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Summary. Traffic particle concentrations show considerable spatial variability within a metro-
politan area. We consider latent variable semiparametric regression models for modelling the
spatial and temporal variability of black carbon and elemental carbon concentrations in the
greater Boston area. Measurements of these pollutants, which are markers of traffic particles,
were obtained from several individual exposure studies that were conducted at specific house-
hold locations as well as 15 ambient monitoring sites in the area. The models allow for both
flexible non-linear effects of covariates and for unexplained spatial and temporal variability in
exposure. In addition, the different individual exposure studies recorded different surrogates
of traffic particles, with some recording only outdoor concentrations of black or elemental car-
bon, some recording indoor concentrations of black carbon and others recording both indoor
and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure
that specifies a spatially varying latent variable provides greater spatial coverage in the area
of interest. We propose a penalized spline formulation of the model that relates to generalized
kriging of the latent traffic pollution variable and leads to a natural Bayesian Markov chain Monte
Carlo algorithm for model fitting. We propose methods that allow us to control the degrees of
freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis
that applies the model to data from summer and winter separately.

Keywords: Air pollution; Markov chain Monte Carlo methods; Penalized splines; Predictions;
Spatiotemporal models

1. Introduction

The potential health effects of ambient air pollution are a major public health issue that has
received much attention over the past several decades. Many studies in the USA, Europe and
elsewhere (Pope et al., 1995; Dominici et al., 2002a; Gryparis et al., 2004) have shown that even
small increases in levels of air pollution are associated with increased rates of mortality and
morbidity. Although the relative rates that are associated with the observed effects are small,
exposure affects a large population, making their public health impact substantial. Thus, in
spite of improvements in air quality in many developed countries, urban air pollution remains
a major focus of public health concern and regulatory activity.

Exposure assessment studies have shown that there are important factors, such as different
traffic conditions, point sources of pollution and urban building canyon effects, that induce spa-
tial variability in pollution levels within an urban environment. With the advent of modelling
based on geographic information systems, environmental epidemiologists have begun to focus
on the spatial variability in air pollution and its relationship with human health (Kunzli et al.,
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2005). Such spatial analyses have several advantages over daily time series studies that assign
exposure readings from a central site monitor to all study participants. First, spatial analyses
do not assume that exposure is constant over the region of interest, thereby avoiding exposure
measurement error that would otherwise lead to a loss of power. Second, it is now widely recog-
nized that air particulates are a complex mixture of multiple sources of pollution, with pollution
from each source having a distinct chemical profile. The National Research Council has made
the assessment of source-specific health effects a research priority (National Research Coun-
cil, 1998), and early epidemiologic (Laden et al., 2000) and toxicological results (Batalha et al.,
2002; Wellenius et al., 2003) suggest that emissions from different sources exhibit differing levels
of toxicity. Because pollutants from different sources have different spatial distributions, with
regional pollutants (i.e. sulphates from coal-fired power-plants) being more homogeneous over
space and local sources (i.e. black carbon (BC) from traffic emissions) demonstrating higher
spatial variability, incorporation of the spatial variability of local pollutants in a health effects
analysis helps to separate health effects from different sources.

In this paper we propose semiparametric latent variable regression models for modelling
multiple surrogates of a single pollution source. The models are motivated by research studies
at the Harvard School of Public Health (HSPH) that measured BC and elemental carbon (EC)
concentrations, which are well known to be markers of traffic pollution (Janssen et al., 1997),
across the Boston metropolitan area. Interest focuses on using such data to construct predic-
tions of subject-specific, short-term and long-term average pollution exposures from mobile
sources for use in spatial health effects analyses. The models, which combine attractive features
of geoadditive models for spatial data (Kammann and Wand, 2003) and latent variable models
for multiple exposures (Budtz-Jorgensen et al., 2003), allow for both flexible non-linear effects of
covariates and for unexplained spatial and temporal variability in exposure. We use a penalized
spline formulation to specify temporal and spatial correlations on the latent pollution variable,
which is a form of generalized kriging on this latent quantity (Ruppert et al. (2003), chapter
13). Our penalized spline formulation of the model leads to a natural Bayesian Markov chain
Monte Carlo algorithm for model fitting.

There is now a large literature on spatiotemporal modelling of air pollution data in the sta-
tistical literature. Berhane et al. (2004) and Li and Zidek (2004) outlined several strategies for
modelling spatial pollution levels for use in health effects studies. Berhane et al. (2004) described
efforts to model jointly different species of pollutants, such as NO2 and O3, by using Bayes-
ian approaches. Because computations in general spatiotemporal models are often intensive,
interest has focused on separable, over time and space, models (Gelfand et al., 2001). Guttorp
et al. (1994) modelled hourly ozone by using a spatial covariance approach (Sampson and Gut-
torp, 1992), allowing the parameters of the model to vary as a function of time of the day. Carroll
et al. (1997) used a spatially homogeneous and temporally stationary space–time model to study
hourly ozone exposure in Texas. They used an error structure in which the correlation in the
residuals was a non-linear function of time and space. Carlin and Banerjee (2002) and Daniels
et al. (2006) proposed computationally efficient methods for conditionally specified models.
Shaddick and Wakefield (2002) used a hierarchical dynamic linear model to model data on four
different pollutants measured at eight monitoring sites in London. Their approach combines
information on multiple pollutants from multiple sites to provide predictions of pollution levels
at locations where no measurements have been taken. Smith et al. (2003) proposed a method of
analysing spatiotemporal data that decomposes spatial–temporal data into deterministic non-
parametric functions of time and space, linear functions of other covariates and a random
component that is spatially but not temporally correlated. They used the resulting model for
spatial interpolation and for estimation of a spatially dependent temporal average. Huerta et al.
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(2004) modelled hourly ozone concentrations in Mexico City by using a time-varying regression
for air temperature. Kibria et al. (2002) developed a multivariate spatial model for data that
have a monotone pattern. They applied their methodology to map particulate matter less than
2.5 μm in diameter (PM2:5) in Philadelphia during the period from May 1992 to September
1993.

Our models are similar to the Bayesian models of Shaddick and Wakefield (2002) and Ber-
hane et al. (2004), in that we consider spatiotemporal models of multiple pollutants measured
daily at multiple monitoring sites. However, these other researchers considered multivariate
normal formulations with a general variance–covariance matrix for the joint distribution of
these pollutants at any given time. In our setting, previous exposure assessments on the rela-
tionship between indoor and outdoor BC levels as well as outdoor EC levels suggest a non-linear
latent variable formulation, as discussed in Section 5. Because we build these models with an
eye towards using predicted exposure to traffic pollution in health effect analyses, this latent
variable formulation has the advantage that it reduces the dimensionality of the multiple sur-
rogates, providing a single well-defined measure of exposure to pollution from mobile sources.
Another difference between the two approaches is that our formulation allows us to incorporate
non-linear covariate effects in the model easily.

Arminger and Muthen (1998) presented a Bayesian structural equation model with a non-lin-
ear measurement component. In their case the model includes quadratic forms and interactions
of the latent variables. Our model is more general, since it does not have to be polynomial in the
latent variables nor linear in the parameters. We assume conditional normal distributions for
the log-transformed readings of the air pollutants, conjugate normal prior distributions for the
coefficients and conjugate inverse gamma distributions for the variance components. Our results
did not show any discrepancies from the above assumptions, and the model fit was satisfactory.

The structure of this paper is as follows. Section 2 describes the motivating data, and Section
3 presents the proposed non-linear structural equation model. Section 4 describes our Bayesian
approach to estimation and inference. Section 5 presents the analysis of the air pollution data
from Boston and is followed by a concluding discussion in Section 6.

2. Description of the data

Outdoor monitoring data from mostly three Boston area monitoring studies were used to de-
velop our model. In two of these studies, BC, a surrogate measure of EC, was measured con-
tinuously by using aethalometers, whereas in the third study EC concentrations were measured
over 24-h periods on the basis of particle collection on a quartz fibre filter and thermal opti-
cal reflectance analysis. BC concentrations measured by using aethalometers have been shown
to agree well with 24-h integrated filter-based EC measurements using an internal empirically
determined conversion factor (Allen et al., 1999). Fig. 1 shows the monitoring locations in the
greater Boston area.

Hourly outdoor BC concentrations were obtained from a monitoring study that was designed
to examine spatial variability in traffic-related pollutant concentrations conducted by the North-
east States for Coordinated Air Use Management. In this study, outdoor BC concentrations
were measured at 12 sites along a west–north-west line from down-town Boston, generally away
from large sources of local mobile source emissions. Five of these sites were in down-town Bos-
ton, one site was in a rural community and the remaining six sites were in suburban communities.
The farthest site was 35 km outside Boston. In addition to the Northeast States for Coordinated
Air Use Management monitors, outdoor BC concentrations were measured at two sites that
were selected by the Massachusetts Department of Environmental Protection as well as on the
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Fig. 1. Plot of all the available monitors in the greater Boston area

roof of the HSPH by the HSPH Department of Environmental Health. Concentrations at these
15 ambient monitoring sites were collected over different time periods (Fig. 2), with concentra-
tions measured over the longest time periods at two monitors (monitors 5 and 6, in Fig. 2), from
1999 until the end of 2004. Monitoring data from the remaining sites were collected for some
months in 2003. Hourly data were aggregated into 24-h concentrations to reduce the noise in
the hourly measurements and to allow comparisons with other data. In total, data from this
study provided 6031 24-h observations over 2079 days.

Hourly outdoor–indoor BC concentrations were also measured as part of a study funded
by the National Institute of Environmental Health Sciences of air pollution and heart rate
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Fig. 2. Monitors over time (April 1st, 1999–December 9th, 2004): 1, indoor BC, APAHRV study; 2, outdoor
BC, APAHRV study; 3, outdoor EC, EPA; 4–8, outdoor BC, ambient monitors

variability (APAHRV) that was conducted at the HSPH beginning in 1999. As part of this study,
hourly BC concentrations were measured inside the homes of 45 subjects, and simultaneously
outside the homes of 30 of these subjects, using aethalometers. BC measurements were made
at each subject’s home over a 48-h period, with most subjects having concentrations measured
over multiple 48-h periods. Participants were selected on the basis of their health status and their
residence location. This location was required to be within Interstate 495, which loops around
the greater Boston area. Outdoor BC concentrations were measured on 268 days, with indoor
concentrations measured on 318 days. On a small number of days, indoor concentrations were
measured at two homes. As with the Northeast States for Coordinated Air Use Management
data, hourly data from this study were averaged over 24-h periods. Indoor BC concentrations
from this study were included in our latent variable model to enrich our spatial predictor with
15 more locations, to obtain additional temporal information (especially for years 1999 and
2000) and to increase our predictive power.

Outdoor EC concentrations were obtained from a multipollutant exposure study of sensitive
individuals that was funded by the Environmental Protection Agency (EPA). As part of this
study, 24-h (9 a.m.–9 a.m.) outdoor concentrations were measured for numerous pollutants,
including EC, at 23 homes throughout metropolitan Boston. At each home, measurements were
collected for seven consecutive days in either or both winter and summer 2000. Homes were
selected for the study on the basis of willingness to participate and residents’ age or health
profile. From this study, a total of 188 EC measurements from 23 different locations on 61 days
were included in the model.

Since outdoor measurements from individual exposure studies and ambient monitors both
provide measures of outdoor air pollution, we do not distinguish between them. Although
Table 1 shows some differences between particle levels from these various sources of informa-
tion, this is probably because of spatial and temporal heterogeneity in levels and the fact that
different monitors were sampled at different times. Hence we treat both ambient and outdoor
readings as outdoor measurements and focus on 24-h averages (9 a.m.–9 a.m.) of the avail-
able pollutants. The first three rows in Fig. 2 show the aggregate data of different sites from
the individual exposure studies, whereas the remaining rows show the data from the ambient
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Table 1. Summary statistics for the available pollutants, by season

Pollutant Results for winter (μg m−3) Results for summer (μg m−3)

Observed Mean Mini- Maxi- Standard Observed Mean Mini- Maxi- Standard
mum mum deviation mum mum deviation

Ambient BC 1889 0.64 0.03 4.50 0.64 2062 0.95 0.05 4.80 0.56
Outdoor BC 115 0.63 0.04 2.49 0.45 153 0.55 0.08 2.52 0.39

(APAHRV)
Indoor BC 150 0.47 0.05 1.62 0.33 168 0.54 0.06 2.33 0.37

(APAHRV)
Outdoor EC 93 2.26 0.09 6.54 1.37 95 1.37 0.58 4.66 0.68

(EPA)

monitoring sites. Table 1 presents some descriptive statistics of the BC and EC concentrations.
As shown in Fig. 1, most of the ambient monitors are in the main Boston area, whereas the
outdoor monitors from the APAHRV study are spread throughout our study area. Air pollution
levels are higher in the main Boston area on average and exhibit a larger variability as shown in
Table 1.

In addition to the pollution data, we obtained 24-h integrated meteorological data from the
Boston Logan Airport. Moreover, for each given location we obtained spatial measures (such as
the amount of traffic activity in a particular area) and socio-economic variables from the census,
using the ArcGIS 9 software. We used both sets of variables as covariates in our model. The
covariates that are included in our final model are (see Section 5 for details on model building)

(a) the day of the season DOS (since we fit separate models for winter and summer, this
variable is defined from 1 to 184),

(b) indicator variables for the year,
(c) indicator variables for the day of the week,
(d) residuals of daily average apparent temperature, RDAAT, residuals from a generalized

additive model of daily average apparent temperature, DAAT, defined as

DAAT=−2:653+0:944.daily average temperature/+0:0153.daily average dew point/2,

regressed as a smooth function of DOS. We select the smoothing parameter via general-
ized cross-validation,

(e) daily average wind speed WS,
(f) cumulative average traffic density CADT (measures based on geographical information

systems of cumulative traffic density within 100 m at a given location, obtained from the
ArcGIS 9 software, measured once for each location),

(g) daily outdoor log(BC) readings from the central monitor at the HSPH (HSPHlogBC) (we
chose this specific monitor because it is located in Boston metropolitan area, has been
running regularly since early 1999 and is an on-going monitor; more importantly, plans
exist to run this monitor well into the future),

(h) longitude long and latitude lat at a given monitoring location and
(i) air-conditioning use AC, use of air-conditioning in the home, defined as ever or none

(not day specific).

Extensive preliminary analyses did not identify any other variables as potential predictors.
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3. Non-linear structural equations model

We use the available data that were described in Section 2 to model daily traffic particles in the
greater Boston area. Consider the p× 1 observation Yij = .Yij,1, Yij,2, . . . , Yij,p/T available for
location i, i=1, . . . , n, on day j, j =1, . . . , Ji. The p different measurements Yij,k, k =1, . . . , p,
correspond to the various markers that have been observed. We combine these markers in a
structural equation model (Bollen, 1989) via an unobserved latent variable, which reduces the
dimensionality of the data and gains predictive efficiency. In our example, the different pollu-
tion markers are surrogates for a common latent variable ηij representing particles from mobile
sources. Extensions to more than one latent variable are conceptually straightforward.

A typical structural equation model comprises two components: the measurement compo-
nent and the structural component. In the measurement component, the observed variables Yij

are considered manifestations of a limited number of underlying latent variables. Typically this
component is expressed as a linear factor analytic model, with a notable exception being the
non-linear formulations of Yalcin and Amemiya (2001). The structural component relates the
latent variables to one another as well as to observed covariates.

3.1. Measurement model
Following Yalcin and Amemiya (2001), we consider a non-linear factor analytic model. Moti-
vated by the Boston data and notational simplicity, we consider a univariate latent variable
model of the form

Yij =g.Λi, ηij/+εY
ij, .1/

where ηij represents the unobservable latent variable (in our example, traffic particles at location
i on day j) and εY

ij is a p×1 unobservable error vector with mean zero, p×p covariance matrix
Σ" having diagonal elements σ2

Y ,1, σ2
Y ,2, . . . , σ2

Y ,p. Here, g.Λi, ηij/ is a p-variate function of ηij

indexed by a matrix of factor loadings Λi. We assume that the latent variable ηij and the errors
εY

ij are independent. In this formulation we allow the interrelationships between the observed
variables that are not explained by the underlying common factor to be captured by the full
residual covariance matrix.

In the Boston application it is likely that the factor loadings vary across households, as homes
with air-conditioning exhibit weaker associations between indoor–outdoor pollution concen-
trations than homes without air-conditioning (Sarnat et al., 2000). Let � represent the set of all
Boston households. We allow the factor loadings Λi to be a function of covariates, such that

vec.Λi/=XΛ
i Δ+εΛ

i , i∈�, .2/

where the bth component of εΛ
i has a mean zero normal distribution with variance σ2

Λ,b. In this
equation, vec refers to stacking the columns of a matrix one under the other to form a single
column. We refer to equation (2) as the association model.

3.2. Structural model
We extend the non-linear model of Yalcin and Amemiya (2001) by specifying a semipara-
metric regression model for ηij. Specifically, we specify a geoadditive model (Kammann and
Wand, 2003) for the latent variable. This is a flexible approach, since a geoadditive model allows
for smoothed but otherwise unspecified functions of covariates along with spatial smoothing.
Such models have been used extensively in environmental epidemiology, adjusting for non-
linear effects of temporal, meteorological and spatial patterns. In our example, traffic-related
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pollution is known to vary seasonally and also to be influenced by meteorological factors, with
these effects often being non-linear. The model is

ηij =WT
ijβ+

q∑
l=1

fl.sl, ij/+h.geogij/+ "
η
ij, .3/

where fl.·/, l = 1, 2, . . . , q, is an unspecified smooth function reflecting the non-linear effect of
sl, ij on ηij, geogij = .lati, longi/, h is a bivariate smooth function of geography and Wij contains
covariates having a linear effect on ηij. We assume that the errors "

η
ij are independent normal

random variables with mean 0 and constant variance σ2
η .

We use a mixed model formulation of a penalized spline for all univariate non-parametric terms
fl.·/ in equation (3). Specifically, we approximate each smooth function fl.·/ by a linear com-
bination of cubic radial basis functions with random coefficients. Let N be the total number of
observations and Xl be the N × 1 vector containing covariate values sl, ij, for i = 1, . . . , n and
j =1, . . . , Ji. Let κl

1, . . . , κl
Kl

be a set of Kl distinct knots which are placed within the range of the
observed sl, ij-values. We place knots at the sample quantiles of the unique covariate values, up
to a maximum 35 knots (Ruppert, 2002). Let fl denote a vector containing the values fl.sl, ij/ for
all i=1, . . . , n, j =1, . . . , Ji. The mixed model formulation of a penalized spline model for fl is

fl =Xlβl +Zlul =Clwl,

where wl = .βl, ul
T/T and Cl = .Xl|Zl/ with the matrix Zl defined as

Zl .N ×Kl/= Z̃lΩ
−1=2
l ,

where

Z̃l .N ×Kl/=
(

|sl, ij −κl
k|3

1�k�Kl

)
1�i�n,1�j�Ji

,

Ωl .Kl ×Kl/=
(

|κl
k′ −κl

k|3
1�k, k′�Kl

)
:

Finally, we assume that

(
ul

εη

)
∼N

{(
0
0

)
,
(

σ2
f ,lIKl

0
0 σ2

ηIN

)}
:

The variance ratio σ2
η=σ2

f ,l acts as the smoothing parameter for fl.·/. A small value of σ2
f ,l leads

to a nearly linear fit for fl.·/, whereas a large value leads to overfitting.
We estimate the bivariate function h.·/ of longitude and latitude by using thin plate splines,

an extension of smoothing splines to multiple dimensions (Nychka, 2000). In the bivariate case,
knots κh

k , k = 1, . . . , Kh, are placed at locations within the region of interest. Let S.·/ denote
the generalized covariance function S.r/ = r2 log |r| and let h denote a vector with elements
h.geogij/, i=1, . . . , n, j =1, . . . , Ji. Let Xsp be the N ×2 matrix with rth row containing the rth
value of geogij, i=1, . . . , n, j =1, . . . , Ji. A thin plate spline representation of h is

h =Xspβsp +Zspusp:

Here, usp ∼N.0, σ2
spIn/ and the matrix Zsp is defined as Zsp .N ×Kh/= Z̃spΩ−1=2

sp , where
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Z̃sp .N ×Kh/=
(

S
(‖geogij −κh

k‖)
1�k�Kh

)
1�i�n,1�j�Ji

,

Ωsp .Kh ×Kh/=
(

S
(‖κh

k −κh
k′ ‖

)
1�k, k′�Kh

)
:

Taken together, the full geoadditive model (3) can be written as a single mixed model:

η=Xβ+Zu +εη

=Cw +εη, .4/

where X = .1|W|X1|X2|. . . |Xq|Xsp/, Z= .Z1|Z2|. . . |Zq|Zsp/, C= .X|Z/ and w = .βT, uT/T. In
this formulation u = .uT

1 , uT
2 , . . . , uT

q , uT
sp/, with

u ∼N

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0
:::

0
0

⎞
⎟⎟⎟⎟⎠,Σu =

⎛
⎜⎜⎜⎜⎜⎝

σ2
f ,1IK1 0 . . . 0 0

:::
: : :

:::

0 0 · · · σ2
f ,qIKq 0

0 0 · · · 0 σ2
spIn

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

:

Therefore, our full non-linear structural equations model is described by equations (1), (2)
and (4).

A common convention in geoadditive models is to centre the curve estimates about their
means. This results in coefficients that can be interpreted as effects about the mean. More-
over, this approach improves mixing and convergence properties of the Markov chain Monte
Carlo (MCMC) iterations. Let C= .1|Cr/ be a partition of C into the intercept column and the
remainder. We then work with

C̄= .1|.IN − .1=N/11T/Cr/, .5/

rather than C. This convention is adopted in our analysis in Section 5.

3.3. Identifiability
Identifiability is an important issue in latent variable modelling. In a linear model, a particular
lower dimensional structure may be expressed by using many equivalent parameterizations. To
address such issues, we use the errors-in-variables parameterization for a latent variable model
(Joreskog, 1970; Joreskog and Sorbom, 1989; Yalcin and Amemiya, 2001). To achieve iden-
tifiability, this parameterization places the constraints only on the loading matrix and leaves
the distribution of the factor unrestricted. In model (1), the factor ηij is identified on the same
scale as one of the components of Yij and is measured with error by that component. We write
Yij = .Yij,p−1, Yij,p/ for .p− 1/× 1 Yij,p−1 and scalar Yij,p, and partition εY

ij = .εY
ij,p−1, "Y

ij,p/

analogously. Then the non-linear model (1) can be written as

Yij,p−1 =g.Λi, ηij/+εY
ij,p−1, .6/

Yij,p =ηij +εY
ij,p: .7/
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All model parameters are fully identifiable in equations (6) and (7) when we have all readings
at each location and time point. In the case of missing data, the above model (with the intro-
duction of additional matrices that map the observed variables to the corresponding elements
of η) still produces consistent estimates, but larger standard errors, as long as we have enough
measurements for all possible pairs of the three traffic pollution markers. This is not so in the
Boston air pollution data set, and we discuss this further in Section 5.

3.4. Degrees of freedom
Degrees of freedom df are crucial for quantifying the amount of smoothing. In our full model
(4)–(7), we can easily calculate the overall df for the structural component of the model, despite
its non-linear structure. Following standard degrees-of-freedom formulae for penalized spline
models (Ruppert et al., 2003), we have

df= tr{C̄.C̄TC̄+σ2
ηV−1/−1C̄T},

with

V =

⎛
⎜⎜⎜⎜⎜⎝

Sβ 0 0 . . . 0 0
0 σ2

f ,1IK1 0 . . . 0 0
:::

: : :
:::

0 0 0 · · · σ2
f ,qIKq 0

0 0 0 · · · 0 σ2
spIn

⎞
⎟⎟⎟⎟⎟⎠

,

where Sβ is the prior covariance matrix that corresponds to the vector β.
For these models, we define df for a specific non-linear component fl.sl, ij/ similarly as the

trace of the matrix mapping observations to fitted values. Let C̄l be the partition of the columns
of the design matrix that corresponds to sl (as described in Section 3.2). Then the df that is
associated with this term can be shown to equal

dfl = tr{C̄l.C̄T
l C̄l +σ2

ηVl
−1/−1C̄T

l }, .8/

where

Vl =
(

Sβ,l 0
0 σ2

f ,lIKl

)

and Sβ,l is the prior variance for βl. Although this definition of df arises from the mixed model
framework, it matches the definition that is used for ridge regression formulations of penalized
splines (Ruppert et al., 2003).

4. Estimation and inference

We take a Bayesian approach to estimation and inference and assign prior distributions to the
parameters of interest. Although the joint distribution is analytically intractable, samples from
this distribution can be generated in a straightforward way by using MCMC methods (Gelfand
and Smith, 1990). For the full conditional distributions of the parameters that have closed forms,
we use a Gibbs sampler to update the MCMC sampler. For the full conditionals for which direct
sampling is impossible, we update our MCMC algorithm by using a Metropolis–Hastings (MH)
step. Once the chain has converged, we obtain a sample of the model parameters from their
posterior distributions. The resulting sample can be used for inference and predictive purposes.
Section 4.1 and Appendix A outline the prior specification, and Appendix B provides the forms
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of the full conditionals that are necessary for the Boston model sampler, given our choices
for the prior distributions. R programs (R Development Core Team, 2003) for implementing
MCMC sampling for the latent variable models proposed are available from the first author on
request.

4.1. Prior specification
We take the prior distribution of β to be a multivariate normal distribution of the form β ∼
N.0, Sβ/, for some covariance matrix Sβ . It is common practice to take Sβ to be diagonal with
very large entries, corresponding to independent, non-informative but proper and conjugate
priors on the entries of β. For the covariance matrix Σ", we use a prior distribution that is
motivated by the application, which we discuss further in Section 5.

For the variance components σ2
f ,l, l = 1, 2, . . . , q, corresponding to the smoothing par-

ameters for the univariate smooth terms, we use inverse gamma distributions: σ2
f ,l ∼ Inv-

gamma.αf ,l, βf ,l/, where the density function of such a distribution is

p.x|α, β/=βα exp.−β=x/

Γ.α/xα+1 ,

for α>0 and β >0. Under the Bayesian framework, the dfs for the smooth functions, which are
directly related to the variance components σ2

f ,l, are random variables. To restrict df and to avoid
undersmoothing or oversmoothing, we use the method of moments to specify the hyperparam-
eters; hence, we choose αf ,l and βf ,l so that the prior distribution of dfl is concentrated around
the mean df that is suggested from prior exposure studies. For instance, for each season, we use
3 degrees of freedom each for the average seasonal trend, the residuals of apparent temperature
and wind speed, and 2 degrees of freedom each for the cumulative estimated average of traffic
density. To do so, we define a joint prior distribution for the variance components σ2

η and σ2
f ,l

as the product of a marginal prior for σ2
η and a prior for σ2

f ,l conditional on σ2
η :

.σ2
η , σ2

f ,l/= .σ2
η/.σ2

f ,l|σ2
η/: .9/

This conditional specification of the prior distribution for each σ2
f ,l avoids oversmoothing. The

resulting full conditional distribution of σ2
η is no longer an inverse gamma distribution, and to

draw samples from it we use the MH algorithm. The precise specification for the example is
given in Appendix A.

For the variance component of the bivariate spatial term h.·/ we use a vague, but proper,
inverse gamma prior specification. Hence, we allow the posterior df for this term to be data
driven. In the case that we want to restrict df for the bivariate smooth term as well, we can use
a conditional specification of the joint prior distribution for σ2

η and σ2
sp which is analogous to

that specified above for the univariate smooth terms.
For the elements of Λi, we choose vague normal or log-normal prior distributions (as moti-

vated by the application) and, for the elements of Δ, we choose vague normal priors. For the
Boston data application we discuss this further in Section 5.

5. Analysis of Boston data

As discussed in Section 2, the Boston air pollution data consist of outdoor and indoor mea-
surements of BC as well as outdoor measurements of EC. All the measurements were averaged



194 A. Gryparis, B. A. Coull, J. Schwartz and H. H. Suh

over 24-h periods (9 a.m.–9 a.m.), and the analysis was performed on the daily level. We are
interested in the association between our latent variable, traffic-generated particle pollution,
and the observed readings for the various markers of traffic particles. These measures come
from our monitoring network and possibly include measurement error.

Using the error-in-variables parameterization, we set the measured log-transformed outdoor
BC equal to the latent variable plus measurement error. We log-transformed the measured pol-
lutant concentrations to obtain a more symmetric distribution. Hence, the latent variable ηij is
expressed on the scale of the log-transformed outdoor BC.

Previous exposure assessment studies suggest that indoor levels of BC are primarily of out-
door origin, with indoor sources of BC contributing a relatively small amount to overall levels
(Brunekreef et al., 1997). Thus, assuming no indoor sources of BC, a simple and intuitive con-
ditional mean model for the association between indoor and outdoor BC is

E.BCI
ij|BCO

ij/= ζBCO
ij,

where BCI
ij and BCO

ij are the indoor and outdoor BC concentration respectively and ζ is the
penetration efficiency of BC. Since our latent variable ηij is expressed as outdoor log(BC) at
location i, day j, the above relationship motivates a log-linear model for BCI

ij.
In contrast, exposure assessment studies (Allen et al., 1999) have shown a linear relationship

between outdoor BC and EC with non-zero intercept, e.g.

ECij = .γ0 +γ1BCij/ exp."Y
ij,3/,

where the errors "Y
ij,3 are normally distributed. This formulation takes into account the skewness

of EC. Hence, the overall measurement part of the model is

Yij,1 = log.BCO
ij/=ηij + "Y

ij,1, .10/

Yij,2 = log.BCI
ij/=α0i +α1ηij + "Y

ij,2, .11/

Yij,3 = log.ECO
ij/= log{γ0 +γ1 exp.ηij/}+ "Y

ij,3, .12/

such that Λi = .α0i, α1, γ0, γ1/ and the error terms εY
ij = ."Y

ij,1, "Y
ij,2, "Y

ij,3/T are assumed to be
distributed as εY ∼N.0,Σ"/.

Recent exposure assessment research shows that the penetration efficiency of particles depends
on properties of the building. For instance, Sarnat et al. (2000) showed that, as we would expect,
the use of air-conditioning in the summertime weakens the association between indoor and
outdoor readings of a pollutant. Therefore, to avoid bias that is associated with assuming a
common penetration efficiency ζ, we add an additional level to our model that allows the asso-
ciation between indoor and outdoor BC at a given location to depend on air-conditioning use.
This association component of the model uses information from the houses that provide indoor
BC data. We assume that

α0i = δ0 + δ1ACi + "α
i , for i∈�, "α

i ∼N.0, σ2
α0/, .13/

and ACi is an indicator variable reflecting whether a household has air-conditioning. Although
this variable may appear irrelevant for the winter period, it is possible that it reflects socio-
economic information on a household and thus increases our predictive power.

Our final form of the structural component of our model for location i, day j, is
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ηij =WT
j β +f1.DOSj/+f2.RDAATj/+f3.WSj/+f4.CADTi/+h. geogij/+ "

η
ij, .14/

where the vector WT
j consists of the intercept term, indicator variables for the day of the week,

indicator variables for the year and outdoor log(BC) readings from the HSPH monitor, for day
j. We assume that the errors "

η
ij are independent normal random variables with mean 0 and

constant variance σ2
η .

In penalized splines models, the number of knots is an important issue. In our analysis, we
tried different numbers of knots for the univariate smooth terms, keeping them as quantiles
of the observed distribution of the unique values. Multiple analyses showed that our models
perform very well with a small number of knots per smooth term (e.g. fewer than 10). Thus, for
computational efficiency, we used eight knots for the average seasonal trend and five knots for
the rest of the univariate terms. We tried fitting the same models with a much larger number of
knots (e.g. 11 for CADT and 35 for each of the other terms), and changes in the results were
negligible. For the bivariate smooth term, since the number of monitors in our Boston data
set is not prohibitively large, we place a knot at each location at which data were collected (i.e.
Kh =n= 82 locations).

In Section 3 we noted that all model parameters are fully identifiable as long as we have
measurements for all possible pairs of the three traffic pollution markers. In the Boston data
we have joint measurements for outdoor and indoor BC in 10% of the monitoring locations.
In contrast, outdoor EC is measured in completely different locations. Thus, for the Boston
data application, our latent variable model is not identifiable. Because the various pollution
surrogates are largely measured at different times and locations, model identifiability requires
that we constrain a subset of the parameters. We choose to set the latent variable variance com-
ponent σ2

η to 0. This simplification results in a model with a semiparametric specification for
the mean of outdoor BC and uses data from other pollutants to improve estimation of this
mean given an assumed functional relationship between the means of these pollutants and that
for outdoor BC. This model is a spatiotemporal extension of self-modelling regression (Coull
and Staudenmayer, 2004), where, instead of modelling a latent variable, we model the observed
concentrations of a (possibly non-linear) function of some smooth function of time and space.

Moreover, since outdoor EC is measured in locations that are different from those for BC,
the data cannot inform us about the covariance between EC and the two forms of BC. Therefore
we use the marginal distribution of EC to obtain information for the mean surface of interest.
A similar issue arises for the indoor BC measures at homes for which we do not have outdoor
BC. In this case, we use the marginal distribution of indoor BC, rather than the conditional
distribution of indoor BC given outdoor BC. Hence, the likelihood can be written as

∏
i

∏
j

P.Yij|ηij,Λi,Σ"/=∏
i

∏
j

P.Yij,1|ηij,Λi, σ2
Y ,1/ξ1, ij P.Yij,2|Yij,1, ηij,Λi, σ2

Y ,1, σ2
Y ,2, ρ/ξ2, ij

×P.Yij,2|ηij,Λi, σ2
Y ,2/ξ3, ij P.Yij,3|ηij,Λi, σ2

Y ,3/ξ4, ij ,

where the indicator ξ1, ij is equal to 1 for the subset of days and locations for which we have
outdoor measures and 0 otherwise, the indicator ξ2, ij is equal to 1 for the subset of days and
locations for which we have both outdoor and indoor observations at the same location and 0
otherwise, the indicator ξ3, ij is equal to 1 for the subset of days and locations for which we have
indoor measures but no outdoor readings and 0 otherwise, the indicator ξ4, ij is equal to 1 for
the subset of days and locations for which we have EC measures and 0 otherwise, and ρ is the
residual correlation between outdoor and indoor measures of BC. This correlation parameter
allows us to capture correlation between simultaneously measured indoor and outdoor BC
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measures at a given location that is not captured by the latent process ηij. This formulation
implies a missingness at random mechanism (Little and Rubin, 1987), which is reasonable since
in our case missingness is induced by design.

For the prior specification for the covariance matrix Σ", since we do not have any information
on the covariance between outdoor EC and the two sources of BC, we use only the variance
components σ2

Y ,1, σ2
Y ,2 and σ2

Y ,3 and the residual correlation ρ between indoor and outdoor
BC. For the variance terms σ2

Y ,1, σ2
Y ,2 and σ2

Y ,3 we use inverse gamma prior distributions. Since
we do not have any prior information about the magnitude of these components, we choose
hyperparameters that reflect this and correspond to proper vague prior distributions. We use an
inverse gamma prior distribution for the variance component σ2

α0 from the association model
as well. For the residual correlation ρ between outdoor and indoor BC, we specify a normal
prior distribution with large variance for Fisher’s transformation

z.ρ/=0:5 log
(

1+ρ

1−ρ

)
:

Moreover, we assume that the EC loadings γ0 and γ1 have a multivariate log-normal prior
distribution. This distributional assumption makes sense physically, as these loadings must be
positive. This is a standard assumption in related source apportionment (or multiple-receptor)
models, in which a latent pollution source is constrained to load positively on all surrogates.
In fact, others have used truncated normal or log-normal priors in Bayesian versions of these
models (Park et al., 2001). In Appendix A we give the prior distributions and all specific hyper-
parameter values that are used in the Boston analysis.

Note that the identifying assumption of setting σ2
η to 0 does not imply that only systematic

predictors induce correlation between traffic pollution surrogates. This is because any spatial
or temporal variation that cannot be explained by systematic covariates, but is captured by the
non-parametric smooth terms representing spatial and temporal correlation, also induces cor-
relation across components. In short, all terms in the semiparametric structural model define the
latent traffic variable, which in turn defines the correlation structure between traffic pollution
surrogates. Thus, this identifying assumption is not as restrictive as it may first seem.

Since we set the variance of the latent variable equal to 0 and work with a simplified model,
the definitions of df that were given in Section 3.4 no longer hold for this special case of the
model. As a result, we consider an alternative definition of df for this self-modelling regression
formulation. We approximate df by using formulae similar to equation (8), but applied to out-
door BC only. Hence, although we fit the self-modelling regression model to data on all three
different markers of particle concentrations, for the estimation of df we use only the results that
correspond to outdoor BC. Since almost 90% of our data are outdoor BC, we believe that this is
a reasonable approximation. Hence we used σ2

Y ,1 instead of σ2
η in the conditional specification

of the prior distribution in equation (9).

5.1. Results
To allow for more flexibility in our spatiotemporal models, we fit our model to data from two
different seasonal periods separately. We define the warm period from May to October, and the
rest of the months as the cold period. In what follows, we describe the results from the seasonal
models only.

For each model, we generate a chain of 600000 iterations after discarding 100000 iterations
as ‘burn-in’. We ran these chains using the hyperparameters that are given in Appendix A. Some
of our posterior results are summarized in Table 2. The estimates of the non-linear terms fl
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Table 2. Posterior medians and 95% credible intervals for parameters from the multipollutant model

Parameter Results for winter Results for summer

Median 2.5% 97.5% Median 2.5% 97.5%

Intercept −0.528 −0.543 −0.512 −0.267 −0.279 −0.256
Year 2000 0.194 0.089 0.289 0.170 0.031 0.307
Year 2001 0.331 0.226 0.428 0.103 −0.037 0.239
Year 2002 0.146 0.048 0.242 0.184 0.047 0.322
Year 2003 −0.017 −0.116 0.084 −0.066 −0.206 0.068
Year 2004 −0.545 −0.654 −0.438 −0.175 −0.319 −0.036
Monday 0.054 −0.002 0.108 0.135 0.087 0.181
Tuesday 0.049 −0.008 0.105 0.145 0.098 0.192
Wednesday 0.070 0.016 0.121 0.119 0.072 0.165
Thursday 0.048 −0.009 0.104 0.127 0.079 0.173
Friday 0.035 −0.020 0.088 0.101 0.054 0.146
Saturday −0.016 −0.071 0.039 0.003 −0.042 0.048
log.BCHSPH/ 0.682 0.639 0.724 0.623 0.586 0.664
σ2

Y ,1 0.110 0.103 0.117 0.075 0.071 0.080
σ2

Y ,2 0.211 0.168 0.268 0.161 0.130 0.202
σ2

Y ,3 0.302 0.225 0.413 0.111 0.083 0.155
δ0 −0.268 −0.421 −0.107 −0.138 −0.271 −0.008
δ1 −0.081 −0.248 0.082 −0.055 −0.197 0.087
α1 0.865 0.738 0.994 0.962 0.849 1.074
γ0 0.000 0.000 0.000 2.986 2.542 3.496
γ1 1.022 0.805 1.237 0.713 0.341 1.150
σ2

α0 5:6×10−4 3:7×10−4 9:4×10−4 5:8×10−4 3:8×10−4 9:6×10−4

ρ 0.334 0.215 0.435 0.449 0.349 0.542

from the multivariate model are shown in Fig. 3, for each season separately. Fig. 4 shows the
posterior median predicted outdoor log(BC) on a grid of approximately 70000 locations that
belong to the area of interest, for a chosen day for each season (December 26th, 2002, and June
26th, 2002). Both plots show an elevated median predicted log(BC) surface for the main Boston
area, as expected. This is consistent with findings from previous exposure studies in the area.
Spatial variability in BC concentrations is different by season, probably because of differences
in meteorological conditions in the two seasons.

The results for the estimated degrees of freedom for each smooth term are summarized in
Table 3. These results and Fig. 3 suggest that a linear term for CADT might be adequate in
our application. To test this, the deviance information criterion can be used. However, in our
application we prefer to keep the smooth function for CADT in our final model.

Table 2 presents the estimated posterior medians and corresponding 95% credible intervals
from the association model. The estimate for δ1 is non-significant for both seasons, and hence
the use of the air-conditioning variable is not a significant predictor in the models. This could
be due to the small number of observations, since information for this component comes only
from the limited number of houses that provided indoor data.

5.2. Validation
To assess the validity of our results, we checked different specifications of the prior hyperpa-
rameters. The results were reasonably robust to even large changes in the specification of the
prior hyperparameters. Moreover, to the extent possible, we ensured that the chains converged
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Table 3. Posterior medians and 95% credible intervals for the degrees
of freedom for outdoor BC from the multipollutant model

Parameter Results for winter Results for summer

Median 2.5% 97.5% Median 2.5% 97.5%

DOS 3.10 2.27 4.14 4.16 3.41 5.19
RAT 1.80 1.46 2.41 1.79 1.41 2.65
WS 1.77 1.42 2.46 1.94 1.56 2.79
CADT 1.41 1.16 1.85 1.40 1.15 1.85
Spatial 26.30 23.34 29.40 33.12 30.87 35.08

component

properly by confirming the consistency of the results after starting from several configurations
of widely dispersed starting values.

Graphical convergence checks (the plots are not shown) for the estimated model parame-
ters did not reveal any problems and the chains for the parameters converged well. We also
implemented more formal tests of convergence, including diagnostic tests proposed by Gew-
eke (1992), Raftery and Lewis (1992) and Heidelberger and Welch (1983). A summary and a
comparative review of these tests can be found in Cowles and Carlin (2004). All of the above
are implemented in the program CODA (convergence diagnostics and output analysis) (Cowles
and Carlin, 2004). The results of all the above tests and careful inspection of the chains did not
provide any evidence against convergence for all our parameters.

We checked the goodness of fit of our models by comparing observed summaries of the out-
door data with their corresponding posterior predictive distributions obtained from the model
fit. It is possible that there could be large tails in the log-pollution readings. If so, a normal
distribution for these log-readings might not adequately capture the extremes of the observed
data. This would lead to underestimation of the variability and oversmoothing of the data. As
a result, we used posterior predictive checks of the observed versus fitted quantiles of outdoor
BC to investigate whether the model adequately represents this aspect of the empirical data.
Gelman et al. (2004), page 182, took the same approach to ensure that a model adequately
represented the maximum and minimum of their data of interest. We simulated the posterior
predictive distribution of the quantiles conditionally on the observed covariate pattern for each
observation. Fig. 5 shows the posterior predictive distribution of the 0.1 and 0.9 log(outdoor
BC) quantiles, and the corresponding observed quantiles. As shown, the posterior predictive
distributions cover the observed values adequately. Similarly, we checked the posterior predic-
tive distributions of the quantiles of the other two traffic markers, and the results (which are not
included here) were satisfactory. Also, we used the predictive posterior cumulative distribution
function plots to assess the goodness of fit (the plots are not included here), i.e. we plotted the
empirical cumulative distribution function of the outdoor BC readings along with the median
of the posterior predictive cumulative distribution function of the latent variable and its 95%
credible interval. To calculate the posterior predictive cumulative distribution function and its
credible interval for each parameter vector in an MCMC run, we simulated a BC outdoor con-
centration for each of the monitoring sites, and for each available measurement. These plots
showed that the model fits the data quite well.

To check whether our model captures the correlation between the different sources of BC,
we drew simulated values from the posterior predictive distribution of this correlation and
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compared this distribution with the observed value. Fig. 6 shows a histogram of this posterior
predictive distribution, along with the observed correlation. As shown, our model does quite
well, with posterior mean value 0.895 similar to the empirical value of 0.881.

6. Discussion

In this paper we propose non-linear latent variable semiparametric regression models for mod-
elling multiple surrogates of a single pollution source. Our models extend the non-linear fac-
tor analysis model of Yalcin and Amemiya (2001) to incorporate semiparametric regression
through penalized spline smoothing for the structural component of the model. The general
form of model (1) can be extended to more than one latent variable, if subject-matter theory
suggests that such a model is plausible.

We applied our models to air pollution data from the greater Boston area, consisting of out-
door BC and EC, as well as indoor BC concentrations. A joint model for the observed pollutants
provided greater spatial coverage in the area of interest and was fitted using a Bayesian MCMC
algorithm. Latent variable modelling is an efficient way to incorporate information from differ-
ent markers and to construct individual predictions; it allows for measurement error in exposure
and reduces the error of the estimated exposure to traffic particles.

Because the different pollution surrogates are largely measured at different times and loca-
tions, model identifiability required that we constrain a subset of the parameters. We chose to
achieve model identifiability by constraining the variance of the latent traffic variable. This turns
out not to be an overly restrictive assumption, as a large part of the residual spatiotemporal
variability (i.e. not accounted for by systematic covariates) is captured in the non-parametric
temporal and spatial terms, i.e. both systematic covariates and smooth temporal and smooth
spatial trends explain variation in the latent variable, and hence covariation among surrogates.
The resulting model is a spatiotemporal extension of self-modelling regression. By using this
model, we cannot distinguish between surrogate measurement error and residual variability in a
common latent variable, which would have been the case otherwise. In this formulation, the cor-
relation parameters in the residual covariance matrix corresponding to BC and EC correlation
drop out of the likelihood under a missingness at random assumption.

We proposed joint priors to centre smoothing parameters, such that they yield smooth esti-
mates with reasonable degrees of freedom. Specifically, we placed informative priors for these
smoothing parameters for the terms corresponding to DOS, RAADT, WS and CADT. We made
this choice because of apparent undersmoothing of these terms in preliminary single-pollutant
models that were used to build our structural model for η. Such bias towards undersmoothing
has been noted in frequentist versions of penalized spline models. For instance, Kauermann
(2004) provided theoretical and empirical arguments showing that, in finite samples, maximum
likelihood estimation of smoothing parameters in penalized spline models is biased towards un-
dersmoothing, and it is now widely accepted that one should not automatically accept smoothing
parameter values that are estimated from the data (Ruppert et al., 2003). Thus, the empirical
undersmoothing that we observed is not surprising. The fact that we observed such empirical
undersmoothing in preliminary, single-pollutant fits leads us to believe that this undersmoo-
thing was not due to the imposed correlation structure between surrogates in the multipollutant
model. If one were to use these predictions as covariates in a health effects analysis, it would
be prudent to the check the sensitivity of results against the degrees of freedom used for the
smoothed terms, and the informative priors framework we have proposed allows us to do so.

To check whether the informative priors made a difference in our application, we compared
our results with those from models with unrestricted degrees of freedom. We found that restrict-
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ing the amount of smoothing does make a difference in our case-study. Models with an unre-
stricted amount of smoothing overfitted the data and resulted in some extreme predictions. For
example, driven solely by an influential observation at the extreme of the observed distribution
of CADT, we estimated an inverse quadratic curve for CADT that resulted in much lower pre-
dictions in observations with high values for that variable. This affected about 300 predictions
(out of more than 70000), for locations corresponding to major highways in the Boston area.
This phenomenon was avoided when we used our proposed informative priors.

In defining the degrees of freedom for the smooth terms for our Boston application, we could
also use an alternative definition: that of the effective number of parameters pD (Spiegelhalter
et al., 2002) for Bayesian hierarchical models. This measure, a Bayesian measure of model com-
plexity, is defined as the difference between the average Bayesian deviance and the Bayesian
deviance that is estimated at the mean of the posterior distribution of the parameters. For nor-
mal models, pD corresponds to the trace of the ‘hat’ matrix projecting observations onto fitted
values, which is the same as the traditional definition of df. Spiegelhalter et al. (2002) used this
measure to construct their proposed deviance information criterion for model selection. In our
application we found that the estimated effective number of parameters was very similar to the
median degrees of freedom for outdoor BC only (Table 3), so the results based on pD are not
presented.

Although we could not fit the most general latent variable model that we propose, we be-
lieve that the full latent variable model can be useful in other cases. This is because we expect
that several applications of the model will actually have all surrogates measured at common
locations and times. For instance, we are currently working on exposure studies in which differ-
ent element concentrations representing emissions from multiple sources of pollution are be-
ing recorded simultaneously in space and time. As a result, we expect to use the full model
formulation, and hence we believe that it is important to document the model in its full
generality.

Our smoothing formulations over time and space are a form of generalized kriging. The
model specifies temporal and spatial correlation by specifying the underlying levels of pollution
as a smooth function of space and time. See Kammann and Wand (2003) and Ruppert et al.
(2003) for the close connection between penalized splines and kriging. To verify that we have
sufficiently modelled the temporal correlation in the data, we checked for autocorrelation in
the residuals from the different monitors over space and time. We found that for most of the
monitors such residual autocorrelation was negligible, with only a single monitor exhibiting
residual autocorrelation as high as 0.35, a relatively small value for measurements taken on
successive days.

We presented results from a model that assumed that the central HSPH monitor does equally
well in predicting exposures at all Boston locations. However, it may be possible, even likely,
that this association would vary spatially across Boston. We investigated two extensions to our
model that relax this assumption of constant association between a given level of BC and that
recorded by the HSPH monitor. First, we fitted a model that allows this association to vary
as a function of Euclidean distance from the monitor. However, it is likely that the strength
of association between levels of BC at two different locations may depend on the similarities
or differences between those locations, such as the type of roads and vehicles utilizing these
roads, rather than distance. As a result, we also fitted a model that allows this association to
vary smoothly as a function of location. This is a simple extension of the geoadditive model,
which was formally known as a geographically weighted regression (Fotheringham et al., 2002).
Neither of these extended models fitted significantly better than the constant association model,
with the variation in this association being only approximately 1–2% of the average value.
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Appendix A: Prior specification for Boston application

The prior distributions that we used for our Boston application are

β∼N.μβ , Sβ/,

α1 ∼N.μα1, σ2
α1/,

log.γ/∼N.μγ , Sγ/,

δ ∼N.μΔ, SΔ/,

z.ρ/∼N.zp, σ2
z /,

σ2
Y ,1 ∼ Inv-gamma.αY ,1, βY ,1/,

σ2
Y ,2 ∼ Inv-gamma.αY ,2, βY ,2/,

σ2
Y ,3 ∼ Inv-gamma.αY ,3, βY ,3/,

σ2
sp ∼ Inv-gamma.αsp, βsp/,

σ2
α0 ∼ Inv-gamma.αα, βα/,

σ2
f , l ∼ Inv-gamma

(
k2 +2,

k2 +1
λl

σ2
Y ,1

)
:

The hyperparameters we used are

μβ =0,
Sβ =104I,

μα1 =1,
σ2

α1 =104,

μγ = .−0:1, 1:1/T,
Sγ =104I2,

μΔ = .−0:5, 0/T,
SΔ =104I2,

zp =0:8,
σ2

z =1,
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αY ,1 =αY ,2 =αY ,3 =αsp =αα =0:01,

βY ,1 =βY ,2 =βY ,3 =βsp =βα =0:01:

The constants we used are

k =0:01,

λ1 =313 026690 .winter/ or λ1 =354332573 .summer/,

λ2 =603541 .winter/ or λ2 =683222 .summer/,

λ3 =375838:3 .winter/ or λ3 =318260:5 .summer/,

λ4 =4031708 .winter/ or λ4 =1474552 .summer/:

Appendix B: Sampling scheme

To fit the model that is described by equations (10)–(14) with the constraint σ2
η =0, we use a Gibbs sampler

with MH steps. To test our algorithm we used simulated data. For initial values as well as the variance of
the proposal distributions for the MH steps, we use preliminary results (when available) from initial fits
using only outdoor BC measures. Let the matrices C̄Y ,1, C̄Y ,2 and C̄Y ,3 correspond to the design matrices
(as defined in equation (5)) of outdoor, indoor BC and outdoor EC measures. Let n1, n2 and n3 be the
numbers of outdoor, indoor BC and outdoor EC measures respectively and nH be the number of houses
that provide indoor BC data. Moreover let Y1 .n1 ×1/, Y2 .n2 ×1/ and Y3 .n3 ×1/ be the vectors containing
the outdoor, indoor BC and outdoor EC log-transformed readings respectively. The algorithm is as fol-
lows. First start with initial values σ2.0/

Y ,1 , σ2.0/
Y ,2 , σ2.0/

Y ,3 , w.0/, α.0/
0 = .α.0/

01 , α.0/
02 , . . . , α.0/

0nH
/, α.0/

1 , γ.0/ = .γ.0/
0 , γ.0/

1 /,
σ2.0/

α0 , δ.0/ = .δ.0/
0 , δ.0/

1 /, ρ.0/, σ2.0/
sp , σ2.0/

f , l , l=1, . . . , q.

Step 1: update w using random-walk MH steps. For this component we use a normal proposal distri-
bution with variance τ1Vw, where Vw is the estimate of the covariance matrix of w obtained from initial
fits based on data on outdoor BC only, and τ1 is a scaling factor. Hence:

(a) generate wt from the normal distribution N.w.0/, τ1Vw/;
(b) accept trial wt element with probability

α.wt , w.0//=min

{
1,

p.wt |Y1, Y2, Y3, σ2.0/
Y ,1 , σ2.0/

Y ,2 , σ2.0/
Y ,3 , α.0/

0 , α.0/
1 , ρ.0/, γ.0//

p.w.0/|Y1, Y2, Y3, σ2.0/
Y ,1 , σ2.0/

Y ,2 , σ2.0/
Y ,3 , α.0/

0 , α.0/
1 , ρ.0/, γ.0//

}

and set w.1/ =wt ; otherwise stay at w.1/ =w.0/.

Step 2: generate α.1/
0 ∼ N.μ.1/

α0 , V.1/
α0 / where

V.1/
α0 = .KTA1Kσ−2.0/

Y ,2 +KTA2Kσ−2.0/
2 + InHσ−2.0/

α /−1,

μ.1/
α0 =V.1/

α0

[
KTA1.Y2−α.0/

1 C̄T
Y ,2w.1//σ−2.0/

Y ,2 +KTA2

{
Y2−α.0/

1 C̄T
Y ,2w.1/−ρ.0/σ.0/

Y ,2

σ.0/
Y ,1

A3.Y1−C̄T
Y ,1w.1//

}
σ−2.0/

2

+Xα.δ.0//Tσ−2.0/
α

]
,

where σ2.0/
2 =σ2.0/

Y ,2 {1− .ρ.0//2}, δ.0/ = .δ.0/
0 , δ.0/

1 /T, Xα is an nH ×2 matrix with ith row equal to (1,0) if the
ith residence corresponds to a house that did not have air-conditioning, and equal to (1,1) otherwise,
and K is an n2 × nH matrix with ijth element equal to 1 if the ith observation in the indoor data set
corresponds to the jth residence, and 0 otherwise. A1 is a n2 ×n2 matrix of 0s, with ith diagonal element
equal to 1 if the corresponding outdoor observation is missing, A2 = In2 −A1, and A3 is an n1 ×n1 matrix
of 0s, with ith diagonal element equal to 1 if the indoor measurement corresponding to the outdoor
measurement i is observed.



206 A. Gryparis, B. A. Coull, J. Schwartz and H. H. Suh

Step 3: generate α.1/
1 ∼N.μ.1/

α1 , V .1/
α1

/ where

V .1/
α1

= .D.1/T
A1D.1/σ−2.0/

Y ,2 +D.1/T
A2D.1/σ−2.0/

2 +σ−2.0/
α1

/−1 D.1/ = C̄T
Y ,2w.1/,

μ.1/
α1 =V .1/

α1

[
D.1/T

A1Y2σ
−2.0/
Y ,2 +D.1/T

A2

{
Y2 −Kα.0/

0 − ρ.0/σ.0/
Y ,2

σ.0/
Y ,1

A3.Y1 − C̄T
Y ,1w.1//

}
σ−2.0/

2 +σ−2.0/
α1

]
:

Step 4: generate δ.1/ ∼ N.μ.1/
δ , Vδ

.1// where

V.1/
δ = .XT

αXασ−2.0/
α +S−1

Δ /−1,

μ.1/
δ =V.1/

δ .XT
αα.1/

0 σ−2.0/
α +S−1

Δ μΔ/:

Step 5: update γ by using random-walk MH steps. We first updated log.γ/ by using a normal proposal
distribution with variance τ2Vγ , where Vγ is an estimate of the variance of γ from preliminary analysis
and τ2 is a scaling factor. Then, we calculated γ. Hence:

(a) generate log.γ t / from the normal distribution N
{

log.γ.0//, τ2Vγ

}
, and then obtain γ t ;

(b) accept trial γ t with probability

α{log.γ t /, log.γ.0//}=min

[
1,

p{log.γ t /|Y3, w.1/, σ2.0/
Y ,3 , Sγ , μγ}

p{log.γ.0//|Y3, w.1/, σ2.0/
Y ,3 , Sγ , μγ}

]

and set γ.1/ =γ t ; otherwise stay at γ.1/ =γ.0/.

Step 6: generate σ2.1/
α0 ∼ Inv-gamma.αα +0:5nH, βα +0:5‖α.1/

0 −Xαδ.1/‖2/.
Step 7: update σ2.1/

Y ,1 by using a random-walk MH step. For this component we used an Inv-gamma.α.1/
Y ,1,

β.1/
Y ,1/ proposal distribution with α.1/

Y ,1 and β.1/
Y ,1 corresponding to a mean value equal to σ2.0/

Y ,1 and variance
that is tuned by a parameter τ3.

(a) Generate σ2 t
Y ,1 from the distribution Inv-gamma.α.1/

Y ,1, β.1/
Y ,1/.

(b) Accept trial σ2 t
Y ,1 with probability

θ.σ2 t
Y ,1, σ2.0/

Y ,1 /=min

{
1,

p.σ2 t
Y ,1|w.1/, Y1, α.1/

Y ,1, β.1/
Y ,1, σ2.0/

f ,1 , . . . , σ2.0/
f ,4 / J.σ2.0/

Y ,1 |σ2 t
Y ,1/

p.σ2.0/
Y ,1 |w.1/, Y1, α.1/

Y ,1, β.1/
Y ,1, σ2.0/

f ,1 , . . . , σ2.0/
f ,4 / J.σ2 t

Y ,1|σ2.0/
Y ,1 /

}
,

where J.a1|a2/ is the jumping distribution from a2 to a1, and set σ2.1/
Y ,1 = σ2 t

Y ,1; otherwise stay at
σ2.1/

Y ,1 =σ2.0/
Y ,1 .

Step 8: update σ2.1/
Y ,2 by using a random-walk MH step. For this component we used an Inv-

gamma.α.1/
Y ,2, β.1/

Y ,2/ proposal distribution with α.1/
Y ,2 and β.1/

Y ,2 corresponding to a mean value equal to
σ2.0/

Y ,2 and variance that is tuned by a parameter τ4.

(a) Generate σ2 t
Y ,2 from the distribution Inv-gamma.α.1/

Y ,2, β.1/
Y ,2/.

(b) Accept trial σ2 t
Y ,2 with probability

θ.σ2 t
Y ,2, σ2.0/

Y ,2 /=min

{
1,

p.σ2 t
Y ,2|σ2.1/

Y ,1 , w.1/, Y1, Y2, α.1/
Y ,2, β.1/

Y ,2, α.1/
0 , α.1/

1 / J.σ2.0/
Y ,2 |σ2 t

Y ,2/

p.σ2.0/
Y ,2 |σ2.1/

Y ,1 , w.1/, Y1, Y2, α.1/
Y ,2, β.1/

Y ,2, α.1/
0 , α.1/

1 / J.σ2 t
Y ,2|σ2.0/

Y ,2 /

}
,

where J.a1|a2/ is the jumping distribution from a2 to a1, and set σ2.1/
Y ,2 = σ2 t

Y ,2; otherwise stay at
σ2.1/

Y ,2 =σ2.0/
Y ,2 .

Step 9: update ρ by using random-walk MH steps and Fisher’s transformation, with

z.ρ/=0:5 log
(

1+ρ

1−ρ

)
:

First update z.ρ/ by using a normal proposal distribution with variance τ5. Then, calculate
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ρ= exp{2 z.ρ/}−1
exp{2 z.ρ/}+1

:

Hence:

(a) generate z.ρ/t from the normal distribution N{z.ρ/.0/, τ5};
(b) accept trial z.ρ/t with probability

α{z.ρ/t , z.ρ/.0/}=min

[
1,

p{z.ρ/t |σ2.1/
Y ,1 , σ2.1/

Y ,2 , w.1/, Y1, Y2, α.1/
0 , α.1/

1 , zp, σ2
z}

p{z.ρ/.0/|σ2.1/
Y ,1 , σ2.1/

Y ,2 , w.1/, Y1, Y2, α.1/
0 , α.1/

1 , zp, σ2
z}

]
,

and set ρ.1/ =ρt ; otherwise stay at ρ.1/ =ρ.0/.

Step 10: generate the rest of the variance components.

σ2.1/
Y ,3 ∼ Inv-gamma[αY ,3 +0:5n3, βY ,3 +0:5‖Y3 − log{1n3γ

.1/
0 +γ1 exp.C̄t

Y ,3w.1//}‖2],

σ2.1/
sp ∼ Inv-gamma.αsp +0:5Kh, βsp +0:5‖u.1/

sp ‖2/,

where u.1/
sp is contained in w.1/. For l =1, . . . , q determine α.1/

f , l and β.1/
f , l by using σ2.1/

Y ,1 and the estimated
smoothing parameter λ̂l (which can be obtained by using the one-to-one correspondence between df
and the smoothing parameter that was described in Wand (1999)). The α.1/

f , l and β.1/
f , l are such that the

prior distribution for σ2.1/
f , l has mean equal to σ2.1/

Y ,1 =λ̂l and a predefined variance. Then generate

σ2.1/
f , l ∼ Inv-gamma.α.1/

f , l +0:5Kl, β
.1/
f , l +0:5‖u.1/

l ‖2/,

where u.1/
l is contained in w.1/:

Step 11: repeat steps 1–10 until we obtain M samples σ2.m/
Y ,1 , σ2.m/

Y ,2 , σ2.m/
Y ,3 , ρ.m/, w.m/, α.m/

0 , α.m/
1 , γ.m/,

δ.m/, σ2.m/
α0 , σ2.m/

sp , σ2.m/
f ,1 , . . . , σ2.m/

f ,4 , m= 1, . . . , M. The first B iterations are discarded as pre-convergence
burn-ins, and the last M − B iterations are considered as samples generated from the joint
posterior distribution of the latent variable and the model parameters and are used for inference and
prediction.

The final choice to be made in such algorithms is the tuning parameters τ1, τ2, τ3, τ4 and τ5. On the basis
of the theory and recommendations of Gelman et al. (2004), we control these scaling factors during the
MCMC iterations so that the overall acceptance rate is about 44% for single parameters, and about 23%
for multivariate parameters.
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