value 
iteration 
learning

Markov decision process, Q-learning, policy 
gradient, actor critic, deep Q-network,

Decision making, packet transmission, spectrum 
access, network association, energy harvesting/
efficiency, adaptive routing, resource management  
[1, 7–11, 14, 15]
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from the inputs to the outputs. Supervised learn-
ing tasks can be broadly divided into two subsec-
tion: classification and regression.

Classification Models for  
Spectrum Detection and Behavior Classification
Models: Classification analysis is the task of 

estimating the relation between the inputs and the 
discrete outputs, and the output variables are also 
called categories or labels. A mapping (classifier) 
function is built by analyzing the input training 
data in the learning step, and the mapping func-
tion is adopted to predict the categorical class 
labels in the classification step. The support vector 
machine (SVM) and K-nearest neighbors (KNN) 
classifiers are most used for classification [6].

SVM is a non-probabilistic and liner/nonlin-
ear classifier that tries to search a linearly sep-
arable hyperplane which separates the training 
data by maximizing the margin with the minimum 
classification errors. When the training data are 
non-linear, SVM constructs the data into a high-
er dimensional feature space by using the kernel 
trick, and performs as a non-linear classifier.

KNN is a non-parametric tool used for clas-
sification. The learning model in KNN is built by 
finding the most similar points (closest neighbors) 
in the training samples, and makes an educated 
guess according to the classification.

Applications: The classification algorithms 
can be applied for spectrum sensing, security 
and intrusion detection, interference detection 
and image classification for intelligent wireless 
networks [2, 4]. For instance, in intelligent wire-
less networks, when a large number of smart 
devices aim to access the spectrum radio, the 
various channel sensing processes result in high 
dimensional search problems. In this case, the 
mentioned SVM and KNN learning models can 
be applied to detect the channel working sta-
tus by categorizing each feature vector (chan-
nel) into either of the two classes, namely, the 
“channel idle class” and “channel buy class,” 
which is capable of implicitly/adaptively learn-
ing the surrounding environment in an online 
fashion.

In addition, with the huge diversity of devices’ 
activities (sleep/active or mobility) and services 
(spectrum access) in intelligent wireless networks, 
it is hard for all smart devices to follow the same 
rules and standards in the complex and dynamic 
environments. The mentioned classification tools 
constitute powerful data processing techniques 
which are devised to classify all the possible 
behaviors, where similar behaviors can be merged 
in the same group [9], [10]. Such classification 
tools have the ability to identify the behavior fea-
tures of devices, and automatically establish the 
learning models to classify the various activities, 
which can improve the recognizing ability and 
smartly establish communication rules among 
smart devices.

Regression Models for  
Channel Estimation and Mobility Prediction

Models: Regression analysis aims to estimate 
or predict continuous quantities. Regression relies 
on input statistical features to establish the rela-
tionship between two or more independent vari-
ables. Some typical regression algorithms include 
linear regression, support vector regression (SVR) 
and Gaussian process regression [6].

The linear regression model establishes a rela-
tionship between one independent variable and 
one or more other dependent variables by search-
ing the best fit regression line.

SVR has the same main principles as SVM with 
some minor differences. Instead of minimizing the 
training error in SVM, SVR tries to minimize the 
generalization error bound by building the linear/
non-linear regression function in a high dimen-
sional feature space. 

Gaussian process regression (GPR) is a 
non-parametric learning tool by undertaking the 
non-parametric regression with Gaussian process-
es. As the GPR model is probabilistic, it is power-
ful to provide uncertainty estimation and to learn 
smoothness parameters.

Applications: The above mentioned regres-
sion models can be used to estimate the channel 
parameters in intelligent wireless networks. For 
example, the wireless channel varies rapidly in 

FIGURE 2. The AC-DRL learning framework for intelligent resource management in intelligent wireless net-
works.
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high mobility scenarios (e.g., vehicular networks), 
which directly affects the communication perfor-
mance and quality-of-service (QoS) due to the 
fast time-varying/multipath fast fading channel 
response. SVR can be applied to estimate the 
channel variation by utilizing the prior knower of 
similar features to identify future unknown chang-
es [12]. In addition, for the non-linear deep fading 
channel, the non-linear SVR model has the ability 
to track the channel response by overcoming the 
unknown and complex estimation difficulties.

Regression models are also widely applied 
to solve the devices’ mobility prediction and 
cross-layer handover optimization problems for 
intelligent wireless networks [4, 9, 10]. In large 
and heterogeneous vehicular intelligent wireless 
networks, the ability to accurately predict intel-
ligent vehicles’ mobility has many enjoyable 
applications, such as vehicle routing, mobility 
prediction and congestion avoidance. SVR and 
Gaussian process regression models can predict 
the long-range and short-range multimedia traffic 
load and network overhead with the high accura-
cy by proposing self-similar covariance functions 
or learning the non-linear relationships between 
historical and future features. In addition to traffic 
prediction, the devices’ behavior prediction (e.g., 
channel access) by using the regression models 
can effectively solve the handover problem in 
large-scale intelligent wireless networks.

Unsupervised Learning for  
Feature or Data Analysis

Different from supervised learning with an 
amount of labeled data, unsupervised learning is 
not provided with labels (no output vectors). The 
objective of unsupervised learning is to analyze 
the data structure and extract the useful informa-
tion from the training data without any guidance 
of an explicit data of interest. It mainly has two 
subfields: clustering and dimensionality reduction.

Clustering Models for  
Device Clustering and Localization

Models: Clustering analysis seeks to divide a 
set of objects into different groups such that the 
objects of each group are as similar as possible to 
one another, and different groups are as dissimilar 
as possible from one another. K-means clustering 
(KNN) and neural network (NN) are the common 
clustering algorithms [6].

In the KNN model, the goal is to identi-
fy the best K cluster centers and recognize the 
unlabeled inputs into a given number of groups 
(classes) in an iterative manner, where each input 
belongs to the group with the nearest mean.

NN clustering analysis is a powerful tool for 
solving the pattern recognition problems inspired 
by the biological brains, where the input data 
are handled with the non-linear correlations in 
the hidden layers and the weights in hidden lay-
ers finally determine the cluster reconstruction 
requirements.

Applications: The above mentioned clustering 
models are capable of solving the clustering prob-
lems in intelligent wireless networks, especially 
in dense devices environments. For example, in 
order to complete the massive spectrum access 

services of smart devices in future wireless net-
works, clustering algorithms can be used to clus-
ter the numerous number of devices into different 
groups according to their interests [5, 14], which 
significantly avoids interference, reduces the col-
lision probability and enhances the successful 
access probability. In addition to the above bene-
fits, a cluster header (CH) is selected to complete 
the transmission scheduling and data gathering 
from all the devices in the cluster and send the 
assembled data to base stations (BSs), which is 
easy for the transmission scheduling and reduces 
the energy consumption.

Moreover, the clustering algorithms are readily 
invoked for outdoor/indoor localization and track-
ing in intelligent wireless networks. To address the 
range-based multi-device positioning and tracking 
problems, clustering algorithms are able to opti-
mize the clustering processing of massive location 
data and filter out the extreme positioning refer-
ences, and then calculate the initial cluster center 
through analyzing the density of each measure-
ment point. Finally, the position of each device 
is calculated according to the predictive location 
and the measurement point sets [10, 13].

Dimensionality Reduction Models for  
Data Compression and Interference Filtering

Models: Dimensionality reduction seeks to 
transform a high dimensional data space into a 
low dimensional structure without losing the use-
ful information of the original data. Some classic 
dimension reduction algorithms include principal 
component analysis (PCA) and isometric mapping 
(ISOMAP) [6].

PCA orthogonally transforms a set of possibly 
high-dimensional and correlated variables into a 
lower-dimensional linear subspace with a linear 
mapping, where the variables are uncorrelated 
and the variance of the variables is maximized.

ISOMAP is a non-linear dimensionality reduc-
tion algorithm. It begins by creating a neighbor-
hood network and then estimates the geodesic 
distance based on the graph distance between 
all data points. After that, by decomposing the 
eigenvalues of the geodesic distance matrix, the 
low dimensional embedding of the data points 
can be achieved.

Applications: In intelligent wireless networks 
with massive training samples, transmitted data 
packets and application services [4, 10, 11], the 
above mentioned demission reduction algorithms 
can efficiently reduce the amount of data by find-
ing a small set of useful variables of the original 
data, which dramatically decreases the computing 
time, storage space and model complexity. The 
transmitted data or packets are aggregated with 
the transmission cluster heads before being sent 
to BSs by using PCA and ISOMAP, intern reduces 
the communication costs and energy consump-
tion in cluster-based intelligent wireless networks.

Different from supervised learning with an amount of labeled data, unsupervised learning is not 
provided with labels (no output vectors). The objective of unsupervised learning is to analyze the data 
structure and extract the useful information from the training data without any guidance of an explicit 

data of interest. It mainly has two subfields: clustering and dimensionality reduction.
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In addition, demission reduction algorithms 
have the ability to separate the desired signal and 
the noise (or interference) subspace by taking 
the dimension reduction process [11, 14], which 
can significantly decrease the additive noise on 
the channel estimation in intelligent wireless net-
works. As the input variables of each dimension 
may be correlated and some dimensions are also 
mixed with the noise and interference data, which 
directly degrades the network performance if 
those useless and interference data are not fil-
tered properly. After filtering the interference data 
or useless training data, the low dimensional data 
used in the learning models can greatly improve 
the positioning accuracy, parameter estimation 
performance, device behavior prediction, and 
spectrum sensing accuracy.

Reinforcement Learning for Decision Making
Reinforcement learning (RL) refers to a key type 
of machine learning where the agent makes deci-
sions on what actions to take in a certain environ-
ment, in order to maximize some notions of the 
cumulative reward. From now on, various algo-
rithms are used to solve the RL problems, such 
as Markov decision process (MDP), Q-learning, 
policy gradient, actor critic (AC), and deep rein-
forcement learning (DRL) [6].

MDP Models for  
Network Association and Vehicular Routing

Models: MDP provides a mathematical rep-
resentation of the decision making process, and 
in the RL formwork, the optimal policy searching 
process can be modeled as a MDP. The agents 
interact with the environment in discrete time 
steps. At each time, the agent takes the action at 
from the current state st to a new state st+1, and 
calculates the corresponding reward Ut. During 
this process, the probability of moving the current 
state into a new state is described by the transition 
probability P(st+1|st, at). The environment evalu-
ates the quality of the policy based on the imme-
diate reward as well as its cumulative reward, and 
explores the optimal policy in the next time step. 
In MDP, the future states are determined by the 
current state and action rather than the former 
ones, and future states only depend on the cur-
rent state, and the transition probability can be 
conditionally independent, which guarantees the 
Markov property. MDP assumes that the state is 
known when each action is to be taken where the 
environment is fully observable; otherwise the pol-
icy cannot be achieved. When the network knows 
the partial knowledge, the problem is viewed as 
a partially observable Markov decision process 
(POMDP).

Applications: In the context of intelligent wire-
less networks, the MDP/POMDP models can be 
applied to solve the decision making problems 
[4, 10, 11, 14] (e.g., spectrum access, network 
association, energy harvesting and load-balanc-

ing), where the smart devices can be regarded 
as agents and the network constitutes the envi-
ronment. For example, in intelligent wireless net-
works, a large amount of wireless smart devices 
always choose the evolved NodeB (eNB) with 
the best-signal-quality for the attachment, thereby 
leading to serious network congestion and over-
load. For this case, the eNB selection problem 
can be formulated as a MDP/POMDP, where 
the fixed bandwidth of eNB, the limited energy of 
devices and the time-variant channels are defined 
as the environment, and the devices’ connecting 
selection, their transmission power levels and the 
number of transmission packets are regarded as 
the actions.

Considering that there are uncertainties in the 
state of the mobile devices and their actions effect 
the state dynamics, such as the partial observa-
tion of the environment and imperfect position 
tracking/navigation, the decision making prob-
lem can be formulated as a POMDP model under 
the partial knowledge. For instance, in large-scale 
vehicular wireless networks, the traffic situations 
are highly complex, uncertain, dynamic and only 
partially observable; hence, the decision mak-
ing problem (e.g., automated driving, adaptive 
routing) can be formulated as a POMDP model. 
Adopting POMDP in vehicular networks can 
effectively avoid collisions and decrease the traffic 
congestion, enhance the driving safety and vehi-
cle-network resource utilization efficiency [11]. 

Value/Policy-Iteration Learning Models for  
Policy Control

Models: The RL algorithms can be divided into 
two groups: value iteration and policy iteration. 
Value iteration (e.g., Q-learning) starts with a ran-
dom value function and then iteratively updates 
the value function until achieving the optimal 
value function. The best policy can be derived 
based on the optimal value function. By contrast, 
in policy-iteration (e.g., policy gradient), you ran-
domly select a starting policy and iterate toward 
the optimal solution until the policy converges by 
finding the value function of that policy [6].

Q-learning is a model-free and value-iteration 
RL algorithm, which solves the MDP problem 
in an unknown environment. The agent in the 
Q-learning model uses a Q function to estimate 
its accumulated reward.

Policy Gradients (PG) seeks to directly opti-
mize a policy function (instead of a Q function 
in Q-learning) in the policy space. The optimized 
approximation policy is learned by directly maxi-
mizing the expected reward by adopting the gra-
dient methods.

AC combines the benefits of the value-itera-
tion and policy-iteration models, which consists 
of the actor and the critic, where the actor is rep-
resented through adopting a control policy with 
action selections and the critic evaluates the input 
policy by a reward function.

DRL applies the deep learning techniques 
(e.g., deep neural networks) within RL by directly 
using the deep learning network to represent the 
value function or policy model, such as the deep 
Q-learning and deep Q-network.

Applications: The above mentioned RL algo-
rithms have been widely applied in large scale 

Considering that there are uncertainties in the state of the mobile devices and their actions effect the 
state dynamics, such as the partial observation of the environment and imperfect position tracking/navi-
gation, the decision making problem can be formulated as a POMDP model under the partial knowledge.
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intelligent wireless networks, for supporting the 
intelligent decision making [1, 7–11, 14, 15], 
such as resource management, channel access, 
interference coordination, transmission sched-
uling, power control and so on. With the help 
of the RL algorithms, the network has the ability 
to smartly manage its inter-operation and make 
decisions independently among devices with 
minimal human interaction, which makes the 
network with high-level intelligence. For exam-
ple, a large number of smart devices entails a 
significant increase in energy consumption in 
intelligent wireless networks, so the energy min-
imization problem becomes more challenging. 
Hence, the scheduling framework incorporating 
RL enables the scheduler to intelligently develop 
an association between the optimal action and 
the current state of the environment to mini-
mize the energy consumption with variability of 
workloads.

The conventional RL (Q-learning or AC) is 
suitable to make decisions with handcrafted fea-
tures or low-dimensional data, while DRL is able 
to learn their action-value policies directly from 
complex high-dimensional inputs. For instance, 
in dynamic networks, the channel conditions, 
devices’ requirements, and caches’ storage are 
all dynamically changing, the network has a large 
number of environment sates (e.g., devices sta-
tus (sleep or active), channel quality and channel 
status (busy or idle)), DRL has the ability to solve 
the complex and large state-space resource allo-
cation problem by using deep learning algorithms 
instead of estimating the value function and it 
is proven to be more advantageous and more 
robust learning [14].

Case Study: Deep Reinforcement Learning for 
Resource Management

This section presents an actor-critic deep rein-
forcement learning approach (called AC-DRL) 
for intelligent resource management in intelligent 
wireless networks, as shown in Fig. 2. In intelli-
gent wireless networks, all smart devices can be 
regarded as agents and the network constitutes 
the environment. First, each device intelligently 
observes its current network state (e.g., channel 
status (busy or idle), channel quality, devices pri-
ority and traffic load) by integrating with the envi-
ronment. Then, it makes a decision and selects 
an action by itself based on its learned policy 
strategy in a decentralized way. After that, the 
environment provides a new network state and 
an immediate reward. According to the feedback, 
all devices smartly learn a new policy in the next 
step. The optimum parameters of both the actor 
part and the critic part can be achieved with 
an infinite number of learning steps, when the 
AC-DRL learning converges to the optimum value 
function and policy. Finally, the best actions for 
intelligent resource management are achieved in 
intelligent wireless networks. Compared with cen-
tralized intelligent wireless networks, the advan-
tage of decentralized AC-DRL learning is that 
each device can learn independently based on its 
local observation information, rather than continu-
ously exchange information among devices.

The input of the AC-DRL framework is the 
network-state vector s = [s1, …. sM]T with the 

number of M network states. The output of the 
AC-DRL framework is the estimated functions of 
both the actor function vectors A = [A1, …, AM]
T and the critic function V. The multiple hidden 
layers perform computations on the weighted 
inputs (network states) and produce net input, 
which is then applied with activation functions to 
produce the actual output (functions of both the 
actor and the critic). In intelligent wireless net-
works, the optimal policy and intelligent decision 
making (spectrum access, spectrum handoff and 
transmission power control) can be carried out to 
support the network services’ requirements in the 
AC-DRL framework, and it provides considerable 
actions to the physical environment. Generally, 
the learning mechanism is driven by the reward. 
In our proposed leaning framework, the expect-
ed reward considers the successful packet trans-
mission probability, the power consumption and 
the blocking probability in the intelligent wireless 
network [14,  15]. The policy used in the intelli-

TABLE 2. Simulation parameters.

Parameters Values Parameters Values

Number of devices 1000, 500, …, 3500 Background noise power –114dBm

Channel model
Frequency selective 
fading

Number of time slots 5000

Packet size 2000 bits Number of RBs 16

Buffer size 10 packets Number of hidden layers 3

Time slot duration 10 ms Learning rate of NN 0.02

Packet arrival rate 0.01/(10 ms) Training error accuracy 1  10–4

Device power consumption 
in “active” status

35 mW Discount factor 0.002

Device power consumption 
in “sleep” status

1 mW

FIGURE 3. Learning process for the four approaches.
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gent wireless network for spectrum management 
and power control is random at the beginning 
and then gradually improved with the updated 
AC-DRL framework.

Performance Analysis: We evaluate the per-
formance of our proposed AC-DRL approach, 
and compare it with the following approaches: 1. 
Classical AC approach based on PG (denoted as 
AC-PG); 2. Deep Q-network approach (denoted 
as DQN); 3. Random search approach, (denoted 
as random search). We consider that the devices 
are randomly distributed in a circular cell area with 
a radius of 500m; the packet generated by each 
device forms a Poisson process. The devices are 
divided into two priority levels, where the resource 
blocks (RBs) first are allocated to the devices with 
the higher priority level [15]. The main simulation 
parameters are listed in Table 2 [11, 15].

Figure 3 shows the learning process of the four 
approaches in terms of the reward performance 
when the number of smart devices is 2500. We 
can see that the three RL approaches greatly out-
perform the random search approach; specifically, 
the proposed AC-DRL approach achieves the best 
reward performance with the fastest convergence 
rate compared with the other three approaches. 
For the DQN approach, it needs to search the 
Q function approximator, which may fail misera-
bly with the huge number of devices. In addition, 
the AC-PG learning approach has a fast conver-

gent rate, but it may converge to the local optimal 
point. For the random search approach, its per-
formance is the worst among the four approach-
es, because it randomly searches the policy only 
based on the current immediate reward, but it 
has the simple control structure. Our proposed 
approach adopts the deep learning network to 
approximate both the actor function and critic 
function, and the optimal policy will be learned 
after a finite number of learning steps.

Figure 4 shows the performance compar-
ison for the four approaches with the range of 
the number of devices in intelligent wireless net-
works. The network resource is limited and fixed, 
when a large number of devices’ packets need to 
be transmitted as the increase in devices, which 
results in the frequent handover process, blocking 
and retransmission, all these factors increase the 
average packet delay and decrease the successful 
transmission probability, thus the lower reward is 
obtained in the large number of devices regions. 
In addition, the high frequent handover and 
retransmission increase the extra power consump-
tion. However, the RL approaches significant-
ly outperform the random search approach by 
searching the best transmission scheduling policy, 
especially in the large number of devices regions. 
Moreover, the proposed approach achieves the 
best performance among them, which proves that 
it is a great intelligent learning approach to deploy 

FIGURE 4. Performance comparison in terms of a) average delay per packet; b) successful transmis-
sion probability; c) average power consumption per device; d) reward versus a number of smart 
devices. 
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the intelligent resource management for intelli-
gent wireless networks.

Conclusions
The key challenge for future wireless networks 
is how to intelligently support the huge number 
of wireless smart devices and machines under 
diverse service requirements. In this article, we 
have briey provided a comprehensive survey of 
the major families of machine learning algorithms 
and discussed their potential applications in the 
context of intelligent wireless networks, in order 
to facilitate future networks with high-level intelli-
gence. Furthermore, an exemplary case study and 
simulation analysis of intelligent resource manage-
ment are provided to demonstrate the advantage 
and significance of machine learning in intelligent 
wireless networks. In a nutshell, machine-learn-
ing-based physical layer design, decision making, 
network management and resource optimization 
is an exciting area for future intelligent wireless 
networks.
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