Hélène Vitet

Hélène Vitet
Taipei Medical University | TMU

Doctor of Philosophy

About

14
Publications
1,368
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
160
Citations
Introduction

Publications

Publications (14)
Article
Huntington disease (HD) is a neurodegenerative disorder caused by polyglutamine-encoding CAG repeat expansion in the huntingtin (HTT) gene. HTT is involved in the axonal transport of vesicles containing brain-derived neurotrophic factor (BDNF). In HD, diminished BDNF transport leads to reduced BDNF delivery to the striatum, contributing to striatal...
Preprint
Full-text available
Neurotransmitters are released at synapses by synaptic vesicles (SVs), which originate from SV precursors (SVPs) that have traveled along the axon. Because each synapse maintains a pool of SVs, only a small fraction of which are released, it is unclear whether axonal transport of SVPs modifies synaptic function. Here, studying the corticostriatal n...
Thesis
Full-text available
Neuronal circuits are at the basis of behaviors such as motor coordination or learning and memory. As being part of a network, neurons communicate at synapses through finely tuned molecular and cellular processes. One key mechanism regulating synapse homeostasis involves transport of vesicles within axons and dendrites which is dysregulated in many...
Article
Over the past twenty years there have been numerous advances in our understanding of Huntington’s disease (HD) and other neurodegenerative proteopathies such as Alzheimer’s disease and Parkinson’s disease. In each case, disease-specific proteins are expressed and accumulate; what has been less clear is precisely what problems are caused by the accu...
Article
Full-text available
Studies have suggested that amyloid precursor protein (APP) regulates synaptic homeostasis, but the evidence has not been consistent. In particular, signaling pathways controlling APP transport to the synapse in axons and dendrites remain to be identified. Having previously shown that Huntingtin (HTT), the scaffolding protein involved in Huntington...
Article
Full-text available
Studies have suggested that amyloid precursor protein (APP) regulates synaptic homeostasis, but the evidence has not been consistent. In particular, signaling pathways controlling APP transport to the synapse in axons and dendrites remain to be identified. Having previously shown that Huntingtin (HTT), the scaffolding protein involved in Huntington...
Article
Full-text available
Studies have suggested that amyloid precursor protein (APP) regulates synaptic homeostasis, but the evidence has not been consistent. In particular, signaling pathways controlling APP transport to the synapse in axons and dendrites remain to be identified. Having previously shown that Huntingtin (HTT), the scaffolding protein involved in Huntington...
Article
Full-text available
KIF21B is a kinesin protein that promotes intracellular transport and controls microtubule dynamics. We report three missense variants and one duplication in KIF21B in individuals with neurodevelopmental disorders associated with brain malformations, including corpus callosum agenesis (ACC) and microcephaly. We demonstrate, in vivo, that the expres...
Preprint
Full-text available
Studies have suggested that amyloid precursor protein (APP) regulates synaptic homeostasis, but the evidence has not been consistent. In particular, signaling pathways controlling APP transport to the synapse in axons and dendrites remain to be identified. Having previously shown that Huntingtin (HTT), the scaffolding protein involved in Huntington...
Article
Full-text available
Mutations in the X-linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder for which there is no treatment. Several studies have linked the loss of MeCP2 function to alterations of brain-derived neurotrophic factor (BDNF) levels, but non-specific overexpression of BDNF only partially improves the phenotype of Mecp2...
Preprint
Mutations in the X linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder for which there is no treatment. Several studies have linked the loss of MeCP2 function to alterations of brain-derived neurotrophic factor (BDNF) levels, but non-specific overexpression of BDNF only partially improves the phenotype of Mecp2...
Article
The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of thousands of genes. Consistent with the various biological functions under clock control, rhythmic gene expression is tissue-specific despite an identical clockwork mechanism in every cell. Here we show that BMAL1 DNA binding is lar...
Preprint
Full-text available
Abtsract The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of thousands of genes. Consistent with the various biological functions under clock control, rhythmic gene expression is tissue-specific despite an identical clockwork mechanism in every cell. Here we show that BMAL1 DNA bindi...
Article
Moesin, a protein of the ezrin, radixin, and moesin family, which links the plasma membrane to the cytoskeleton, is involved in multiple physiological and pathological processes, including viral budding and infection. Its interaction with the plasma membrane occurs via a key phosphoinositide, the phosphatidyl(4,5)inositol-bisphosphate (PIP2), and p...

Network

Cited By