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ABSTRACT Port efficiency and port clustering are two aspects that have received different degrees

of attention in the existing literature. While the actual estimation of port efficiency has been exten-

sively studied, the existing literature has paid little attention to developing robust methodologies for

port classification. In this paper, we review the literature on classification methods for port efficiency,

and present an approach that combines stochastic frontier analysis, clustering and self-organized

maps (SOM). Cluster methodologies that build on the estimated cost function parameters could

group ports into performance metrics’ categories. This helps when setting improvement targets for

ports as a function of their specific cluster. The methodology is applied to a database of Spanish

port authorities. The dendrogram features three clusters and five outlier Spanish Port Authorities.

SOM are employed to track the temporal evolution of Spanish Port Authorities that are of special

interest for some reasons (i.e. outliers). Results show that use of a combination of cost frontier

and cluster methods to define robust port typology and SOMs, jointly or in isolation, offers useful

information to the decision-makers.

1. Introduction

Interest in productivity and efficiency analyses of companies has significantly
grown in recent decades. They are especially relevant in sectors where adjustment
is normal: for example, infrastructure industries and public utilities. Indeed, the
possibility of comparing the performance of regulated companies does contribute
to easing the problem of information asymmetries, by increasing efficiency in the
regulatory agencies. The problem of distinguishing between heterogeneity and
inefficiency is widely acknowledged in benchmarking and it is aggravated
when international data sets are used.

The study of efficiency and productivity in the port sector using frontier tech-
niques has also received a great deal of attention in recent years (Pallis, Vitsounis,
De Langen, & Notteboom, 2011). In that regard, like-to-like comparisons are
required, in order to set realistic targets for improvement (Jessop, 2012).
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However, in most cases, there are differences across firms that are not reflected in
the database. This information which is not picked up by the variables included in
the data is named as unobserved heterogeneity.

Port efficiency and port clustering are two aspects that have received different
degrees of attention in the existing literature. While the actual estimation of port
efficiency has been extensively studied, the existing literature has paid little atten-
tion to developing robust methodologies for port classification. Cullinane and
Song (2006), referring to this, stated the desirability of “developing appropriate
clusters of ports in the sample that can be benchmarked against one another, in
order to identify sources of inefficiency and measures for its amelioration”.
Despite this necessity, only a few papers have attempted to produce a robust
typology of ports by using specific techniques, such as cluster analysis, to avoid
classifications based on ad hoc criteria.

Port efficiency benchmarking could benefit from combined efficiency estimates
with cluster analysis, especially if the sample is large and heterogeneous. In this
paper, we review previous contributions that combine both frontier-based pro-
ductivity and/or efficiency estimation with port classification. About 70% (10
out of 14) of the surveyed papers are based on international data. Although the
best practice frontier may be estimated by using either non-parametric (e.g.
Data Envelopment Analysis — DEA) or parametric techniques (e.g. Stochastic
Frontier Analysis –SFA), almost all reviewed papers have used DEA after split-
ting the sample.

Environment heterogeneity is one characteristic manifestation of firm hetero-
geneity. Due to ports being characterized by their geographical and operational
settings, DEA could not be a proper approach, unless we split the sample into
homogeneous groups before the frontier estimation; this is to avoid any produ-
cer-specific heterogeneity being considered as inefficiency. The latter approach
is not without problems, as the researcher has to decide the criteria to split the
sample; secondly, some groups could be so small that it would be illogical to esti-
mate their frontier. Conversely, in an SFA context, a wide range of models that
incorporate unobserved heterogeneity have been proposed, as they let us dis-
tinguish between unobserved individual heterogeneity and inefficiency.
Whether a SFA model that accounts for unobserved heterogeneity is used the
need for splitting the sample can be avoided and a reliable classification could
be generated. Moreover, other additional advantages could be achieved as Rodrı́-
guez-Déniz and Voltes-Dorta (2014) have recently shown.

Their approach combines all the available information from the efficiency esti-
mation to produce clusters based on the relevant multi-dimensional criteria.
Regarding the comparative analysis, the hierarchical method allows to precisely
identify the efficiency benchmarks within each cluster. In this paper, we present
an empirical application of the latter methodology on the Spanish port authorities,
using the cost frontier parameters and efficiency estimates by Rodrı́guez-Álvarez
and Tovar (2012); these develop a stochastic frontier model that controls unob-
served heterogeneity. We will then be able to define the port authority categories
that mirror the performance indicator by using hierarchical clustering, thus filling
a gap in the port benchmarking literature.

The article is organized as follows. Section 2 addresses the previous literature
measuring productivity and/or port efficiency through frontier techniques,
which also classify ports in groups. Section 3 introduces the methodological fra-
mework, that is, variable weighting, hierarchical clustering and Self-Organized-
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Maps (SOMs). Section 4 describes the resulting port clusters and efficiencies, and
the temporal analysis of selected ports. Section 5 concludes the paper.

2. Literature Review

Productivity and efficiency are related but different concepts although both are
equally utilized in ports’ benchmarking. Productivity is the ratio between the
products obtained and the factors used in its production. On the other hand,
efficiency is, broadly speaking, the ability to do something or produce something
without wasting materials, time, or energy.1 With the previous definitions, we can
easily deduce that efficiency is only one of the factors that determine productivity.

Woo, Pettit, Beresford, and Kwak (2012) show that a topic relatively widely
researched throughout the 1980s and 1990s was port performance. Port perform-
ance studies evolved in the 2000s due to the development of new measures and
approaches. The frontier approach became popular not only to measure port pro-
ductivity but also as a measure of port competitiveness. A recent brief review of
papers measuring total factor productivity (TFP) in ports shows that the frontier
approach is the most popular method (see Chang & Tovar, 2014). Probably the
reason behind this popularity is that a frontier approach must be used in order
to take into account the contribution of efficiency change upon productivity
change. The traditional approach does not take into account companies’ ineffi-
ciency; this means that it is not capable of distinguishing which part of the pro-
ductivity changes is due to efficiency changes.

Broadly speaking, productivity change sources include efficiency change and
technical change. These main components could be disaggregated as well. The
first one, efficiency change, could be decomposed into the pure technical efficiency
change (PECH) and the Scale Efficiency Change (SECH). This distinction enables
to contemplate those situations where a productive unit can be technically effi-
cient, as the production volume uses the least quantity of factors; however, it is
not situated in the optimum production scale, because it is not adequately sized
(it is either too small or too big). Therefore, the changes in productivity that are
strictly related to technical efficiency appear in PECH, while these related to the
productive unit size appear in SECH (Wilmsmeier, Tovar, & Sanchez, 2013). On
the other hand, the second component of productivity, technical change, could
also be decomposed into three components: pure technical change (PTCH), associ-
ated with a parallel shift of the efficient frontier; non-neutral change (NNTCH)
and scaling augmenting (SATCH) that are associated with whether technological
change is biased towards any inputs or any outputs, respectively (Chang & Tovar,
2014).

The literature on the measurement of port productivity and/or port efficiency
using frontier models can be grouped into two main categories, in terms of the
method used to estimate the frontier. The first sets of studies use non-parametric
models, or DEA; a review of the literature on port efficiency using DEA can be
found in Panayides, Maxoulis, Wang, and Koi Yu (2009) and Simoes and
Marques (2010). The second set is formed by studies using parametric techniques,
namely SFA, and there are far fewer papers compared to the DEA group.2 A recent
brief review of papers measuring efficiency in ports using SFA can be found in
Tovar and Wall (2015).

DEA and SFA represent two alternative methods to measure efficiency (e.g.
Wanke, Barbastefano, & Hijar, 2011). Both techniques allow derivation of relative
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efficiency ratios within a group of analysed units, so the efficiency of the units is
compared through an efficient envelopment. Both methods have advantages and
drawbacks. DEA does not impose any functional form to the frontier nor does it
assume a distributional form for the inefficiency error terms, but it could be influ-
enced by noise, and traditional hypothesis tests are not possible except by using
bootstrapping techniques (Simar & Wilson, 2000). On the other hand, SFA involves
the cost of imposing a particular functional form and making particular distribu-
tional assumptions for the one-side error term associated with technical efficiency,
but it is capable of managing random shocks and/or measurement error.
Moreover, traditional hypothesis tests could be used and, finally, environmental
variables and firm heterogeneity are easier to deal with.

Table 1 shows a summary of previous papers measuring productivity and/or
port efficiency through frontier techniques that also classify ports into groups. It
can be seen that these vary widely in scope. Most of the studies use international
data sets (e.g. Notteboom, Coeck, & Van Den Broeck, 2000; Sharma & Yu, 2009).
Those that analyse efficiency for a single country include Martinez-Budria,
Diaz-Armas, Navarro-Ibanez, and Ravelo-Mesa (1999), Kaisar, Pathomsiri, and
Haghani (2006) and Medal-Bartual and Sala-Garrido (2011). The studies also
differ in terms of the frontier approach used to measure productivity and/or effi-
ciency, although DEA is the most commonly used approach (13 out of 14 papers).
However, there are some differences in the models used, and these could be cate-
gorized into three groups. First are studies measuring technical efficiency using
standard DEA (Bichou, 2013; Kaisar et al., 2006; Koster, Balk, & van Nus, 2009;
Martinez-Budria et al., 1999; Medal-Bartual & Sala-Garrido, 2011; Sharma & Yu,
2009; Wu & Goh, 2010). Second are those studies measuring technical efficiency
using more sophisticated DEA models (Cheon, 2009; Cullinane & Wang, 2010;
Hung, Lu, & Wang, 2010; Quaresma-Dias, Garrido Azevedo, & Ferreira, 2009).
In the third category are the studies measuring TFP (Cheon, Dowall, & Song,
2010; Guironnet, Peypoch, & Solonandrasana, 2009). Finally, we only found one
study based on SFA, Notteboom et al. (2000), which employs a Bayesian Stochastic
Frontier Modelling; this present study counts as the second to use such
methodology.

The goal of clustering is to find meaningful groups in data (that is, clusters).
This is normally achieved through the use of distance measures, so that the simi-
larity among the elements in the same cluster is greater than the similarity among
the elements belonging to different clusters. When it comes to efficiency bench-
marking, ports are classified into a number of groups or categories to facilitate a
better comparative analysis (see Table 1). However, as Table 1 corroborates,
there has been a clear trend in the recent literature towards ad hoc classification.
Most of these studies have lacked a methodological framework, which gives
theoretical support to their clustering. Thus, they rely on classification schemes
based on ad hoc criteria selected by authors; for example, traffic mix (Bichou,
2013), geographical situation (Hung et al., 2010; Kaisar et al., 2006), or their func-
tional role (Notteboom et al., 2000).

Among the papers using ad hoc classification one, Martinez-Budria et al. (1999)
is of special interest to us, since it studied the relative efficiency of all the Spanish
port authorities during the 1993–1997 period, by using DEA. Recognizing expli-
citly the heterogeneity of Spanish port authorities, they stated: “In the first place
we have needed to group all the ports into homogeneous sets, in order to reach
conclusive results from the application of the DEA technique”. Their classification

4 B. Tovar and H. Rodrı́guez-Déniz

D
ow

nl
oa

de
d 

by
 [

L
in

kö
pi

ng
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
1:

47
 2

0 
M

ar
ch

 2
01

5 



Table 1. Classification/clustering in port efficiency studies

Author (year) Data
Approach
Efficiency Clustering Variables

Clustering
Method Number of Clusters Cluster Criteria

Martinez-Budria
et al. (1999)

26 Spanish port authorities
1993–1997

TE, DEA (IO) Level of complexity of
ports

Ad hoc 3 groups: namely, high-,
medium- and low-
complexity ports

Ad hoc

Notteboom et al.
(2000)

36 European container
terminals, supplemented
with 4 Asian container
ports, 1994

TE, Bayesian
Stochastic
Frontier
modelling

Grouping of pooled
efficiencies according to

(1) Port range
(2) Functional role

Ad hoc (1) 4 groups: Hamburg-Le
Havre, Mediterranean,
Atlantic port ranges and
UK

Ad hoc

(2) 2 groups: hub and feeder

Kaisar et al. (2006) 25 US container ports 1998–
2003

TE, DEA (OO) Regional grouping Ad hoc 3 group: Gulf coast, West
Coast and East Coast

Ad hoc

Sharma and Yu
(2009)

70 WWide container
terminals

TE, DEA (OO) Quay length, Terminal
area, Quay cranes,
Transfer cranes, Straddle
carriers, Reach stackers

SOM 4 terminal clusters obtained
from SOM

SOM

Quaresma Dias et al.
(2009)

10 Iberian Peninsula
container terminals 2008

TE, Tiered
DEA (OO)

Number of cranes, number
of employees, terminal
area, number of trailers,
yard equipments,
terminal length

SOM 4 terminal clusters obtained
from SOM

SOM

Koster et al. (2009) 38 WWide Terminals 2006 TE, DEA (OO
and IO)

Geography, operations,
handling system, size,
owner

Ad hoc 21 groups: geography
(6),operations (2) handling
system (2), size (4), owner
(7)

T-tests and ANOVA

Guironnet et al.
(2009)

24 Italian and 13 French ports
2003–2004

DEA, TFP,
LUM

Classify ports depending
on the EFFCH and
TECH

Ad hoc 2 groups Group 1: improvement in
both

Group 2: improvement in
TECH coexist with
deterioration of TE

(Continued)
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Table 1. Continued

Author (year) Data
Approach
Efficiency Clustering Variables

Clustering
Method Number of Clusters Cluster Criteria

Cheon (2009) 110 World container ports
2004

TE, Recursive
DEA (OO)

Recursive DEA Classifies
ports into rank-ordered
peer groups

Recursive 7 groups according Technical efficiency ¼ 1
DEA

Cullinane and Wang
(2010)

25 World Ports 1992–1999 TE, DEA,
Window An.

Local competition Ad hoc 2 groups — local competition Ad hoc

Wu and Goh (2010) 21 WWide container ports
2005

TE, DEA (OO) CCR and CCR Cross-
efficiency levels

Ad hoc 3 groups according self-
assessment using CCR
model and the relative-
assessment CCR cross-
efficiency

Assessment values are
divided into 3 groups:
less favourable,
favourable and more
favourable

Hung et al. (2010) 31 container ports in the Asia-
Pacific region 2003

TE, DEA,
MPSS
Bootstrap

Geographical location Ad hoc 3 region groups according to
geographical situation

Geographical situation

Cheon et al. (2010) 98 World Ports 1991 and 2004 DEA,MPI (OO) Port ownership Ad hoc 4 groups: ownership change
(2) and corporate change
structure (2)

2 groups — ownership
change

Corporate structure 2 groups corporate change
Medal-Bartual and

Sala-Garrido (2011)
28 Spanish ports authorities

1994–2008
TE, DEA (IO) Fixed assets regarding total

cargo
HC 4 groups after dendrogram

observation
Dendrogram cut-off

Gross return
Bichou (2013) 60 World Container terminals

2004–2010
TE, DEA (IO) Container mix (size, type

and op. status): High %
of inbounds, outbounds,
T/S, FEUs, empties,
laden containers (FCLs,
LCL); Low % inbounds,
FEUs

Ad hoc 7 groups according to
container mix

50% cut-off proportion

Present study 26 Spanish port authorities
1993,1997,2003,2007

CE, SFA 4 outputs: bulk solids, bulk
liquids, general cargo
and passengers; 2 input
prices: materials &
labour, and a quasi-fixed
input

HC 3 Clusters Dendrogram cut-off

Note: TE, technical efficiency; CE, cost efficiency; TFP, total factor productivity; EFFCH, efficiency change; TECH, technical change; DEA, data envelopment analysis; LUM,
Luenberger productivity indicator; MPI, Malmquist productivity index; IO, input oriented; OO, output oriented; HC, hierarchical clustering; SOM, Self-Organizing Map;
CCR, Charnes, Cooper and Rhode model.
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divided the Spanish port authorities into three groups using “a complexity criter-
ium given by port size and the composition of the output vector”. Their results
show a different evolution for every group, in terms of efficiency; and they con-
cluded that, by having gone closer to the frontier over time, highly complex
ports show higher comparative efficiency levels.

Only four papers do not follow this ad hoc classification trend. Two use neural
networks (SOM) to cluster3 their data (Quaresma-Dias et al., 2009; Sharma & Yu,
2009). A third uses recursive DEA, in order to group ports with similar efficiency
levels (Cheon, 2009). The fourth performs a hierarchical clustering (Medal-Bartual
& Sala-Garrido, 2011); this is of special interest to us, because it is another study on
the relative efficiency of all the Spanish port authorities during the 1994–2008
period. Sharma and Yu (2009) developed a decision support framework that com-
prises homogeneous groups and a stepwise improvement path for each container
terminal. They use SOM to cluster the container terminals according to their input
characteristics, and recursive DEA to obtain stratified efficiency levels. Similarly,
Quaresma-Dias et al. (2009) carried out a benchmarking analysis of the main
Iberian seaports, focusing on the efficiency of their container terminals in 2007,
by using a number of input/output performance indicators. Cheon (2009)
attempted to estimate whether the participation of global terminal operators
increases port efficiency; this was done by using recursive DEA to generate a set
of seven port efficiency peer clusters, from the most to the least efficient. Finally,
Medal-Bartual and Sala-Garrido (2011) classified Spanish port authorities using
agglomerative hierarchical clustering and an Euclidean distance, based on two
variables: fixed assets and gross returns. The clustering was performed on the
average values of the sample period, 1994–2008, and four clusters were identified.
Subsequent DEA analysis reveals that these highly specialized ports are likely to
achieve better gross returns and also higher activity levels (in terms of traffic).

We actually borrow many details from these studies, including the preference
for multi-dimensional clustering, and the use of self-organized maps (SOM). In
addition, we contribute to the literature by classifying ports using a methodology
that combines SFA and cluster analysis, as opposed to Cheon (2009), who does
not apply traditional clustering techniques. Moreover, the use of hierarchical clus-
tering allows for a more detailed analysis and identification of the efficiency
benchmarks; this is in contrast to other methods such as K-Means or SOMs that
produce flat clusters (e.g. Quaresma-Dias et al., 2009; Sharma & Yu, 2009). The
weighting of the relevant clustering variables has not been considered in any of
the previous papers, not even by Medal-Bartual and Sala-Garrido (2011),
though they use hierarchical clustering as well. Finally, the present paper goes
further when using clustering variables from a model. It explicitly takes into
account the existence of unobserved heterogeneity, to avoid a bias in relative effi-
ciency scores.

Therefore, to the best of our knowledge, the present paper is the first to combine
efficiency estimates obtained through SFA with hierarchical clustering analysis.
Environmental variables and firm heterogeneity are easier to deal with using
SFA. The combination of both methodologies has the advantage of building clus-
ters, based on the relevant multi-dimensional criteria, which also take into account
unobserved heterogeneity. In this way, we ensure that we are making like-to-like
comparisons by getting clusters that are based on a two-step procedure involving
efficiency/productivity estimation and port clustering based on the same explana-
tory set (cost elasticities and factor shares).

Classifying Ports for Efficiency Benchmarking 7
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3. Methodological Framework

3.1. Variable Selection, SFA Model and Weighting

We take advantage of the database, coefficients, and efficiency estimates from
Rodrı́guez-Álvarez and Tovar (2012) whose model is especially suitable for our
purpose because it distinguishes individual unobserved heterogeneity, ineffi-
ciency and stochastic errors. Another reason to choose this study is the availability
of a sample of Spanish port authorities, which overlaps both in terms of ports and
time periods with the paper by Medal-Bartual and Sala-Garrido (2011). This offers
us the opportunity to compare the results obtained by both approaches, and to
analyse how these results change when the individual unobserved heterogeneity
is taken into account; this is the case for both in the efficiency estimation and in the
clustering method followed.4

Rodrı́guez-Álvarez and Tovar (2012) estimated a stochastic cost frontier using a
panel of Spanish port authorities during the 1993–2007 period, which provides all
that we require to apply the proposed methodology to ports.5 The sample is made
up of 390 observations that correspond to a total of 26 port authorities between
1993 and 2007. The port authorities analysed are: A Coruña, Alicante, Avilés,
Bahı́a de Algeciras, Bahı́a de Cádiz, Baleares, Barcelona, Bilbao, Cartagena, Castel-
lón, Ceuta, Huelva, Las Palmas, Málaga, Marı́n y Rı́a de Pontevedra, Melilla,
Motril, Pasajes, Sta. Cruz de Tenerife, Santander, Sevilla, Tarragona, Valencia,
Vigo and Vilagarcı́a.

The port authorities included in the sample vary widely in terms of size, special-
ization, logistics connectivity, geographical situation, maritime connectivity, and
so on. Some port authorities manage cargo and passenger traffic, whereas
others run ports whose passenger transport activity is virtually non-existent.
Even for cargo-orientated ports, there is a variety of classifications, depending
on the type of merchandise; furthermore, their sizes and roles as distribution
centres and ports of final destination are important. Rodrı́guez-Álvarez and
Tovar (2012) considered the possibility of there being unobservable heterogeneity
among Spanish port authorities and formulated a model to test it. Theirs is a so
called “true” model6 because it includes two terms for unobserved heterogeneity.
One term controls time-variant factors, the other takes into account the producer-
specific invariant characteristics. The basic assumption is the existence of produ-
cer-specific and time-invariant factors that cannot be captured by explanatory
inefficiency variables, due to the variation of the latter over time and/or
omitted variables.

The set of explanatory variables used in efficiency estimation and port cluster-
ing are those used in the estimation of our reference cost frontier which features
four outputs: bulk solids (y1), bulk liquids (y2), general merchandise (y3), and
passengers (y4); a quasi-fixed input (K) plus two input prices: labour (wl) and
materials (wi). In addition, the time variable (t) was added to the specification
in order to account for technical change and a Spanish port authorities dummy
variables (Di) to capture unobservable heterogeneity. Table 2 presents the descrip-
tive statistics for the variables. The maximum and minimum values in the sample
show a high degree of heterogeneity, in terms of the size and specialization of each
port.

Finally, following Rodrı́guez-Déniz and Voltes-Dorta (2014), we will use the
output cost elasticities (h) and input cost shares (s), derived from Rodrı́guez-
Álvarez and Tovar (2012) estimation,7 as optimal variable weights (see Table 3).

8 B. Tovar and H. Rodrı́guez-Déniz
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Table 2. Descriptive analysis of the data

Variable Unit Description Average
Standard
deviation Minimum Maximum

CT E deflated Total cost 1.88E+07 1.38E+07 2.47E+06 8.04E+07
CV E deflated Variable cost 1.14E+07 8.68E+06 1.86E+06 5.38E+07
y1 Tm Bulk solids 3.24E+06 3.39E+06 36128 1.97E+07
y2 Tm Bulk liquids 4.93E+06 6.13E+06 377 2.28E+07
y3 Tm General

merchandise
4.44E+06 7.71E+06 79606 4.71E+07

y4 Number Passengers 691040 1.31E+06 0 5.93E+06
wL E deflated

/Workers
Labour price 30610.9 6538.69 16789.8 53016.8

wI E/m2 Intermediate inputs
price

2.60082 1.79541 0.198284 16.1609

K m2 Quasi-fixed input 2.47E+06 2.84E+06 194314 1.72E+07
T Year Trend 8 4.32604 1 15

Source: Rodrı́guez-Álvarez and Tovar (2012)

Table 3. Summary of cluster analysis properties and methodological decisions

Clustering method Hierarchical clustering results in a more informative structure than the flat
clusters obtained from divisive methods (e.g. K-Means) or neural
network-based clustering (e.g. SOM). In addition, HC does not require us
to predefine the number of clusters

Performance indicator Logged total operating costs (ln C)
Unidimensional vs.

Multi-dimensional
classification

Multi-dimensional scaling is preferred because neither, for example,
container traffic nor geographic location fully captures the cost structure
of a port. Consistency requires that clustering be based upon the same
variables that explain cost efficiency

Clustering variables Logged outputs (bulk solids, bulk liquids, general merchandise, and
passengers) input prices (labour and materials) and a quasi-fixed input
(K)

Variable weighting and
standardization

Output cost elasticities (h) and input cost shares (s) derived from the
industry’s translog cost frontier estimated in Rodrı́guez-Álvarez and
Tovar (2012)

hik =
∂ ln C

∂ ln wh

∣∣∣∣
(y,w)i

sih = ∂ ln C

∂ ln wh

∣∣∣∣
(y,w)i

Distance measure Euclidean distance is the most widely used metric for interval data
Clustering algorithm Average linkage (0.96) was chosen over single linkage (0.93), complete

linkage (0.91), centroid linkage (0.95), median linkage (0.95) and Ward’s
method (0.81) according to the cophenetic correlation coefficient c (Sokal
and Rohlf, 1962).

c =
Si,j(d(i,j) − d̄)(t(i, j) −�t)�������������������

Si,j(d(i,j) − d̄)22

√
Si,j(t(i, j) −�t)

,

where d,t represent Euclidean and cophenetic (tree-) distances, respectively
Cluster determination The dendrogram was truncated at a dissimilarity level of 0.42
Clustering software MATLAB. Statistics toolbox
Dendrogram viewer Interactive tree of life (Letunic and Bork, 2007)

Source: Adapted from Rodrı́guez-Déniz and Voltes-Dorta (2014)
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These optimal variables have the additional advantage that the optimal variable
weights, which are to be used for building port authorities clusters, come from
a model that took into account unobserved heterogeneity. As we have indicated,
it is very convenient to introduce these individual effects, in order to avoid any
diversity being termed as inefficiency; this is because we are dealing with units,
that is, Spanish port authorities, with widely differing characteristics.

3.2. Hierarchical Clustering

Cluster analysis, or simply clustering, is one of the most popular data analysis
techniques,8 with a plethora of applications in fields ranging from astronomy to
medical imaging. There is a wide variety of clustering techniques, which can be
roughly classified into hierarchical and divisive methods (Abonyi & Feil, 2007).
Agglomerative hierarchical clustering (bottom-up) starts with each object assigned
to an individual cluster. This is followed by an iterative process of merging, which
is performed until all objects are assigned to a single cluster. As a result, a tree-like
diagram, a dendrogram, is usually generated to illustrate this process and to
analyse the underlying structure of the data. On the other hand, divisive
methods (e.g. k-means) provide a flat partition of the input data set into a fixed
number of clusters, instead of a group hierarchy; they are particularly useful
when a specific number of output categories is required, or the number of
objects complicates the dendrogram inspection.

We used the frontier-based hierarchical clustering approach proposed by
Rodrı́guez-Déniz and Voltes-Dorta (2014)9 and present the results in a dendro-
gram, which allows natural groups to be identified graphically. It is also possible,
as is detailed in Section 4.1, to include the efficiency estimates in the dendrogram,
and analyse them at both cluster and individual levels. Regarding the partitioning
method, we chose average linkage (using an Euclidean distance as distance
measure) instead of other approaches like single linkage (nearest neighbour)
and complete linkage (farthest neighbour) which is sensitive to outliers. A meth-
odological summary of the cluster analysis performed is presented in Table 3.

The clustering application has to be done over a cross-section of the original
data set in Rodrı́guez-Álvarez and Tovar (2012). This article evaluates the
impact of the legislative reforms that have taken place in the Spanish port
sector in the last 15 years, within an appropriate short run total cost model. In
their analysis, three legislative periods have been defined. The first starts with
the 27/1992 Law, and covers the period from 1993 to 1997. The second begins
with the passing of the 62/1997 Law and runs from 1998 to 2003. The third corre-
sponds to the 42/2003 Law and covers the period from 2004 to 2007.

Four clustering processes were performed, and they correspond to the selected
years in the sample period that mark the three periods defined by the legislative
reforms; that is, 1993, 1997, 2003, and 2007. Dendrograms were generated for each
year. The level of dissimilarity between two clusters is given by the height10 of the
point at which their branches merge. Note that hierarchical clustering does not
require us to define the number of clusters a priori. This can instead be identified
by direct examination or by using a variety of “tree-cutting” techniques; see Milli-
gan and Cooper (1985). A very intuitive way to determine the number of port
authorities clusters was chosen, that is, cutting the dendrogram at a level of dis-
similarity of 0.42. This produces eight clusters, three actual clusters and five
outlier ports, which will be described in Section 4.1.

10 B. Tovar and H. Rodrı́guez-Déniz
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As we mentioned, dendrograms, although illustrative, cannot be readily inter-
preted in terms of the original variables. This is especially true when dealing with
multi-dimensional data, as this present study does. In addition, the different den-
drograms are hardly comparable, which restricts the analysis to a cross-sectional
study. In order to overcome these limitations, we have complimented our cluster
analysis using SOM, which will enable us to track the temporal evolution of some
interesting ports, at each variable level; this provides a better understanding of the
dynamics of these ports.

3.3. Kohonen’s SOMs

A SOM, developed by Kohonen (1982), is a two-layered neural network model
that projects a k-dimensional input space onto a low-dimensional space by
using unsupervised learning.11 The output space is normally arranged in a rec-
tangular lattice of i x j neurons, as shown in Figure 1. Samples from the original
input space are fed into the network through the input layer, which consists of
n neurons that are fully connected to the output map. These connections have
weights associated (codebook vectors), Wij, that determine the strength of the
response of the (i, j)th output neuron to an input pattern x.

Weights are computed following a competitive learning process. When an input
sample is presented to the network, each output unit (neuron) calculates the simi-
larity (e.g. Euclidean distance) between its codebook vector (weights) and the
input vector. The neuron whose weight vector is closest to the input vector is
designed as the Best Matching Unit (BMU). Then, the codebook vector of the
BMU is adjusted towards the input vector, thus increasing the sensitivity of the
BMU to such an input pattern. This process is carried out until weight changes
are negligible. However, the originality of Kohonen’s approach relies on the fact
that neurons near the BMU will have their weights updated as well, according
to some kind of neighbourhood function; for example, Von Neumann neighbour-
hood.12 The result is a SOM that preserves the topology of the input space. It does
this in such a way that similar input patterns are mapped to points that are neigh-
bouring in the output space. Still, Kohonen’s algorithm does not produce actual
clusters, that is, disjoint groups of similar objects. There are a number of

Figure 1. Architecture of a two-dimensional SOM.
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methods, such as the U-Matrix by Ultsch and Siemon (1990), aimed at identifying
and delimiting clusters in SOM; these allow the automatic classification of input
vectors, depending on which region within the map their corresponding BMUs
lie.

There are an extensive number of issues that can be addressed using SOM, such
as clustering, feature extraction and vector quantization. A particularly interesting
application of SOMs is the temporal analysis, as long as the available data is
time-ordered, see for example, Martı́n-del-Brı́o and Serrano-Cinca (1993) and
Sarlin (2013). Once the network is trained and the map generated, one can
easily create time series of BMUs (i.e. trajectories) in order to track the progression
of the samples. This strategy has been used in the literature to study cluster mem-
bership and temporal evolution. In this last regard, this paper presents the first
application of SOMs to analyse the temporal response of port authorities.

4. Results and Discussion

4.1. Port Authorities Clusters and Efficiency

Figure 2 shows the dendrogram for 2003, which features both the resulting par-
tition and the efficiency estimates for each port authority in that year.13 As we
mention before, we cut the dendrogram at a level of dissimilarity of 0.42, which
results in eight clusters, three actual clusters and five outlier port authorities.
Figure 2 also presents the Economic Efficiency (EE) estimates obtained from our
reference study. Note that these values take into account the distance to port auth-
orities cost frontier. The industry average EE is 0.9533 for the year 2003.

The port authorities dendrogram allows for a more precise identification of effi-
ciency benchmarks, which are now characterized by a vector of cophenetic dis-
tances to their “peers”. This information effectively adds another dimension to
the comparative analysis, and helps in setting sharper targets for improvement.
However, the use of multi-dimensional scaling also leads to a more complex
characterization of clusters, which may complicate the generalizability of results
for out-of-sample port authorities. In our case, the resulting three clusters are
characterized by seven different dimensions, and hence the interpretation of
results is not so straightforward. Table 4 presents the minimum, maximum, and
average values of each dimension per cluster.14 These values serve as reference

Figure 2. Dendrogram (truncated at 0.42), port clusters, and efficiency benchmarks for 2003.

12 B. Tovar and H. Rodrı́guez-Déniz
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indicators for out-of-sample ports, in order to easily determine cluster member-
ship.

At a glance, the dendrogram (see Figure 2) features three broad clusters (C1, C2,
and C3) and five outlier port authorities. Note that the main clusters have been
clearly defined according to the scale of production, and thus comprise a
variety of port authorities profiles, in terms of traffic mix. Therefore, it seems
that a port’s complexity, in the sense defined by Martinez-Budria et al. (1999),
plays a role in clustering the Spanish port authorities. This partition at the top
of the hierarchy indicates that grouping, by complexity, size and traffic mix,
may be adequate when it comes to benchmarking the cost-efficiency of Spanish
port authorities. This contrasts with other studies, such as Medal-Bartual and
Sala-Garrido (2011), which obtain clusters that are basically characterized by the
type of traffic. Note that each port authority in the dendrogram should be
analysed carefully, since their classification might not be explained by a single
variable, but by a combination of factors.

Cluster 1 (C1) includes the following nine port authorities: Algeciras, Baleares,
Barcelona, Bilbao, Gijón, Las Palmas, Tenerife, Tarragona, and Valencia, which are
characterized by large-scale production. These are the main commercial ports,
with total through outputs higher than 10 million tonnes in 2003. There is also a
predominance of general cargo in this cluster, although the ports have all types
of cargo including passenger traffic. The average EE for this cluster in 2003 was
0.95. Upon closer examination, we found that Barcelona and Valencia, two of
the three biggest general cargo ports, are merged into the same sub-cluster.
Note that Algeciras has been classified with Las Palmas, and that both ports are
also among the biggest general cargo ports. Although they represent a significant
share of liquid bulk, as they are among the top bunkering ports in Spain, they are
also important in transhipment traffic. In this case, the liquid bulk traffic acted as a
discriminator between both subgroups, Algeciras-Las Palmas and Barcelona-
Valencia. Furthermore, Gijón and Tarragona, the top solid bulk ports, also
appear next to each other. Nonetheless, they are clearly separated from the rest
of the elements of the lower sub-cluster of C1, due to the absence of passenger
traffic in these two particular port authorities. Moreover, Gijón, the port authority
with the highest level of solid bulk traffic, appears as the top C1 performer, (0.99).

The second cluster (C2) includes seven port authorities: Avilés, Cádiz, Carta-
gena, Ferrol, Santander, Sevilla, and Vigo which are characterized by medium-
scale production. They have bulk-based traffic, both solids, and liquids, although

Table 4. Spanish port authorities clusters

y1 y2 y3 y4 wl wi k EE

Cluster 1 Max 16,895,000 21,570,000 32,370,000 5,011,416 48,908 2.24 8,288,910 0.9873
Average 5,313,667 9,344,556 13,160,444 1,708,168 36,559 2.86 3,544,658 0.9540

Min 1,558,000 1,439,000 467,000 1,044 31,016 3.21 1,743,306 0.8992
Cluster 2 Max 7,596,000 16,543,000 3,172,000 1,71,264 35,801 0.93 4,802,939 0,9779

Average 3,315,167 3,118,333 1,611,667 43,240 32,855 1.16 2,741,709 0.9679

Min 774,000 57,000 3,76,000 0 31,215 1.64 1,285,709 0.9543
Cluster 3 Max 3,447,000 6,706,000 2,200,000 2,194,744 41,780 3.33 957,191 0.9854

Average 1,535,000 1,556,400 9,77,600 5,98,888 35,923 3.43 715,997 0.9496

Min 52,000 74,000 3,68,000 0 30,654 4.74 274,646 0.8928
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they also have general cargo and, to lesser extent, passenger traffic as well. The
cluster has been also partitioned into two subgroups, according to the quasi-
fixed input levels. Avilés and Cartagena, with very different traffic characteristics,
were separated from the rest of the elements due to their lower quasi-fixed input
level. The five remaining port authorities include Cadiz, Ferrol, Santander, Sevilla
and Vigo, Vigo is the top performer and the two elements closest to each other are
Cadiz and Santander, which are the only port authorities with significant passen-
ger traffic. The average EE for C2 in 2003 was 0.97. Cluster 3 groups ports are
characterized by low-scale production, and are mainly gateways for their
natural hinterland. They present a similar pattern to that shown by C2; that is,
main subgroups are defined by the quasi-fixed: Castellón, Ceuta, Málaga,
Melilla and Pasajes. Melilla is isolated, given its very low quasi-fixed level.
Similarly, a port with a very significant level of liquid bulk traffic, Castellón,
was also grouped apart from the remaining four. Ceuta and Pasajes appear to
be the most similar port authorities, although this case cannot be clearly explained
by any single component. Finally, the average EE for this cluster was 0.95 in 2003.

After truncating the dendrogram at the selected level (0.42), the remaining port
authorities (C4–C8) can be considered outliers, maybe with the exception of Vila-
garcı́a (C4), which would fit in C3 at the truncation level 0.5. Their average EE is
0.93, with Alicante as top performer (0.98). Marı́n-Pontevedra is probably the most
conspicuous outlier in 2003, as it is the only port authority in the sample with vir-
tually zero bulk liquid traffic. Conversely, the position of A Coruña and Alicante
cannot be so readily explained. They would perfectly fit in C1 and C3, respectively,
and it is difficult to justify their positions as outliers, given the variables under
study. On the other hand, the Huelva port authority, which is a consistent
outlier throughout the four years analysed, features abnormal levels of both inter-
mediate input prices and quasi-fixed input.

Finally, Figure 3 shows, grouping by cluster, the evolution in the EE for the
entire sample of Spanish port authorities during the period of analysis, 1993,
1997, 2003, and 2007. From the results, it can be noted that port authorities as
Algeciras, Vigo, Cartagena, and Málaga are leaders in their group, and reach
the highest average levels of EE during the time horizon; these results are
Algeciras (0.950), Vigo (0.937), Cartagena (0.938), and Málaga (0.933).

The port classification described above presents a number of desirable charac-
teristics, especially when compared with similar articles published. The closest
reference to our paper, both in scope and in methodology, is Medal-Bartual and
Sala-Garrido (2011). Despite the apparent methodological similarities, there are
actually some noticeable differences. The most relevant is probably the approach
to and the way in which both papers address the efficiency estimation. Whereas
they calculate their DEA efficiency frontier after splitting port authorities into
clusters to take into account the “observable” heterogeneity, we have estimated
only one frontier for the whole sample using an SFA model. This has let us take
into account not only the “observable” but also any producer-specific unobserved
heterogeneity.15 Afterwards, we used the estimated parameters to cluster port
authorities, which has let us to take into account all the relevant cost information.

Regarding the actual clustering methodology, Medal-Bartual and Sala-Garrido
(2011) grouped their sample according to two predefined variables, while we
perform a technology-based multi-dimensional clustering founded on both
input and output factors, which ultimately serve as optimal variable weights.16

Their resulting dendrogram features four high-level clusters that clearly

14 B. Tovar and H. Rodrı́guez-Déniz
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correspond to specific traffic profiles, for example, solid bulk ports. Despite the
difference in scale of operations among many Spanish port authorities, the size
of ports cannot be readily detected even at lower levels of the hierarchy. In con-
trast, the complexity of Spanish port authorities is a key criterion in our cluster
definition. While our classification tends to group port authorities according to
their scale at a high level, similar port authorities17 tend to be neighbouring
inside each cluster. This results in a multi-levelled characterization of port auth-
orities. This result, which better reflects the Spanish port authorities’ actual situ-
ation, is a consequence of our hierarchical clustering; this in turn is heavily

Figure 3. EE evolution by cluster.
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based on all the available information from an efficiency estimation, which takes
unobservable heterogeneity into account.

Another work worthy of mention at this point, for comparative purposes, is
Martinez-Budria et al. (1999). In common with the previous reference, they
share a DEA approach and also the same way of conducting the efficiency esti-
mation; however, they differ in the criteria followed to split the sample (see
Section 2). They categorized their ports into three levels of complexity; however,
their criteria are not clearly detailed, and may be regarded as an ad hoc
approach.18 This is in contrast to our efficiency-frontier-based clustering alterna-
tive. Nevertheless, their resulting classification (low-, medium-, and high-
complexity ports) is very similar to that of our dendrogram, in the sense that
port authorities with similar scale are grouped together. It also shows the existing
relationship between size and complexity of port authorities. Their clusters
resemble our own results in many cases; for example, their first cluster (high-
complexity ports) almost mirrors our C1, port authority for port authority.
However, the absence of the hierarchical component in their paper hinders a
more detailed characterization of port authorities and limits the subsequent
analysis.

In summary, Spanish port authorities have been clustered according to the rel-
evant outputs and input prices, with the cost elasticities and factor shares serving
as optimal variable weights. In this way, we have been able to generate dendro-
grams that define the port authorities categories that mirror the performance indi-
cator. This information effectively adds another dimension to the comparative
analysis, and helps in setting sharper targets for improvement specific to each
cluster; this is even the case within each cluster, since we can take advantage of
the possibility of the sub-cluster identification offered by the hierarchical
approach. Nevertheless, there are outliers that cannot be easily or obviously
classified into a specific cluster. In these particular cases, SOM are used to
analyse their temporal response, in order to shed light on the reasons why they
are outliers.

4.2. Temporal Pattern Analysis

The use of hierarchical methods makes temporal analysis difficult, and limits the
clustering to a cross-section study; this is because different dendrograms cannot
be straightforwardly compared. Some authors tackle this problem by clustering
the average values of each port authority for the entire period; for example,
Medal-Bartual and Sala-Garrido (2011). This is questionable and could be very
misleading, as important changes that affect Spanish port authorities could be
masked by the average figures. We propose the use of SOMs, in order to track
the evolution of Spanish port authorities. Training a map will allow us to visually
follow the history of ports that for whatever reason are of special interest; for
example, being an outlier. Additionally, dendrograms are intended to provide a
broad overview of the underlying structure of the data, but they are not directly
interpretable in terms of the clustering variables. This problem can be easily
addressed by projecting each variable, or component, on the SOM using
Kohonen networks.

Our sample features a variety of port authority profiles, in terms of temporal
evolution. Some port authorities do not seem to be affected by time changes,
and thus show consistent behaviour. What is more, there are a number of

16 B. Tovar and H. Rodrı́guez-Déniz
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outlier port authorities, which can be readily identified by inspecting the resulting
dendrogram, not only for 2003 but for the whole 1993–2007 period. These obser-
vations are usually characterized by drastically reduced levels of cargo, either
temporary or permanent, or by unusual traffic mixes. Moreover, port authorities
may face difficulties, such as the recent economic downturn, which has tempor-
arily affected their traffic volumes. Hence, we will focus on four port authorities
to illustrate the utility of SOMs as a tool to follow their temporal evolution.
They are Algeciras which is a relevant and consistent port, Huelva which is a con-
sistent outlier, and Port Pasajes and Marı́n-Pontevedra which have suffered
important variations in their traffic.

Figure 4 shows the U-matrix (Figure 4(a)) and component planes (Figure 4(b)–
(h)) of Algeciras, Huelva, Marı́n-Pontevedra, and Pasajes port authorities. The
network was trained19 using the complete sample; that is, 1993, 1997, 2003, and
2007. Once the SOM has been generated, the individual response, the BMU, for
each port authority at a given period is stored. The result is shown as a four-
step trajectory. Each port authority trajectory has been assigned a different
colour to facilitate visual inspection; see the legend in the bottom right of Figure 4.

The U-matrix is intended to reveal the clustering structure of the data. Map
units with high values, the brighter colours in the figure, indicate important differ-
ences among nearby units, while homogeneity is represented by darker tones. We

Figure 4. U-matrix, component planes and trajectories for selected ports (1993–2007).
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have noticed three well-differentiated areas in our U-matrix. The first is a large,
homogeneous dark-blue area of the map, which includes the majority of port
authorities of the sample, for example, Algeciras and Las Palmas. The second is
a relatively small piece of the map, which is in the bottom left corner, and
whose feature is very low levels of liquid bulks; for example, Marı́n-Pontevedra
port authority. Third is another small portion of the map, in the bottom right
corner, which cannot be readily related to a single component.

We will focus, however, on the temporal evolution of the selected port auth-
orities, which can be assessed through the component planes at an attribute
level. Each component plane represents the value of a given variable on each
map unit; in Figure 4(b)–(h), there are colour bars indicating the levels of such
variables. For each port authority, its consecutive BMUs are connected by a line,
or trajectory, and are superimposed onto the component maps; thus, their
progress in time is represented, and this allows for a ready visual analysis. As a
rule of thumb, the pronounced colour variations of BMUs within the same trajec-
tory are normally associated with large variations in the levels of components. The
Pasajes port authority perfectly illustrates the case of a sudden decline in traffic,
and its effects on classification; in 2005, after years of a slow but consistent
decline, its bulk liquid traffic reduced to zero. In this case, what was a consistent
port from 1993 to 2003, subsequently in 2007 became an outlier, joining
Marı́n-Pontevedra port authority in the uppermost side of the corresponding
dendrogram.

In the case of Pasajes, this declining trend can be immediately detected by
inspecting its trajectory for the liquid bulk component; see the yellow line in
Figure 4(c). This corroborates its evolution from the “safe” region of the map to
the area associated with extreme, low values. Figure 5 presents a three-dimen-
sional representation of this particular trajectory and component. Moreover, a
very similar pattern was observed for Marı́n-Pontevedra port authority in 1997,
when their liquid bulk traffic stopped. This occurred following its strategy to
focus on general merchandise20 and solid bulks, and because of competition
from A Coruña and Ferrol. All these ports are located in Galicia.

Figure 5. Evolution of Pasajes port between 1993 and 2007. Liquid bulk plane.

18 B. Tovar and H. Rodrı́guez-Déniz
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The case of the port of Huelva is particularly interesting. This port authority is a
consistent outlier in each one of the periods considered, with apparently low
levels of intermediate prices and high quasi-fixed input. Note that the outlier
status of Huelva was not clearly represented by the U-matrix; hence, this shows
the importance of analysing the component planes for each port.

5. Conclusions

In this paper, we review previous studies that combine both frontier-based pro-
ductivity and/or efficiency estimation with port classification. The problem of dis-
tinguishing between heterogeneity and inefficiency is widely acknowledged in
benchmarking, and aggravated when international data sets are used. Due to
ports being characterized by their geographical and operational settings, this
environment heterogeneity — which is one characteristic manifestation of firm
heterogeneity — should be taken into account to avoid considering as “ineffi-
ciency” what are really “differences”. Our survey has shown that authors using
DEA (the vast majority) have tried to solve this problem by splitting the sample
into homogeneous groups before the frontier estimation. As the latter approach
is not without disadvantages, we propose using a frontier-based clustering to clas-
sify ports following the methodological framework from Rodrı́guez-Déniz and
Voltes-Dorta (2014).

In this paper, we have also contributed to the SFA literature on port efficiency
measurement by presenting an empirical application of the above-mentioned
methodology on the Spanish port authorities. They were classified by means of
hierarchical clustering, with the cost elasticities and factor shares serving as
optimal variable weights. We have used the cost frontier parameters and efficiency
estimates from Rodrı́guez-Álvarez and Tovar (2012), who developed a stochastic
frontier model that controls unobserved heterogeneity. We defined port auth-
orities’ categories that mirror the performance indicator for the years 1993, 1997,
2003, and 2007 by using hierarchical clustering. We also proposed the use of
Kohonen’s SOMs, in order to track the temporal evolution of special port auth-
orities, for example, outliers.

From the analysis of the structure and efficiency of Spanish port authorities, we
can conclude that there is no homogeneous set of individuals, but a number of
well-defined groups with similar properties; these depend on the level of com-
plexity, scale and mix of production, in the corresponding Spanish port auth-
orities. Specifically, the cluster analysis applied suggests the existence of three
clusters of port authorities. The first one is compounded of the main commercial
ports, which have greater complexity. These are characterized by large scales of
production. There is a predominance of general cargo, although their port auth-
orities have all types of cargo, including passenger traffic. The second cluster
groups medium-complexity port authorities, with medium scales of production,
whose traffic is based on both solid and liquid bulk traffic; nonetheless, they
also have general cargo and, to lesser extent, passenger traffic. Finally, the last
port cluster is characterized by a low scale of production, and ports are mainly
gateways for their natural hinterland. The classification also allows for fine-
grained comparisons inside each cluster. Although the main divisions of the den-
drogram are defined according to the scale of the port authorities, similar elements
tend to form sub-clusters at lower levels, in accordance with their traffic mixes or
quasi-fixed input; this is the case for the top solid bulk ports Gijón and Tarragona
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in C1, and for Avilés and Cartagena in C2. Since the defined categories of port
authorities mirror the performance indicator, another dimension is effectively
added to the comparative analysis; and this helps in setting sharper targets for
improvement that are specific to each cluster. We also analysed the relative effi-
ciency of each Spanish port authority, with respect to the others belonging to
the same cluster. From the results, it is noted that ports such as Algeciras, Vigo,
Cartagena, and Málaga are leaders in their group, and reach the highest
average levels of EE during the time horizon, 1993–2007.

Given that different dendrograms for each period are not straightforward to
compare, we completed our cluster analysis using SOMs, and this represents
one original contribution of this article. In this paper, we have proposed the use
of SOMs to track the temporal evolution of Spanish port authorities. The resulting
maps have allowed us to visually follow the history of port authorities, which are
of special interest for several reasons, and shed light on the origin of such patterns.
We have selected four port authorities’ profiles to be tracked. Algeciras represents
those port authorities that behave in a consistent way during the whole period. A
second, Huelva, shows the case of a port authority which behaves as an outlier all
the time. Finally, we use Pasajes and Marin-Pontevedra to illustrate the case of a
port authority changing from being consistent to becoming outlier and vice
versa. The SOMs were particularly helpful in visualizing the temporal patterns
at each variable level, allowing, us to identify the cause of some outliers.

In summary, we have reviewed the previous literature on classification for port
benchmarking and also advanced the literature by classifying port authorities
using a methodology that combines SFA and cluster analysis. We go further
than ad hoc approaches and also avoid making misleading comparisons, by
taking into account unobserved heterogeneity in the SFA estimation. The use of
hierarchical clustering allows for a more detailed analysis and identification of
the efficiency benchmarks. This is in contrast to other existing alternatives that
produce flat clusters. Moreover, the weighting of the relevant variables has not
been considered in any previous study. In addition, the weights applied to the
clustering variables come from a model that explicitly takes into account the exist-
ence of unobserved heterogeneity. We conclude that combining cost frontier and
cluster methods into cost-frontier-based clustering methods and the use of
SOMs, either in isolation or jointly, offer particularly useful information for
administrators, regulators, and policy-makers. Cost-frontier-based clustering
may be used in when defining a robust port typology, and SOM for analysing
the temporal response of particular cases. For this reason, we believe that these
methods could be useful for future studies on efficiency and/or productivity in
ports.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes

1. Formally, technical efficiency is the capacity of obtaining the maximum amount of output from
certain inputs (output orientation). Alternatively, as the capacity of obtaining a given output
level using the minimum amount of inputs (input orientation). Also, a company presents efficien-
cies of scale, if it reaches the maximum productivity with the current technology.
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2. One of the advantages of DEA is that the researcher can generate results with relatively small data
sets. As a result, DEA has been used extensively in the economic analysis of port efficiency.

3. Note that in our paper, the SOMs are employed to analyse the temporal evolution of ports, and not
to produce actual clusters, as Sharma and Yu (2009) and Quaresma-Dias et al. (2009) did. The aim of
their application of SOMs was to generate an input-based clustering, which was subsequently com-
bined with a set of efficiency tiers obtained from the DEA.

4. The optimal variable weights which are going to be used for building port clusters come from an
SFA model which took unobserved heterogeneity into account.

5. For the sake of brevity, we only summarize the details needed to understand what are we doing
here and refer the interested readers to the original paper.

6. They began by following the model proposed by Battese and Coelli (1995), which allows them to
specify economic inefficiency in terms of a set of explicative variables that may change with
time. This model did not need to recur to second-stage analysis, thus avoiding inconsistency pro-
blems; see Wang and Schmidt (2002). However, they proposed the re-estimation of the model
within a Fixed Effect Model (FEM) framework, by introducing port authorities dummy variables
into the frontier equation; this was done in order to capture possible systematic differences
between ports (unobservable heterogeneity), If this heterogeneity exists and it is not explicitly
picked up in the model, then a problem of omitted variables exists; consequently, the estimated
coefficients of the included variables will be biased. In this way, the FEM model nests the
previous pooled model and, on the basis of likelihood ratio tests, the restricted model was
rejected; thus, the FEM was found to be a better representation of the technology for the
sample. The immediate implication is that a model, which does not account for individual
effects, would be misspecified, and therefore provides biased parameter estimates and mislead-
ing inference.

7. The estimated cost function fulfils the properties required by the theory; the regularity conditions
are satisfied as the outputs are increasing, and the input prices are non-decreasing and quasi-
concave.

8. Everitt, Landau, Leese, and Stahl (2011) is a general reference to cluster analysis. Xu and Wunsch
(2005) present a comprehensive survey of algorithms for data clustering.

9. Here, we only present their methodology briefly, and we refer the interested readers to the original
paper.

10. By using iTOL (Letunic & Bork, 2007), we generated the dendrograms with their branches labelled
according to their height.

11. In unsupervised learning, the goal is to describe the associations and patterns among a set of
unlabelled samples (Duda, Hart, & Stork, 2000; Hastie, Tibshirani, & Friedman, 2009).

12. On a two-dimensional squared lattice, the Von Neumann neighbourhood comprises the four nodes
orthogonally surrounding a central node (Schiff, 2008).

13. To show the advantages of the methodology of combining SFA and hierarchical clustering, we only
need to analyse a single year from within the sample. Since we get very similar port cluster for the
selected years, we only report results for 2003; moreover, in that year, the Spanish port authorities
showed the highest average economic efficiency for the 1993–2007 period.

14. The port authorities clusters mirror the performance indicator because the optimal variable
weights used to build them come from a stochastic frontier cost efficiency model.

15. Unobserved heterogeneity is not reflected in measured variables, but it is expressed in the form of
effects (Greene, 1993).

16. Although Medal-Bartual & Sala-Garrido classified ports according to multiple characteristics, no
variable weights were assigned.

17. For example, Barcelona and Valencia, two out of the three biggest general cargo ports, were merged
into the same C1 sub-cluster.

18. Martinez-Budria et al. state that they use the port classification provided by the former General
Management of Ports, but the only explanation they offer is “is based on a complexity criterium
given by port size and the composition of the output vector”. They offer no reference on where
more information about this port classification may be found.

19. Self-Organized Maps were generated using the SOM Toolbox for Matlab: http://www.cis.hut.fi/
projects/somtoolbox/.

20. In 2011, Marı́n-Pontevedra overtook A Coruña as general merchandise port.
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