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Abstract Two assumptions have underpinned environmental justice over the past

several decades: (1) uneven environmental exposures yield correspondingly unequal

health impacts and (2) these effects are stable across space. To test these assump-

tions, relationships for residential pest and PM2.5 exposures with children’s

wheezing severity are examined using global (ordinary least squares) and local

[geographically weighted regression (GWR)] models using cross-sectional obser-

vational survey data from El Paso (Texas) children. In the global model, having

pests and higher levels of PM2.5 were weakly associated with greater wheezing

severity. The local model reveals two types of asthmogenic socio-environments,

where environmental exposures more powerfully predict greater wheezing severity.

The first is a lower-income context where children are disproportionately exposed to

pests and PM2.5, and the second is a higher-income socio-environment where

children are exposed to lower levels of PM2.5, yet PM2.5 is counterintuitively

associated with more severe wheezing. Findings demonstrate that GWR is a pow-

erful tool for understanding relationships between environmental conditions, social

characteristics, and health inequalities.
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Introduction

Myriad studies have shown that minority and lower-income children suffer

disproportionately from a host of health problems (e.g., Mehta et al. 2013). Minority

and lower-income neighborhoods also tend to be burdened by the unequal

distribution of hazard exposures (Downey 2006). Studies addressing these two

hypothetically linked phenomena have remained largely distinct and a key question

remains unanswered: What is the role of exposure to environmental hazards in

health disparities? Studies investigating this linkage using a spatial approach have

relatively recently begun to emerge under the rubric of ‘‘Environmental Health

Justice’’ (EHJ) (Chakraborty and Maantay 2011; Corburn 2005; Grineski et al.

2013). This is in response to decades of environmental justice research that has

extended from the poorly supported assumption that uneven environmental

exposures yield correspondingly unequal health impacts and that these effects are

stable across space.

EHJ researchers have reported that environmental degradation plays a role in

predicting geographic inequalities in health outcomes (Grineski 2007; Grineski

et al. 2013; Jephcote and Chen 2012, 2013; Pearce et al. 2010, 2011; Richardson

et al. 2013), but not in the monotonic way that many researchers may have assumed

it would. For example, in the UK, Pearce et al. (2010) found that the relationship

between environmental deprivation and mortality was strongest in the most affluent

areas and weakest in the poorest areas. In California, Hispanics experienced the

greatest exposure to ozone and PM2.5 as compared to blacks and whites, but they did

not have the highest excess attributable risk of hospitalizations due to pollution

exposure (Hackbarth et al. 2011). Grineski et al. (2013) found a significant

association between air toxics and children’s respiratory infections in El Paso

neighborhoods after adjusting for relevant controls, but they did not find the same

for asthma.

In addition to counterintuitive findings, EHJ work has been characterized by a

reliance on secondary data sources. On the health side (see Wheeler and Ben-

Shlomo 2005 for an exception), studies have relied on hospitalization data (e.g.,

Grineski et al. 2013; Jephcote and Chen 2012) and mortality records (e.g., Pearce

et al. 2010), which are attributable to the public availability and low cost of these

sources of health data. While generating important insights, this work has focused

attention on serious health outcomes and has tended to require the analysis of

aggregated data for areal units (e.g., neighborhoods). In terms of air quality,

modeled criteria air pollution surfaces are publically available in the UK (Jephcote

and Chen 2012; Pearce et al. 2010). These types of surfaces are not available from

US governmental agencies, and therefore, they are rarely used by EHJ researchers

working in the USA (see Grineski 2007 for an exception). This is a critical

limitation given the deleterious health effects of these pollutants (Samet and

Krewski 2007).

Recent studies raise the possibility that pollution–health linkages might vary

widely across space (Pearce et al. 2010; Richardson et al. 2013). This makes

geographically weighted regression (GWR) particularly suited to investigating EHJ,

even though it is an ‘‘underused EJ technique’’ (Jephcote and Chen 2012, p. 141).

Popul Environ (2015) 37:22–43 23

123



Unlike spatial autoregressive models, which account for spatial autocorrelation in

generating parameter estimates (Chakraborty 2011), GWR models how relation-

ships between variables vary across space (Fotheringham et al. 2002). To our

knowledge, only three previous EJ studies focused on environmental hazards have

used GWR (Gilbert and Chakraborty 2011; Jephcote and Chen 2012; Mennis and

Jordan 2005). One study analyzed data from New Jersey and concluded that global

models used by many are likely insufficient for modeling environmental injustice

(Mennis and Jordan 2005). Most recently, Jephcote and Chen (2012) found that

PM10 and ethnic minority status were stronger predictors of children’s asthma

hospitalization rates in the inner city of Leicester (UK) than they were in outlying

areas. These findings underscore the point that environmental exposures may not

impact people’s health the same way in all locations and that the ways in which

exposures impact health may be surprising.

While the majority of EJ studies focus on outdoor environments (e.g., factory

releases and criteria air pollution), indoor environmental exposures can also be

considered environmental injustices (Grineski and Hernandez 2010). Poor home

environments have less often been considered in terms of environmental injustice in

the past (see Kraft and Scheberle 1995; Landrigan et al. 2010 for exceptions),

possibly because there is a tendency to assume that in-home conditions are products

of independent household decisions, rather than power-laden products of social

processes (Grineski and Hernandez 2010). Certainly, indoor environmental

exposures (e.g., roaches, rodents, mold) are more prevalent in substandard housing

inhabited by the poor (Matte and Jacobs 2000) and have been linked to respiratory

symptoms at the individual (Lanphear et al. 2001) and neighborhood levels

(Grineski 2007).

As is the case with air pollution, there is preliminary evidence that in-home

exposures may not impact all children the same way. Low-income white children in

New York (state) had higher rates of indoor risk factors than did middle class white

children, and these risk factors were correlated with elevated overnight epinephrine,

norepinephrine, and cortisol, but only in the low-income sample (Evans and

Marcynyszyn 2004). Pooling five survey datasets, researchers found that the odds of

exposure to household pests were significantly associated with asthma only for

children born in the USA and not for children born outside the USA (Woodin et al.

2011). Those studies examined variation based on social characteristics—specif-

ically, income and nativity. It remains unclear how the strength of the association

between indoor exposures and respiratory health might vary across urban space.

This study makes several advances upon previous studies. First, we utilize

individual-level data, which are rare in EJ studies, thus avoiding the problem of the

ecological fallacy. Second, as opposed to relying on secondary hospitalization or

mortality records, we use a wheezing symptoms severity measure, thus capturing a

more common and broadly relevant health problem. This enables us to address

Jephcote and Chen’s (2012, p. 142) recent call ‘‘for future EJ research to develop

upon [previous] GWR studies, through applying measurements of actual health

events and exploring a wider range of cardiorespiratory conditions influenced by

short-term exposures.’’ Asthma hospitalizations, which are more often used in these

types of studies, are relatively rare events; for example, the asthma hospitalization
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rate is 27 per 10,000 children in the USA (Akinbami 2007). Third, we utilize a

PM2.5 (particulate matter less than 2.5 micrometers in diameter) surface, generated

through primary data collection. This allows us to move beyond US EPA-provided

data and to analyze an important traffic-associated criteria air pollutant for which

data are not currently publicly available in the USA. The associations between

PM2.5 and respiratory problems have been well-documented, and inhalation of this

pollutant has been linked to inflammatory responses and pulmonary oxidative stress

(Hansen et al. 2012). Fourth, we consider both indoor (pest exposure) and outdoor

(PM2.5) environmental conditions through an EHJ framework, which is rarely done.

As per prior EHJ research (Gilbert and Chakraborty 2011), our analysis approach

relies on both aspatial and spatial modeling. We answer the following two research

questions: (1) What are the global relationships for residential pest exposure and

PM2.5 with children’s wheezing severity adjusting for relevant controls? (2) What is

the degree of local spatial variation in the contribution of both residential pest

exposure and PM2.5 to children’s wheezing severity adjusting for the relevant

controls?

Data and methods

Study context

The study took place in El Paso County, Texas, which has an estimated population

of 830,000 residents. According to the US Bureau of the Census, in 2011, 81 % of

its residents were Hispanic (compared with 17 % for the USA and 38 % for TX),

while smaller percentages were non-Hispanic white (14 %) and non-Hispanic black

(4 %). El Paso County had a lower median household income (2011 US $36,333)

than the State of Texas (2011 US $49,391) and the USA (2011 US $50,502) with a

poverty rate of 24 %, which was higher than the national rate (16 %). In previous

studies in this city, researchers have found relatively modest associations between

air pollutants (including PM2.5) and respiratory health effects (Grineski et al. 2011;

Sarnat et al. 2011; Svendsen et al. 2012; Zora et al. 2013).

Survey data collection

Social and health data were collected through a cross-sectional, observational mail

survey that was approved by our university’s Institutional Review Board. The

closed-ended questionnaire was sent to all primary caretakers (parents and

guardians) of fourth and fifth graders attending school in the El Paso Independent

School District (EPISD). With more than 64,000 students across 94 campuses, the

EPISD is the tenth largest district in Texas and the 61st largest district in the USA

(EPISD 2013). Children in the 4th and 5th grade from all 58 elementary schools are

represented in the dataset.

Surveys were conducted to obtain the highest achievable response rates by

personalizing communication, following up with non-respondents, and offering

incentives (Dillman et al. 2009). All survey materials were provided to households
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in English and Spanish in three waves during May of 2012. Ultimately, 6,295

primary caretakers received surveys at their home address, and 1,904 surveys were

returned for a 30 % response rate. Respondents were primarily mothers (82 %),

with the next largest shares being fathers (10 %) and grandparents (4 %).

Descriptive statistics for the percentages of surveyed children who are male (49.9

vs. 51.4 % in EPISD), Hispanic (82.2 vs. 82.6 % in EPISD), and economically

disadvantaged (60.4 vs. 71.1 % in EPISD) indicate that the sample is generally

representative of the EPISD student population (EPISD 2013).

Selection criteria

Of the 1,904 children surveyed, 1,736 were selected for inclusion in this study; 162

were excluded due to missing data for the analysis variables, and six were excluded

as spatial outliers. We focus on children because of their sensitivity to air pollution.

Childhood is a critical time in the development and maturation of the cardiore-

spiratory system, which is highly susceptible to the absorption of toxins (Jephcote

and Chen 2013). A child’s lung surface area is significantly larger relative to body

mass than an adult’s; children can breathe up to 50 % more air per kilogram of body

weight. Children also tend to spend more time outdoors participating in activities

that increase their breathing rates. When coupled with exposure to air pollutants,

these factors create conditions conducive to damaging or stunting the development

of children’s cardiorespiratory systems, creating health problems which can prevail

throughout adulthood (Schwartz 2004).

Dependent variable

The dependent variable is a composite measure of six wheezing measures based on

data collected using International Study of Asthma and Allergies in Childhood

(ISAAC) (ISAAC Steering Committee 2012) and National Asthma Survey

questions (O’Connor et al. 2008). From the ISAAC, we used the following

questions: (1) in the last 12 months, has the wheezing ever been severe enough to

limit your child’s speech to only one or two words at a time between breaths?

(1 = yes, 0 = no); (2) in the last 12 months, has the child had wheezing or

Table 1 Component loadings and individual variable means for the six wheezing variables included in

the ‘‘Current wheezing severity’’ measure

Variable PCA component

loadings

Individual

variable mean

Wheezing limited speech 0.499 0.02

Doctor-diagnosed asthma 0.682 0.16

Asthma symptoms (including wheeze) 0.833 0.19

Night cough 0.514 0.24

Wheezing in sleep 0.785 0.07

Wheezing with no cold 0.821 0.08

N = 1,736
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whistling in the chest when he/she did not have a cold or the flu? (1 = yes, 0 = no);

(3) in the last 12 months, has your child’s sleep been disturbed due to wheezing?

(1 = yes, 0 = no); (4) in the last 12 months, has your child had a dry cough at night

apart from cough associated with a cold or chest infection? (1 = yes, 0 = no); and

(5) has the child ever been told by a doctor or health professional that he or she has

asthma? (1 = yes, 0 = no). From the National Asthma Survey, we used this

question: (6) symptoms of asthma include coughing, wheezing, shortness of breath,

chest tightness, or phlegm production when someone does not have a cold or

respiratory infection. How long has it been since your child had any symptoms of

asthma? (1 = less than 1 year ago, 0 = more than 1 year ago). We created a

composite measure of current ‘‘wheezing severity’’ using principal components

analysis on these six variables (see Table 1 which includes factor loadings), after

standardizing all items. The eigenvalue for the one component was 2.96 and it

explained 49.4 % of the variance. Due to skewness and kurtosis, we used a natural

log transformation on this variable (after first adding 1 to make all values positive).

Descriptive statistics are presented in Table 2.

Independent variables

The primary variables of interest are residential pest (indoor) and PM2.5 (outdoor)

exposure. Pest is a dichotomous variable which is coded 1 if the caretaker reported

being troubled by rats (1 %), ants (18 %), mice (2 %), spiders (6 %), cockroaches

(14 %), termites (1 %), and/or another pest (3 %) inside the home in the past

12 months, and 0 if she did not (55 %). Biological agents, including allergens from

cockroaches and rodents, are among the most prominent environmental factors

Table 2 Descriptive statistics

of variables used in analysis

N = 1,736
a 1 was added to the wheezing

measure before it was natural

logged

Variable (continuous) Min. Max. Mean. St. Dev.

Current wheezing severity (ln)a -0.73 1.71 -0.29 0.67

Residential PM2.5 (ln) 1.75 2.94 2.10 0.25

Variable (dichotomous) Response Frequency Percent

Home has pest(s) Yes (1) 781 45

No (0) 955 55

Child is male Yes (1) 868 50

No (0) 868 50

Mother has asthma and/or

allergies

Yes (1) 573 33

No (0) 1,163 67

Child has allergies Yes (1) 885 51

No (0) 851 49

Postponed or did not seek

health care due to concerns

about cost

Yes (1) 417 24

No (0) 1,319 76

Child is Hispanic Yes (1) 1,424 82

No (0) 312 18
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implicated in asthma morbidity and poor housing conditions are associated with

exposure to these asthma-inducing biological agents. Roaches and rodents are also

associated with excess moisture in the home, which can also trigger wheezing and

asthma (Derose et al. 2009). Indoor exposures play at least two roles in asthma: (1)

as a risk factor for genetically susceptible individuals and (2) as a source of ongoing

airway inflammation and hypersensitivity to other irritants (Rauh et al. 2008). In

using this variable, we assume that reporting ‘‘being troubled’’ by one or more of the

pests maps to a problem with pests in the home, and not just the occasional spider or

ant and that it is associated with poor housing conditions more generally. Also, the

‘‘pest’’ variable was more strongly correlated with wheezing severity than was

roaches alone.

Residential PM2.5 values for outdoor environments at each child’s home site were

extracted from a 2012 exposure surface created via land use regression (LUR)

modeling for this project (as per Jerrett et al. 2007; Olvera et al. 2012). PM2.5

measurements were collected via a 26 site monitoring network designed using a

location-allocation approach (as per Kanaroglou et al. 2005). The location-

allocation method used an existing exposure surface from 2006–2009 to determine

an optimal monitoring network (Olvera et al. 2012). We collected one 14-day

averaged PM2.5 sample at each site per season (n = 4) during 2012. Monitoring

began in May 2012 to coincide with the survey. PM2.5 samples were collected on

Teflon filters with multi-stage impactors and concentrations were determined via

gravimetric analysis (Olvera et al. 2012). The four seasonal PM2.5 concentrations

were averaged to produce annual estimates, which are appropriate for use in LUR

models (Gerard Hoek et al. 2002). A linear regression model was built with PM2.5 at

each of the 26 sites as the dependent variable and surrounding land use, traffic, and

physical characteristics as predictors (i.e., traffic counts, vehicle miles traveled, land

use, property values, population density, distance to the international border, and

elevation summarized for circular areas around the monitoring locations).

The relative fit of the model was determined by a R2 of 0.458, which is good for

these types of models (Hoek et al. 2008; Javier et al. 2007; Olvera et al. 2012). The

absolute fit represented by the root mean square error was obtained via a leave-one-

out bootstrap analysis for 1,000 samples (Isakov et al. 2012; Javier et al. 2007; Rose

et al. 2010a, b) and was found to be 0.93 (95 % CI 0.56–1.09). The samples were

generated via a ‘‘leave-some-out’’ cross-validation technique. Specifically, we

randomly sampled 100 different observation sets from our 26 site observations by

leaving out up to three sites each time. Technically, we could have sampled 2,600

different samples from our 26 sites, but for practical purposes, we stopped at 1,000.

The samples were used to generate the model and the rest to test it. This validation

method has been widely used in LUR studies and has been shown to be adequate

and robust for such purposes (Isakov et al. 2012; Johnson et al. 2010; Parenteau and

Sawada 2012; Rose et al. 2010a, b). Considering a mean PM2.5 concentration of

7.2 lg/m3 across the region, the accuracy of the estimates is ±13 % (95 % CI ±7.2

to ±15). Additional details of the monitoring procedures and the LUR modeling

technique used can be found elsewhere (Jerrett et al. 2007; Olvera et al. 2012).

This approach generated PM2.5 values for 2,193 points on a 500-m grid. We then

used inverse distance weighting (IDW) with a distance decay function of 2 to create
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a continuous PM2.5 surface (see Fig. 1) and each child was given the value of PM2.5

corresponding to his or her home location. We used 2 as the coefficient because it

produced a robust PM2.5 surface for the USA in a previous study (Al-Hamdan et al.

2006). Also, the IDW technique was use to interpolate PM2.5 values estimated via

the LUR model over a grid of 500-m resolution. Hence, the value of 2 ensured that

the contributions of more distant observations to the weighted interpolated value

were very small. In the analysis, a natural log transformation was used to correct for

skewness and kurtosis in PM2.5; a standardized version of this variable is used in the

models. The pest and PM2.5 variables are summarized in Table 2.

Control variables

Five control variables were selected based on relevant literature and contextual

relevance to El Paso; we also prioritized selecting variables for which the

proportions of missing data were lower being that the GWR tool in ArcGIS cannot

handle multiply imputed datasets at this time. These control variables include sex

(Wright et al. 2006); whether the biological mother has asthma and/or allergies

(Hryhorczuk et al. 2009); and whether the child has allergies or not (Holt et al.

2013; Kocevar et al. 2005). We used an indicator of the family having postponed or

avoided seeking health care for the child because of concerns about cost. We do not

adjust for household income or parental education due to missing data. This variable

Fig. 1 PM2.5 surface and major transportation routes in El Paso County, Texas
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represents a SES-related access to care indicator. Given the Hispanic majority

context of this study and lower rates of asthma among this population, we include an

indicator of Hispanic ethnicity (Padilla et al. 2009); we do not account for

membership in any other racial/ethnic groups due to small counts. Descriptive

statistics for all variables are included in Table 2.

Analysis methods

These data are analyzed in two steps, following other GWR EHJ studies (Gilbert and

Chakraborty 2011; Jephcote and Chen 2012) and in accordance with the two research

questions. The starting point for development of a GWR model is the ordinary least

squares (OLS) multiple regression equation that expresses the relationship between

the dependent variable and a combination of independent variables simultaneously in

a single model (Gilbert and Chakraborty 2011). We first used OLS, an aspatial

multivariate regression technique, to identify the important overall predictors of

wheezing severity in El Paso. This provides what researchers who conduct spatial

regression analysis term ‘‘global’’ findings because OLS models assume that the

correlations are constant over space. This means that every independent variable has

one regression coefficient that maps to the average situation for all the observations in

the study area (Tu et al. 2012).

Fig. 2 Study area map including GWR model performance statistics (i.e., local R2). Note ‘‘West Side,’’
‘‘Northeast,’’ ‘‘South Side,’’ and ‘‘Downtown’’ are used locally to refer to the labeled regions of the city
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Second, we used geographically weighted regression (GWR) to uncover ‘‘local’’

spatial relationships. The significance of local spatial relationships is predicated on

the concept of spatial non-stationarity, which means that ‘‘the measurement of a

relationship depends… on where the measurement is taken’’ (Fotheringham et al.

2002, p. 9). To model non-stationarity, we use GWR in a geographic information

system (GIS) to calculate individual regression equations for each data point, using

the surrounding points (Mennis and Jordan 2005). Points, in our case, are geocoded

addresses of children participating in this study. GWR uses a distance decay

function, which assumes that observations closer to a given point will have stronger

influences on the local parameter than points further away (Tu et al. 2012).

Either a fixed or adaptive kernel bandwidths can be used to generate the local

parameter estimates. Fixed kernels rely on a constant bandwidth for all the

observations, while adaptive kernels modify the size of the bandwidth based on

spatial variations in the density of observations. With adaptive kernels, longer

bandwidths are used in areas where data points are sparser, and shorter bandwidths are

employed in areas with a greater density of points (Tu et al. 2012). See Fig. 2 for

visual display of the approximate locations of children’s home sites (points) under

study. Clearly, the density of observations varies over the study area; thus, the adaptive

kernel bandwidth was used. Following others (Chalkias et al. 2013; Tu et al. 2012), the

optimal bandwidth was determined by minimizing the corrected Akaike Information

Criterion (AICc). Additional details regarding GWR (including equations) can be

found in the literature (Fotheringham et al. 2002; Mennis and Jordan 2005).

We used the readily available ArcGIS 10 Spatial Statistics tools to run both the

global and local models. For OLS models, ArcGIS provides the parameter

estimates, standard errors, t statistics, and p values as well as robust versions of

these measures; a measure of multicollinearity, the Koenker statistic (significance

indicates robust p values should be used and that relationships between some or all

Table 3 OLS and GWR results: predicting children’s current wheezing severity

A. OLS model B. GWR model

Adjusted R2 0.152 0.163

Variable b Robust

SE

Robust

p value

VIF Mean

b
Min b Max b

Intercept -0.647 0.043 0.001 – 0.605 -0.692 -0.512

Male (vs. female) 0.091 0.029 0.002 1.011 0.084 0.033 0.135

Mom has asthma a/o allergies 0.130 0.037 0.001 1.147 0.125 0.009 0.207

Child has allergies 0.439 0.031 0.001 1.140 0.449 0.400 0.495

Postpone health care/cost

concerns

0.120 0.037 0.002 1.020 0.110 0.047 0.167

Child is Hispanic (vs. not

Hispanic)

-0.004 0.041 0.922 1.070 -0.002 -0.070 0.060

Home has pest(s) 0.040 0.030 0.177 1.014 0.030 -0.049 0.096

Residential PM (ln, Z) 0.012 0.015 0.411 1.073 0.017 -0.053 0.042

N = 1,736
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of the independent variables and the dependent variable are non-stationary); model

fit statistics (e.g., R2), and the ability to test model standardized residuals for spatial

autocorrelation. In our case, these OLS diagnostics revealed the absence of a

multicollinearity problem, non-normally distributed residuals, and a significant

Koenker statistic. For that reason, robust p values are presented in Table 3. The

residuals did not exhibit significant autocorrelation based on a global univariate

Moran’s I test (I = -0.008, p = 0.866) indicating that the OLS model was

appropriate for these data. However, because of our theoretical interest in exploring

non-stationarity (i.e., how relationships vary over space) as per research question 2,

we ran a GWR model as the next step.

For the GWR results, ArcGIS produces a local parameter estimate, a local R2

value, and a local standardized residual for each point in the dataset; model fit

statistics (e.g., R2) are also provided for the model as a whole. In our model, a

Moran’s I test of the residuals revealed insignificant clustering (I = -0.003,

p = 0.959) meaning that there were no spatial dependencies in the residuals. A

notable aspect of running GWR in ArcGIS is the fact that no p values are calculated

for the individual parameter estimates. This contrasts with OLS where it is

conventional to test whether parameter estimates are different from 0 using a t test.

Utilizing such tests in GWR raises the problem of multiplicity (Charlton and

Fotheringham 2009). It would be inappropriate to carry out 1,736 individual

significance tests for each of the seven variables in the model since, at a 95 %

significance level, 5 % (n = 608) would hypothetically be significant at random.

Fotheringham et al. (2002) have suggested a Bonferroni correction to the

significance level, but Charlton and Fotheringham (2009) report that Bonferroni

is overly conservative and argue that the answer to the multiplicity problem is an

avenue for continued research. This issue is beyond the scope of this study.

Setting aside the issue of statistical significance, we analyzed the GWR-generated

parameter estimates for the pest and PM2.5 variables in two ways. First, we used a

standard deviation (SD) break (0.04196 for pest and 0.0198 for PM2.5) to map where

the parameter estimates were relatively high (1 or more SD above the mean and

positive) and low (1 or more SD below the mean and negative). This allowed us to

visualize where these two predictors were more closely related to wheezing in the

district. We then overlaid these data on a neighborhood map of mean household

income from American Community Survey 2006–2011 block group data.

Second, to better understand the local conditions that give rise to our findings,

following an approach taken by Chalkias et al. (2013), we characterized the attributes of

children for whom PM2.5 or pest was a relatively important positive predictor (1 or more

SD above mean) and those for whom PM2.5/pest was a relatively important negative

predictor (1 or more SD below mean) of wheezing severity. Chalkias et al. (2013) used

this to determine the range of income, green space, and population density that led to an

education level coefficient (scaled so that high values matched lower levels of

education) that was negative, slightly positive, and positive in relation to obesity.

To better systematize this type of comparison, we employed two sets of

independent samples t tests (one for pest and one for PM2.5), grouping the cases

based on whether the local parameter was 1 or more SD above mean or 1 or more

SD below mean. This provides us with the ability to compare mean scores for the
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original variables for the two groups. We also conducted a post hoc independent

samples t test within the ‘‘1 or more SD above the mean for PM2.5’’ group because

PM2.5 was a relatively important positive predictor in two distinct geographic areas

of the district. Therefore, we compared these two PM2.5 risk groups to each other in

terms of mean scores for the original variables.

Results

Global model

In the OLS model (see Table 3A), the variables of interest—pest and PM2.5—

exhibit modest (insignificant) positive relationships with greater wheezing severity.

Fig. 3 Standard deviation map of the local pest parameters when predicting wheezing severity
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Being male, having postponed or not sought health care due to concerns about cost,

having a mother with asthma and/or allergies, and having allergies were statistically

significant risk factors.

Local model

Parameter statistics for the GRW model are presented in Table 3B. We found that

55 % of cases had a local R2 that was higher than the global R2 for the OLS model,

showing that for over half of children, the GWR model showed improved

performance over the OLS model. Overall, the model fit for the OLS and GWR

models was quite similar (see Table 3, ‘‘Model Fit’’). Considering the map of the

local R2 values (see Fig. 2), we can see that the children for whom the GWR model

Fig. 4 Standard deviation map of the local PM2.5 parameters when predicting wheezing severity
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fits best are in the ‘‘south side’’ and ‘‘northeast.’’ Model fit is worst among ‘‘west

side’’ children, especially those closest to the mountains.

To visually isolate where pest and residential PM2.5 are important predictors,

standard deviation maps for the GWR parameter estimates are presented in Figs. 3

and 4. In Fig. 3, the black dots represent children for whom pest was a relatively

important positive predictor of wheezing; in other words, black dots indicate that

pest was a risk factor. White dots represent children for whom pest was a relatively

important negative predictor of wheezing; in this case, white dots illustrate that pest

was a protective factor. In Fig. 4, the black dots represent children for whom PM2.5

was a relatively important positive predictor of wheezing; in this case, black dots

indicate that PM2.5 was a protective factor. White dots represent children for whom

PM2.5 was a relatively important negative predictor of wheezing; in other words,

white dots illustrate that PM2.5 was a protective factor. Looking at these patterns

overlaid on a neighborhood map of mean household income reveals that there is

correspondence between children with a pest parameter that is 1 or more SD above

the mean and the poorer areas of town: the ‘‘downtown,’’ ‘‘south side,’’ and the

‘‘northeast’’. The pest variable is actually ‘‘protective’’ (increased odds of pest, less

wheezing) among some children living in the wealthier ‘‘west side.’’ PM2.5 is an

important positive predictor among children on the ‘‘west side,’’ which is relatively

affluent, and the ‘‘south side,’’ which is one of the poorer parts of the district. PM2.5

is ‘‘protective’’ in the farthest reaches of the ‘‘northeast,’’ where neighborhood

incomes are moderate to high.

Table 4 T test results characterizing children for whom their local GWR parameters for pest and PM2.5

were 1 or more standard deviations above versus below the mean

GWR pest

parameter

group

N Mean for

original

variable

GWR PM2.5

parameter

group

N Mean for

original

variable

p

Male 1 SD above 943 0.500 1 SD above 1,141 0.520

1 SD below 50 0.480 1 SD below 181 0.490

Mother has asthma

and/or allergies

1 SD above 943 0.314 1 SD above 1,141 0.334

1 SD below 50 0.260 1 SD below 181 0.403

Child has allergies 1 SD above 943 0.520 1 SD above 1,141 0.510 *

1 SD below 50 0.540 1 SD below 181 0.610

Problems with cost

when seeking

health care

1 SD above 943 0.249 1 SD above 1,141 0.231

1 SD below 50 0.140 1 SD below 181 0.232

Child is Hispanic 1 SD above 943 0.840 * 1 SD above 1,141 0.813 *

1 SD below 50 0.460 1 SD below 181 0.680

Pest 1 SD above 943 0.480 1 SD above 1,141 0.461 *

1 SD below 50 0.380 1 SD below 181 0.343

Residential PM2.5

(ln, Z)

1 SD above 943 0.245 * 1 SD above 1,141 0.099 *

1 SD below 50 -1.239 1 SD below 181 -0.949

N = 1,736; * p\ 0.05
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Table 4 shows results of the t test analyses characterizing the attributes of

children for whom their pest or PM2.5 parameter was 1 or more SD above the mean

versus 1 or more SD below the mean. Children for whom pest was a relatively

important positive predictor had significantly higher levels of PM2.5 and a

significantly greater likelihood of being Hispanic (81 vs. 68 %). They also had a

greater likelihood of having pests (although this finding was not quite significant:

49 % of children in the positive group vs. 38 % of children in the negative group).

Children for whom residential PM2.5 was a relatively important positive predictor

had significantly higher levels of PM2.5 as well as greater odds of pest exposure

(46 % in the positive group as compared to 34 % in the negative group). They were

significantly more likely to be Hispanic (84 % in the positive groups as compared to

46 % in the negative group) and not to have allergies (51 % in positive group vs.

61 % in the negative group) than children for whom residential PM2.5 was a

negative predictor.

An examination of Fig. 4 reveals that there are two areas in which PM2.5 was

important and positive: a ‘‘western’’ risk group, where neighborhood incomes are

relatively high, and an ‘‘eastern’’ risk group encompassing the ‘‘south side’’ and the

adjacent southern portion of the ‘‘northeast,’’ where neighborhood incomes are low.

Figure 3 does not reveal a similar pattern for pest exposure, as all children for whom

pest was a relatively important positive predictor are located in the eastern half of

the district. Considering the two distinct zones wherein PM2.5 was a relatively

powerful predictor of more severe wheezing, Table 5 presents results for a t test

comparing children in the two groups. Children in the ‘‘west side’’ group were

significantly more likely to be non-Hispanic (78 % Hispanic vs. 85 % Hispanic), to

Table 5 T test results characterizing the two spatial groupings of positive local GWR parameters for

PM2.5

GWR PM2.5 parameter group

(1 ? SD above mean)

N Mean for original

variable

p

Male ‘‘West’’ 527 0.500

‘‘Eastern’’ 639 0.540

Mother has asthma and/or

allergies

‘‘West’’ 527 0.347

‘‘Eastern’’ 639 0.327

Child has allergies ‘‘West’’ 527 0.520

‘‘Eastern’’ 639 0.500

Problems with cost when

seeking healthcare

‘‘West’’ 527 0.228

‘‘Eastern’’ 639 0.239

Child is Hispanic ‘‘West’’ 527 0.776 *

‘‘Eastern’’ 639 0.845

Pest ‘‘West’’ 527 0.360 *

‘‘Eastern’’ 639 0.540

Residential PM2.5 (ln, Z) ‘‘West’’ 527 -0.454 *

‘‘Eastern’’ 639 0.541

N = 1,736; * p\ 0.05
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have lower odds of having pests (36 vs. 54 %), and to have lower levels of PM2.5

(below the mean vs. above the mean) as compared to children in the ‘‘eastern’’

group (see Table 5).

Discussion

In the global model, the pest and PM2.5 variables were positively associated with

wheezing severity, but not significantly. Being male, postponing health care due to

concerns about cost, having allergies, and having a mother with asthma and/or

allergies were significant risk factors for wheezing severity, which closely aligns

with the literature (Carlson and Stroebel 2001; Holt et al. 2013; Wright et al. 2006).

In terms of situating the pest exposure findings within the extant literature, an

analysis which pooled cross-sectional data from five studies revealed that exposure

to any home pests was relatively weakly associated with asthma (Woodin et al.

2011). In comparing our PM2.5 findings to other El Paso studies, which used

different methodological approaches, we found similar associations. A case-

crossover study found that a 10 unit increase in PM2.5 was associated with 1–2 %

(nonsignificant) daily increase in hospitalizations from asthma and bronchitis

(Grineski et al. 2011). An insignificant but positive relationship between higher

levels of PM2.5 and worse asthma control was also found among a sample of 36

asthmatic children at two elementary schools (Zora et al. 2013). At the same two El

Paso schools two years earlier, researchers found that an interquartile increase in

PM2.5 was associated with an insignificant \1 % increase in airway inflammation

for the 30 asthmatic children under study (Sarnat et al. 2011).

However, just because results in this study indicate that social and biological

factors—such as postponing care due to concerns about cost or having a mother

with asthma—were more important predictors of wheezing severity in the global

model than indoor and outdoor environmental factors does not mean that

environmental conditions are unrelated to health outcomes. Interpreting results

from EHJ analyses must be done carefully. Insignificant and significant results can

illuminate the social and environmental structure of health disparities in different

contexts (Grineski et al. 2013). Insignificant regression findings do not necessarily

mean that environmental exposures or social inequalities have no influence on

health. In this case, insignificant findings for pest and PM2.5 overall concealed

heterogeneity in effects across the school district.

Local results suggest the working hypothesis that the association between air

pollution and respiratory problems may vary based on socio-environmental context.

This study reveals two types of asthmogenic socio-environments. The first is a

lower-income context where children are disproportionately exposed to pests and

PM2.5 and where both exposures are positively associated with wheezing, especially

for Hispanic children. In this situation, pests and PM2.5 appear to synergistically

amplify wheezing severity. This maps to a classic multiple jeopardies/environmen-

tal injustice model whereby mutually reinforcing social, environmental, and health

disadvantages can be observed to co-locate in urban space. Something similar was

also found in Leicester, where pollution and racial/ethnic minority status were
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stronger predictors of asthma hospitalization in the inner city than in the

surrounding areas (Jephcote and Chen 2012). While not focused on pests, there is

evidence that air pollution can combine with other indoor exposures—such as in-

home endotoxin levels in Cincinnati (Ryan et al. 2009) and smoking in Beijing (Xu

and Wang 1998)—to have synergistic effects on health.

The second is a higher-income socio-environment where children are less likely

to have in-home pests or to be Hispanic; children in this situation are exposed to

lower levels of PM2.5, yet air pollution exposure is counterintuitively associated

with more severe wheezing. We hypothesize that, in this context, the air pollution–

wheezing linkage is attributable to residents’ inability to control exposure to outdoor

air pollution relative to other asthma triggers, including indoor pests. This runs

counter to the multiple jeopardy model and, from an environmental injustice

perspective, is unexpected. However, others have found positive relationships

between environmental hazards and health effects in affluent/less polluted areas

(Pearce et al. 2010; Tu et al. 2012). In this type of socially advantaged context, air

pollution may be a relatively important correlate of respiratory problems, even

though levels of exposure are typically lower, because the relationship between

pollution and health is not complicated by social deprivation and the challenges of

poverty. Qualitative inquiry with parents of asthmatic children revealed that while

wealthier parents demonstrated a much greater ability to control their children’s

home environments than poor parents, they found it quite difficult to protect their

children from outdoor air pollution (Grineski 2009). The emergence of two distinct

types of asthmogenic socio-environments where outdoor air pollution exposure

exerts a more powerful influence highlights the value of GWR for understanding

fine-scale spatial variability in contextual determinants of health problems.

Limitations

While the GWR model can reveal spatial variations in the influence of variables on

an outcome, a limitation of the technique is that it does not suggest the source of the

variation (Wheeler and Páez 2010). Interpretation must be done carefully, using

contextual knowledge of the study area (Chalkias et al. 2013). The study relies only

on a PM2.5 exposure surface; we did not have access to other pollutant surfaces

which limit our ability to generalize to other pollutants. Our inability to consider

other environmental exposure surfaces (e.g., PM10) may be reflected in the negative

PM2.5 parameters in the far ‘‘northeast’’ (see the white dots in Fig. 4). In this newly

developing, relatively affluent area of the city, air quality could hypothetically be

worse further from roadways (the primary sources of PM2.5) due to disturbed desert

crust. The predictive ability of LUR models to generate pollution surfaces is

impacted by the number of monitoring sites employed in its identification (Javier

et al. 2007). In this case, the small number of sites might have resulted in an

overestimated predictive ability of the LUR model and thus affected its accuracy.

Using only residential environmental indicators resulted in an incomplete exposure

assessment, given children’s space–time geographies. However, we did not have

information about school-based pest exposure to include. The study uses a cross-

sectional approach, which limits our ability to assess causal relationships. We also
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relied only on parental reports of children’s symptoms using validated ISAAC

items. No measures of lung function were collected as part of this study. Lastly, the

survey sample is slightly less economically disadvantaged than the EPISD

population, which could affect the results.

Conclusion

The answer to the first research question is that having pests and higher levels of

PM2.5 at a child’s residence were modestly associated with greater wheezing

severity. The answer to the second research question is more complex and includes

two asthmogenic socio-environments. One is characterized by a situation of

multiple jeopardy: pest and PM2.5 exposures were important predictors of wheezing

severity among children living in lower-income neighborhoods, among those who

were more likely to be Hispanic, and among those with higher levels of PM2.5

exposure at their home sites. The second ran counter to a multiple jeopardy model:

PM2.5 was an important positive predictor of wheezing severity in some wealthier

neighborhoods, among non-Hispanic children, and among those for whom home site

levels of outdoor PM2.5 and odds of exposure to pests were lower. In more general

terms, these results suggest that the assumption underpinning a good deal of

research—that uneven environmental exposures produce correspondingly unequal

health impacts and that these effects are stable across space—is not tenable.

Because of their capacity to identify specific areas at risk, GWR models lend

themselves to locally relevant interventions. From a policy perspective, this research

demonstrates particular areas in the city of El Paso where particulate matter and

pests are important correlates of children’s wheezing severity. This information

could be used to aid local and state environmental and public health agencies to

design targeted interventions in areas where they are most needed. In this case,

GWR results suggest pest remediation as a tool to improve children’s respiratory

health in the ‘‘downtown,’’ ‘‘south side,’’ and ‘‘northeast’’ sides of El Paso. Pollution

reduction efforts would benefit all children, given what is known about the

deleterious health effects of air pollution and the positive coefficient in our global

model. Increasing awareness of air pollution might be particularly important on the

‘‘west side,’’ given that comparatively low levels of PM2.5 play an important role in

children’s wheezing severity there. Given the apparently synergistic effects of

exposure to pests and PM2.5 in parts of the study area, addressing even just one of

these factors would be advantageous to children’s health. Results also suggest that

GWR is a powerful tool that should be more widely used by researchers in their

quest to understand complex relationships between environmental conditions, social

characteristics, and health inequalities.
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