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� Annual particle number concentrations around a highway were estimated.
� Atmospheric dispersion and land use regression models were used.
� The emission factor and the background adjustment had an impact on accuracy.
� The two models captured the impact of traffic near and away from the highway.
� The modeling technique would be feasible in regions where traffic data is available.
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a b s t r a c t

Annual average daily particle number concentrations around a highway were estimated with an at-
mospheric dispersion model and a land use regression model. The dispersion model was used to esti-
mate particle concentrations along Interstate 10 at 98 locations within El Paso, Texas. This model
employed annual averaged wind speed and annual average daily traffic counts as inputs. A land use
regression model with vehicle kilometers traveled as the predictor variable was used to estimate local
background concentrations away from the highway to adjust the near-highway concentration estimates.
Estimated particle number concentrations ranged between 9.8 � 103 particles/cc and 1.3 � 105 particles/
cc, and averaged 2.5 � 104 particles/cc (SE 421.0). Estimates were compared against values measured at
seven sites located along I10 throughout the region. The average fractional error was 6% and ranged
between �1% and �13% across sites. The largest bias of �13% was observed at a semi-rural site where
traffic was lowest. The average bias amongst urban sites was 5%. The accuracy of the estimates depended
primarily on the emission factor and the adjustment to local background conditions. An emission factor
of 1.63 � 1014 particles/veh-km was based on a value proposed in the literature and adjusted with local
measurements. The integration of the two modeling techniques ensured that the particle number con-
centrations estimates captured the impact of traffic along both the highway and arterial roadways. The
performance and economical aspects of the two modeling techniques used in this study shows that
producing particle concentration surfaces along major roadways would be feasible in urban regions
where traffic and meteorological data are readily available.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, determining the role of ultrafine particles (UFP) in the
causation of adverse health effects has received increased interest
Resource Management, Uni-
Paso, TX 79968, USA.
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(Oberd€orster et al., 2005; Weichenthal, 2012). A reason of concern
is that compared to larger size fractions, UFP (<100 nm) has higher
deposition efficiencies in the respiratory tract of healthy humans
and even higher in children and other susceptible groups (Chalupa
et al., 2004; Daigle et al., 2003; L€ondahl et al., 2007; Olvera et al.,
2012b; Stewart et al., 2010). Despite considerable research, the
long-term effects due to exposure, as well as the mechanisms of
action and causal components of UFP remains elusive. An impor-
tant reason for this gap is the lack of spatially resolved exposure
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data within urban regions. In these regions, motor vehicles are the
main source of ultrafine particles (Morawska et al., 2008). Conse-
quently, near highways particle number concentrations (PNC) can
reach up to 30 times the local background levels (Morawska et al.,
2008; Zhang and Wexler, 2004). Downwind from highways, PNC
decays exponentially and reaches local background levels at dis-
tances beyond 300 m (Morawska et al., 2008). At larger scales and
away from highways, PNC continues to vary primarily as a function
of arterial traffic (Hoek et al., 2011). Exposure assessment for
epidemiological studies requiresmodeling tools that can accurately
account for PNC variation across these two scales. Several modeling
techniques have been used to estimate PNC within urban envi-
ronments, both at near-road and regional scales (Hoek et al., 2011;
Jamriska and Morawska, 2001; Kumar et al., 2011; Patton et al.,
2014; Perkins et al., 2013; Zhang et al., 2005; Zhu and Hinds,
2005; Zwack et al., 2011). In particular, dispersion modeling has
been effectively used to reproduce PNC gradients near highways
(Zhu and Hinds, 2005). Whereas at regional scales, PNC has been
estimated with land use regressionmodels with traffic as a primary
predictor (Hoek et al., 2011; Rivera et al., 2012).

The goal of this study was to estimate PNC along the section of
Interstate 10 (I10) that crosses El Paso, Texas using both dispersion
and LUR modeling. Specifically, an atmospheric dispersion model
was used to estimate PNC gradients at 98 locations along I10, while
an LUR model with arterial traffic as a predictor was used to esti-
mate local background concentrations away from the highway to
adjust the near-highway PNC gradients. The atmospheric disper-
sion model used in this study was explicitly proposed for exposure
assessment purposes and shown to effectively estimate PNC near
Interstate 405 in Los Angeles, CA (Zhu and Hinds, 2005). The at-
mospheric dispersion model was selected based on its economy,
simplicity, and most importantly its good performance. More so-
phisticated modeling alternatives such as CFD or urban scale at-
mospheric models (e.g., CMAQ) were considered impractical, as the
implementation of such models requires superior expertise,
intensive computational capacity, and considerably more input
data and preprocessing (e.g., urban morphology, traffic modeling,
meteorological modeling, emission modeling, etc).

The atmospheric dispersion model was evaluated by comparing
PNC estimates against measurements performed during a single
day, at one location, and under suitable conditions (e.g., consistent
sea breeze blowing perpendicular from highway towards mea-
surement sites) (Zhu and Hinds, 2005). This study takes the
implementation of the proposed model one step further by
employing it to predict annually averaged daily PNC across multiple
sites within a city. Since the dispersion model does not account for
background levels, PNC estimates need to be adjusted accordingly.
Across urban regions and away from highways, traffic intensity has
been shown to be a valid predictor of PNC using land use regression
models (Hoek et al., 2011; Rivera et al., 2012). In this study, back-
ground levels were estimated with a land use regression model
with vehicle kilometers traveled (VKT) as the predictor variable. To
the best of our knowledge, this manuscript presents the first
attempt to employ this modeling approach to estimate PNC along a
highway and averaged across extended periods of time. In this re-
gard, the results, challenges, and shortcomings presented in this
manuscript will be particularly useful to those seeking to employ
modeling techniques for chronic exposure assessment purposes of
ultrafine particles near highways. In general, this manuscript adds
to a body of research that aims at improving our capacity to pro-
duce more accurate estimates of the spatial distribution of PNC at
regional scales, which will help advance our understanding of the
health impacts of ultrafine particles.
2. Methods

2.1. Study site

El Paso, Texas is a port of entry between the U.S. and Mexico
with six crossing stations located along its border with Ciudad
Juarez, Chihuahua. The transport of goods from the prominent as-
sembly industry in northernMexico into the U.S. results in elevated
traffic of heavy duty diesel vehicles on the three major highways
that cross the region; 1) I10 (east to west), 2) state highway 54
(north to south), and 3) loop highway 375 surrounding the region
(Fig. 1). Of all three, I10 has the highest traffic volumes of both
private and commercial vehicles. The area around the intersection
of I10 and highway 54 has been identified as a PM2.5 hot-spot
induced by vehicle emissions (Olvera et al., 2012a). Within the
county, I10 crosses through rural, residential, commercial, and in-
dustrial land-uses. Also, several schools, daycare facilities, senior
citizen residential communities, and hospitals are located within
1000 m of to the highway.
2.2. Dispersion model

As discussed by Zhang and Wexler (2004) vehicle exhaust un-
dergoes two distinct dilution stages after emitted. During the first
stage, dilution is dominated by traffic-generated turbulence and
dilution ratios reach 1000:1within 1e3 s. This stage is referred to as
“tailpipe-to-road”. During the second stage, dilution is mainly
dependent on atmospheric turbulence and the dilution ratios reach
10:1 in about 3e10 min. This stage is referred as the “road-to-
ambient”. Zhu and Hinds (2005) derived a simple dispersion model
from the atmospheric diffusion equation based on the dominance
of atmospheric dispersion in the “road-to-ambient” stage. A
detailed description of the dispersion model and its derivation is
available in Zhu and Hinds (2005). In short, the dispersion model
incorporates a source strength variable that represents the unit
length flux through the plane on the downwind side of the freeway
and thus requires emission factors estimated at the road level
(Zhang et al., 2005). As discussed by (Zhang et al., 2005) particle
number emission factors estimated from road side measurements
typically employ a control volume approach that masks the “tail-
pipe-to-road” effects and produces values at the road level as
required by the atmospheric dispersion model. The atmospheric
dispersion model does not account for several physical processes
(e.g., enhanced Brownian coagulation due to van der Waals forces,
evaporation, condensation) believed to be essential when predict-
ing particle size distributions as a function of distance from traffic
(Jacobson, 2004; Zhang and Wexler, 2004). However, for the pre-
diction of PNC as function of distance from traffic the consideration
of only atmospheric dispersion produced good results (Zhu and
Hinds, 2005). The dispersion model had the following form:

Cðx; zÞ ¼ q1
ux
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where q1 (particle m�1 s�1) is the source term and is related to the
emission factor EF (particle vehicle�1 m�1) and traffic volume V
(vehicle s�1) by

q1 ¼ EF� V (2)

and u is the averagewind velocity, x is the downwind distance from
the road, z is the measurement height, h is the height of emission,
and g is a turbulence parameter defined as 0.16 (w*/u)2 when



Fig. 1. Map of the study showing the measurements sites and near-highway grid where PNC estimates were performed.
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modeling dispersion in the surface layer (Sharan et al., 1996a,
1996b; Zhu and Hinds, 2005). The direct measurement of g was
not feasible during this study. Instead a convective velocity scale
(w*) of 1.5 m/s, which corresponds to a medium scale, was used as
an estimate of averaged long-term conditions. Also, the w* value of
1.5 m/s produced the best estimates during a sensitivity analysis
performed with measurements from this study.
2.3. Emission factor

Recently, a particle number emission factor was derived via a
meta-analysis of results from 156 published values from around the
world (Keogh et al., 2009). The meta-analysis was performed on
emission factors derived from measurements conducted with
different instrument types (e.g., condensation particle counter
(CPC)), scanning mobility particle sizer (SMPS), at different loca-
tions (e.g., road-side, tunnel, dynamometer) and for varying vehicle
fleets and driving conditions. The impact of study location (e.g.,
country, road type, dynamometer vs. near-road) on emission factor
was found to be non-significant. The impact of vehicle type (heavy-
duty vs. light-duty) and instrumentation (CPC vs. SMPS) were sig-
nificant predictors of particle number emissions. An emission factor
of 7.26 � 1014 (95% CI: 10.66 � 1014e3.85 � 1014) particles per
vehicle per kilometer (#/veh-km) was estimated with a statistical
model (R2 ¼ 0.86) that used vehicle type (Fleet) and measurement
instrumentation (CPC) as predictor variables (Keogh et al., 2009).
The impact of instrumentation on the emission factor was consid-
erable, as mean values from CPC measurements (22.69 � 1014 #/
veh-km) where almost ten-times those produced with an SMPS
(2.08� 1014 #/veh-km) (Keogh et al., 2009). The proposed emission
factor of 7.26 � 1014 #/veh-km was employed in this study. The
proposed emission factor was considered reliable, as the statistical
model that produced it was robust, had good explanatory capacity,
and accounted for a comprehensive range of vehicle types and
emission conditions.
2.4. Ambient PNC measurements

Within El Paso County, twenty-one field measurements were
conducted at 7 different sites along I10 from July through
November 2012 (Fig. 1). The measurement sites were selected to
represent the different traffic conditions on and around I10 within
the region. For instance, site CN was in a semi-rural area where
traffic volumes were relatively low. The area around CN is compa-
rable to area around I10 in the southernmost part of the county. EX
was in a suburban area surrounded mostly by residential and
commercial land use. Site UT was near the university where private
vehicle traffic was high. Site LA, was within the downtown area.
Sites SB and CHwere on opposite sides of the intersection of I10 and
highway 54. The section of I10 between SB and CH has the highest
traffic volumes in the region and the surrounding area is considered
an air pollution hot spot. Site TB was in a section of I10 that is
surrounded by heavy industrial activity with high commercial
vehicle traffic. A detailed list of all measurements is presented as
Supplemental information in Table S1.

Particle number concentrations were measured with a Scanning
Mobility Particle Sizer (SMPS 3936-L75, TSI, Shoreview MN). The
SMPS measured PNC for particle sizes between 6 nm and 220 nm.
This size range represents more than 90% of the total PNC in this
region (Olvera et al., 2013). The instruments were installed in a
utility vehicle equipped with a deep-cycle battery bank capable of
powering the instrumentation for up to 6 h. At each location par-
ticle number concentrations and size distributions were measured
at varying perpendicular distances along small streets. Measure-
ments were performed at distances of 5 m, 25 m, 50 m, 100 m,
150m, and 300m away from I10. Themeasurement at 5m from the
highway was conducted at the outside shoulder of the highway. At
the CN, SB, and CH sites upwind measurements at 300 mwere also
performed. Gradients at each site were captured by measuring PNC
in sequence starting and ending at the highway shoulder. At each
location the SMPS conducted three consecutive scans of 130 s each.
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This measurement procedure has been shown to be effective at
capturing PNC gradients away from highways (Zhu et al., 2002).

Meteorological conditions were continuously monitored
throughout the study to select the most favorable conditions for
measurement. For instance, measurements were conducted on
days with clear skies, which represent the prominent local weather
conditions. Also, PNC measurements were only conducted when
the wind was blowing from I10 (±45�) towards the measurement
locations. At every site during PNC measurements, wind speed,
wind direction, temperature, and humidity were measured with a
meteorological station (HOBO U30-NRC, OCC, Bourne, MA) located
at 25 m from I10. Traffic was recorded with video equipment and
volume counts were performed manually from the video re-
cordings. Wind speed and traffic volume measurements were
averaged by site and used to estimate short-term PNC estimates,
which were subsequently compared against the corresponding
measured values. Correlation and fractional bias analysis was per-
formed on 28 sets of paired PNC ambient measurements andmodel
estimates averaged by site and distance from highway.

2.5. Background PNC

The dispersion model does not account for background PNC (see
equation (1)). Instead, PNC estimates produced with the dispersion
model were adjusted by adding local background levels estimated
with a land use regression model with vehicle kilometers traveled
(VKT) as the predictor variable. The land use regression model was
built with a set of PNC measurements conducted at locations more
than 1000 m away from I10. Background particle number concen-
tration (PNCB) measurements were conducted at the 7 monitoring
sites and at three additional background sites. The background sites
were added to bring the total number of measurements to 10 and
ensure the minimal observation requirements of linear regression
analysis (Babyak, 2004; Green, 1991; Mulaik, 2001). Background
levels were measured continuously for 24-h at four different oc-
casions between July and November 2012. VKT values for the
regional road network were obtained from the local metropolitan
planning office. The predictor variable (VKT500) was produced by
summing VKT values for all road segments within a 500-m buffer
centered at each background site. Buffer sizes from 100 m to
1500 m were evaluated via a sensitivity analysis, with a buffer of
500 m resulting in the best correlation between VKT and PNCB. The
VKT500 variable was considered an estimate of the total amount of
kilometers driven by all types of vehicles during a typical day in the
immediate vicinity of the background site.

2.6. Annual average daily PNC estimates

Annual average daily PNC around I10 were estimated for the
year 2012. Annual average daily PNC represent 24-h concentrations
averaged throughout a year. In this regard, these values can be seen
as the expected 24-h PNC during 2012. Annual average daily PNC
were calculated using annual averaged wind speed and annual
average traffic volumes as inputs to the dispersion model. Wind
speed data collected at the El Paso International Airport was ob-
tained for 2012 from local archives. Traffic volumes were calculated
from annual average daily traffic (AADT) counts reported by the
Texas Department of Transportation. AADT counts for 2012 were
not available during the execution of this study, thus 2011 counts
were used. AADT counts were not expected to be considerably
different between 2011 and 2012 values, considering that the
average difference between 2010 and 2011 was 2%. ADDT counts
along I10 were available for 28 locations within El Paso County
(Fig. 1). To produce a smoother exposure surface, the 28 AADT
values were interpolated linearly onto 70 additional locations
1000 m apart from each other. The dispersion model was used to
estimate PNC gradients away from I10 at a total 98 locations. At
each location, PNC was estimated at 5 m, 25 m, 50 m, 75 m, 100 m,
150 m, 200 m, 250 m, 500 m, and 1000 m on each side of I10.
Adjusted PNC estimates were rasterized within a geographical in-
formation system to produce a continuous surface along I10.
3. Results

3.1. PNC measurements

Ambient PNC measurements are summarized in Table 1. The
highest median PNC of 8.9 � 104 #/cc was observed at the LA site,
which was near the downtown area. The elevated traffic on I10,
emissions from a nearby public transportation station, and dense
arterial traffic appear to have contributed to the high PNC observed
at the LA site. The lowest median PNC of 2.1 � 104 #/cc was
observed at the CN site, which was in a semi-rural area with rela-
tively low traffic volumes. Median PNC values were slightly corre-
lated (R ¼ 0.54) with the corresponding traffic flows on I10. PNC
values observed along I10 in this study compared reasonably well
to values measured along other major highways in the US and
Canada as shown Table S2. For instance, Zhu et al. (2002) reported
an average PNC of 1.5 � 105 #/cc measured at 30 m from the center
of a highway with a traffic flow of approximately 13,900 vehicles/h.
In this study, we observed at the SB site an average PNC of
1.0 � 105 #/cc measured at 25 m from the highway during an
average traffic flow of 11,000 vehicles per hour.

Measured PNC gradients were averaged per site (Fig. 2). At all
sites, PNC decayed exponentially with distance from the highway.
Particle number concentrations at 5 m away from I10 (PNC5)
averaged 1.3 � 105 #/cc across sites, and ranged between
7.5 � 104 #/cc and 2.2 � 105 #/cc. PNC5 strongly correlated with
traffic volumes on I10 (R ¼ 0.92). PNC300 ranged between
1.1�104 #/cc and 8.7 � 104 #/cc and averaged 3.7� 104 #/cc across
sites. No correlation was observed between PNC300 and highway
traffic volumes. The lack of correlation between PNC300 and high-
way traffic and a wide variation of PNC300 across sites, suggest that
at distances greater than 300 m away from the highway PNCmight
be influenced by more proximate conditions. For instance at the LA
site the elevated PNC300 appears to be strongly influenced by
arterial traffic and other emission sources in that area.
3.2. Local background PNC

Across the ten background sites PNCB averaged 2.2 � 104 #/cc
and ranged between 9.2 � 103 #/cc and 5.1 � 104 #/cc (Table 1).
PNCB was lower than PNC300 at all sites except at UT. This was ex-
pected as PNCB measurements were performed for longer periods
that included nighttime hours. At the UT site the difference be-
tween PNCB and PNC300 was small and might have been due pri-
marily to temporal variations between measurement periods. Still,
PNCB correlated well with PNC300 (R ¼ 0.89). The diurnal variation
of PNCB consisted of low values and small variation during night-
time and high values and strong variation during daytime (Fig. 3).
The land use regression model had the following form;
PNCB ¼ 3907:1þ :314� VMT500 (R2 ¼ 0.85; p < 0.05) and a resid-
ual distribution approximating normality. It is important to note,
that the predictive ability of LUR models has been shown to be
influenced by the number of sites employed in its identification
(Johnson et al., 2010). In this case, the small number of sites might
have resulted in an overestimated predictive ability of the LUR
model. The PNCB estimates produced with the land use regression
model are also shown in Table 1.



Table 1
Summary of measured PNC values.

Site PNC PNC5 PNC300 PNCB PNCBa PNCnight VMT500

#/cc #/cc #/cc #/cc #/cc #/cc

CN 2.1Eþ04 5.7Eþ04 2.8Eþ04 9.2Eþ03 5.7Eþ03 8.6Eþ03 5.6Eþ03
EX 2.3Eþ04 7.8Eþ04 2.0Eþ04 2.0Eþ04 2.4Eþ04 1.1Eþ04 6.3Eþ04
UT 3.2Eþ04 1.8Eþ05 1.0Eþ04 1.0Eþ04 2.1Eþ04 1.1Eþ04 5.5Eþ04
LA 8.9Eþ04 1.5Eþ05 8.4Eþ04 5.1Eþ04 5.0Eþ04 1.7Eþ04 1.5Eþ05
SB 5.9Eþ04 1.7Eþ05 4.4Eþ04 4.0Eþ04 3.3Eþ04 1.3Eþ04 9.3Eþ04
CH 8.3Eþ04 2.0Eþ05 3.7Eþ04 3.4Eþ04 3.9Eþ04 1.4Eþ04 1.1Eþ05
TB 3.7Eþ04 1.3Eþ05 2.4Eþ04 2.1Eþ04 3.7Eþ04 1.5Eþ04 1.1Eþ05
BCKGD1 e e 8.2Eþ03 6.9Eþ03 8.7Eþ03 9.6Eþ03
BCKGD2 e e 1.7Eþ04 2.2Eþ04 1.1Eþ04 5.8Eþ04
BCKGD3 e e 1.1Eþ04 8.9Eþ03 1.0Eþ04 1.6Eþ04

PNC values represent the median of measurements per site across all distances from the highway (5 m�300 m).
The subscripts 5, 300, and B indicate the measurement location in reference to the highway for any given site (i.e., 5 represents measurements conducted 5 m away from the
highway, and B represents local background measurements collected at locations greater than 1000 m from the highway).
The subscript night represents values across all distances averaged only for the nighttime hours.

a PNCB represents local background concentrations estimated with LUR model.

Fig. 3. Observed hourly variation of PNCB averaged across sites. Data from all back-
ground sites and sample collection dates were used.
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3.3. Model performance

Short-term PNC estimates produced with the emission factor of
7.26 � 1014 #/veh-km were compared with the corresponding
ambient measurements per site. The use of this emission factor
resulted in overestimated PNC values at all sites (Fig. 4). Input
values for traffic volume andwind speedweremeasured during the
experiments at each site. Therefore the most uncertain inputs were
w* and the emission factor. Zhu and Hinds (2005) showed that the
model is moderately sensitive to w* and strongly sensitive to the
emission factor. To assess the impact of these two variables on
model performance a sensitivity analysis was performed (Fig. 5).
PNC estimates were produced using fractions of the emission factor
proposed by Keogh et al. (2009) as shown in Fig. 5a. A value of
1.63 � 1014 #/veh-km, consistently produced accurate PNC esti-
mates. This value is slightly outside the 95% CI
(10.66� 1014e3.85�1014 #/veh-km) reported for the original value
of 7.26 � 1014 #/veh-km, and closer to the 2.08 � 1014 #/veh-km
reported for SMPS-measured values in the literature (Keogh et al.,
2009). The value of w* was less influential on the estimates as
shown in Fig. 5b. An emission factor of 1.63 � 1014 #/veh-km and a
Fig. 2. PNC as a function of distance from the highway. Circles represent the average of
the median values observed at all 7 sites along I-10 in El Paso. Data from all sample
collection dates were used (Table S1).
w* value of 1.5 was used to produce a new set of PNC estimates for
each site (Fig. 6).

Table 2 lists correlation and fractional bias coefficients for
comparisons between measured and estimated values per site. The
correlation coefficient was influenced by the higher values
observed near the highway, thus fractional bias offered a better
assessment of the performance of the model. Since the emission
factor was adjusted locally with measured values, it was also
pertinent to assess the contribution of the model beyond that of an
empirical model. Correspondingly, a regression model that
included traffic and distance from highway as predictors was fitted
to the data. Based on correlation and fractional bias coefficients the
dispersion model seem to produce better PNC estimates than the
regression model at all sites except SB (Table 2). The value of
adjusting the PNC gradients with localized background estimates
produced with the LUR model was determined by adjusting the
PNC gradients with a constant background value, which was esti-
mated as the averaged background concentration (2.2 � 104 #/cc)
across all sites, and comparing both sets against measured values
(Table 2). As suggested by the smaller fractional bias coefficients,
the inclusion of the LUR estimated PNCB values improves the per-
formance of the dispersion model at all sites. The fractional error
for the LUR-adjusted estimates averaged 6% compared to 40% for



Fig. 4. Dispersion model PNC estimates produced with an emission factor of
7.26 � 1014 #/veh-km. With circles represent the average of the median values
observed at all 7 sites along I-10 in El Paso. Data from all sample collection dates were
used (Table S1).

Fig. 5. Dispersion model PNC estimates; a) produced with different emission factor
values, b) produced with different w* values. Measured values represent data from all
sample collection dates were used (Table S1).
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estimates adjusted with a constant background value. Overall the
model slightly overestimated the measured values (see Fig. 6). The
PNC estimates deviated the most from measured values at the CN
and CH sites where fractional bias was �13% and 10%, respectively.

3.4. Annual average daily PNC estimates

The annual average daily PNC estimates along I10 were pre-
dicted using an annual average wind speed (u) of 3.6 m/s, w* ¼ 1.5,
h ¼ 1 m, z ¼ 2 m, and EF ¼ 1.63 � 1014 #/veh-km for all locations.
The only variable inputs across locations were traffic volume and
distance. PNC estimates produced with the dispersion model were
adjusted by adding PNCB, which was estimated via LUR. The 98 sets
of long-term PNC estimates were rasterized into a continuous
surface along I10 (Fig. 7). The highest and lowest predicted PNC
values were 1.3 � 105 #/cc and 9.8 � 103 #/cc, respectively. The
average PNC was 2.5 � 104 #/cc (SE 421.0). The highest PNC
occurred within highly urbanized areas where traffic volumes on
both I10 and arterial roadways are highest. The lowest PNC
occurred towards the north and south part of the study area and
away from densely urbanized areas. Between the EX and UT sites
I10 passes through a small mountainous regionwhere there arterial
traffic is low or nonexistent resulting in low LUR-estimated PNCB
values and consequently lower adjusted-PNC values. The averaged
adjusted-PNC5 values between EX and UT was 6.4 � 104 #/cc. To-
wards the LA site land-use changes sharply and I10 passes through
the downtown area where arterial traffic and consequently
adjusted-PNC estimates were higher. The sharp PNC variations
between the EX-LA sites accurately reflect the local topography and
urban land use patterns.

4. Discussion

An atmospheric dispersionmodel and a LURmodel were used to
produce a continuous surface of annual PNC estimates within a
1000-m buffer around I10 in El Paso, Texas. The integration of the
two models allowed for the PNC variation within the buffer to
reflect emissions from traffic both along and away I10. The results
from this study along with those from many others clearly suggest
that PNC has at least two scales of spatial variation within urban
regions (Hoek et al., 2011; Zhu and Hinds, 2005). The first scale can
be measured in meters and encompasses the region immediately
around highways and major roadways where PNC variation is high.
PNC at this scale can be modeled independently for each major
roadway using a dispersion model. The second scale encompasses
the entire arterial roadway networkwithin an urban region and can
be measured in kilometers. The variation of PNC across this scale is
a function of multiple variables (e.g., roadway density, traffic vol-
umes, other sources, meteorological conditions). LUR modeling has
consistently been shown to adequately capture the variability of
multiple air pollutants including PNC, at this scale (Hoek et al., 2011,
2008; Jerrett et al., 2004; Johnson et al., 2010). The analysis of these
two scales of variation revealed that in areas of high arterial traffic
(e.g., LA, SB, CH) background concentrations can be comparable or
higher than near-highway concentrations in less urbanized areas
(e.g., CN). Evidently, for purposes of exposure assessment and
health studies, the characterization of PNC at these two scales is
necessary.

Selecting an emission factor was particularly challenging.
Ideally, an emission factor should be obtained locally to adequately
account for local meteorological and traffic conditions. Determining
an emission factor locally also provides control over the measure-
ment instruments and the particle size range, enabling a more



Fig. 6. Adjusted PNC estimates produced with an emission factor of 1.82 � 1014 #/veh-km and compared against averaged measurements per site.
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Table 2

Site Measurements
vs. dispersion
model

Measurements
vs. regression
modela

Measurements
vs. dispersion
modelb

R FB R FB R FB

CN 0.90 �13% 0.87 �52% 0.83 �25%
EX 0.84 �8% 0.94 �85% 0.78 �52%
UT 0.91 7% 0.55 �82% 0.72 �47%
LA 0.66 �3% 0.63 29% 0.91 77%
SB 0.92 �1% 0.75 �6% 0.89 35%
CH 0.89 10% 0.94 �4% 0.98 31%
TB 0.84 3% 0.93 �21% 0.84 �16%

R ¼ correlation coefficient for analysis between median of measured values and
estimated PNC.
FB (%) ¼ fractional bias: 1

N
PN

i¼1
2ðPredicted�MeasuredÞ
ðPredictedþMeasuredÞ .

a Model form: 37728 þ 654.2*V*exp (�0.02*x).
b PNC adjusted with constant background (2.2 � 104 #/cc).

Fig. 7. Long-term PNC surface along Interstate 10 in El Paso, Texas. Surface was produced with PNC estimates produced with the dispersion model and adjusted to local background
concentrations (PNCB) estimated with the LUR model at 98 locations along I10.
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robust model performance evaluation. Several methodologies to
determine particle number emission factors have been published
and many of them could be feasibly reproduced elsewhere (Keogh
et al., 2009; Zhu and Hinds, 2005). Published emission factors have
been produced under varyingmeteorological and traffic conditions,
following diverse methodologies, and thus include a wide range of
values (Keogh et al., 2009; Zhu andHinds, 2005). The selection of an
emission factor should at least consider the traffic fleet composi-
tion, road type, meteorological conditions particularly relative hu-
midity and wind speed, and the particle size range associated with
its generation. In the absence of an emission factor a good alter-
native is to generate a regression model based on local measure-
ments (Patton et al., 2014; Zwack et al., 2011). The advantage of
regression models is that they fit measured values and their accu-
racy is determined by the representativeness of the measured
values not by emission inputs (Patton et al., 2014). In this study, the
performance of the dispersion model was slightly better than that
of an exponential decay (regression) model (see Table 2). However,
regression models are highly dependent on the representativeness
of the ambient measurements (Patton et al., 2014), which in this
case was limited by the short measurement campaigns. Given the
promising performance of regression models (Patton et al., 2014;
Zwack et al., 2011) and dispersion models (Zhu and Hinds, 2005)
for estimating near-highway concentration of ultrafine particles a
comprehensive evaluation of these two modeling approaches is
necessary. Finally, the characterization of local particle emissions
sources in urban environments by combining dispersion modeling
and regression analyses of mobile monitoring data is particularly
intriguing (Zwack et al., 2011).

This study had several limitations. For instance, wind speed,
wind direction, temperature, and relative humidity have all been
shown to impact ambient PNC (Olvera et al., 2013; Zhu et al., 2004,
2006). In El Paso, temperature and humidity are highest in July and
August, and lowest in December and January (Olvera et al., 2013).
The measurement periods captured a wide range of meteorological
variation as shown in Tables 1 and S1. However, the impact of high
wind speeds (e.g., >9m/s) common during spring and that result in
lower PNC was not adequately captured (Olvera et al., 2013). Using
the dispersion model and local wind speed data for 2012, it was
estimated that the difference in averaged PNC would be less than
1% higher when the average wind speed from July through
November is used instead of the annual average. The small impact
of not including the high wind speed episodes was primarily due to
the small frequency of these events. Since we purposely selected
measurement periods when the wind was blowing from the
highway towards the measurement sites, in terms of wind direc-
tion, the impact is expected to be overestimation of PNC. Ideally,
longer measurements under all wind conditions would be recom-
mended to ensure long-term conditions are properly captured at
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every site. Also, we produce symmetric gradients along I10 to es-
timate long-term PNC that accounted for varying wind directions
throughout the year. Although this was a conservative and practical
approach, a more appropriate alternative could be to estimate the
PNC gradients for multiple wind directions and produce aweighted
average at each location using wind direction frequencies (i.e., wind
roses) as weights. This approach was not feasible at this time, as it
requires long-term wind direction measurements at each site to
produce the weights.

Another limitation was the small number of sites used to
generate the LUR model. It is well established that for purposes of
LUR modeling, ambient measurements should adequately capture
the spatial and temporal variation of the pollutant of interest across
the modeling region. In this study, we intended to capture the
spatial variability of PNC by purposely locating monitoring sites in
areas affected by the distinct traffic conditions found across the
region. To capture the large temporal variation of PNC in the region,
simultaneous measurements conducted for extended periods of
time would have been ideal. Unfortunately, simultaneous mea-
surements were not possible due to the availability of a single SMPS
instrument. Instead, measurements were conducted during periods
selected to capture distinctive traffic and meteorological condi-
tions. For instance, measurements were performed during the
summer when traffic demand is lowest, and during the fall and
early winter when traffic demand is highest (Olvera et al., 2013).
Still, some conditions were not adequately captured, like those
during weekends and nighttime hours, when traffic demand is low.
Consequently, PNCB might have been overestimated. Based on data
collected at a local port of entry, it was estimated that long-term
PNC averages produced with data collected only on weekdays
would be 14% higher than if produced with data collected
throughout the entire week (Olvera et al., 2013).

Finally, the PNC surface shown in Fig. 7 was produced by ras-
terizing PNC estimated at every point of the Near-Highway Grid.
These PNC estimates did produce gradients at each of the 98 lo-
cations. However, rasterizing PNC in to a single surface slightly
masked some of these gradients, particularly those towards the
edges of the region and in areas of high spatial PNC variation (e.g.,
between EX and UT sites). The rasterized PNC surface was produced
with PNC estimated at all points of the near-highway grid (see
Fig. 1). The rasterizing process does not account for the highway
and thus fails to adequately interpolate the near highway values.
Also, towards the edges of the region the rasterizing process
masked the PNC gradients away from I10 because PNC5 estimates in
these areas were lower than PNC300 in high traffic zones (e.g.,
downtown). A solution could be to increase the resolution of the
grid in areas where the expected spatial variation of PNC is high,
such as in areas of complex terrain or sharp change in land-use.
5. Conclusions

In this study, atmospheric dispersion and LURmodels were used
in conjunction to estimate PNC within a 1000 m buffer along I10
within El Paso, Texas. The economy and good performance of the
two modeling techniques employed in this study, suggest that
producing a regional PNC surface to assist in the assessment
chronic exposure to ultrafine particles, would be highly feasible in
those urban regions across the world were traffic and meteoro-
logical data is readily available. The characterization of PNC at
regional scales is crucial to the study of UFP exposure and its im-
pacts on human health. Regional surfaces of PNC can help produce
detailed exposure assessments that cover the places where people
live, work, learn, play, and pray. In this regard, integrating both
near-highway and regional models to estimate PNC across an urban
region can lead to comprehensive exposure assessments and the
advancement of environmental health research.
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