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Abstract

Disorders/differences of sex development (DSD) comprise a group of congenital disor-

ders that affect the genitourinary tract and usually involve the endocrine and reproduc-

tive system. The aim of this work was to identify genetic variants responsible for

disorders of human urogenital development in a cohort of Egyptian patients. This three-

year study included 225 patients with various DSD forms, referred to the genetic DSD

and endocrinology clinic, National Research Centre, Egypt. The patients underwent thor-

ough clinical examination, hormonal and imaging studies, detailed cytogenetic and fluo-

rescence in situ hybridization analysis, and molecular sequencing of genes known to

commonly cause DSD including AR, SRD5A2, 17BHSD3, NR5A1, SRY, and WT1. Whole

exome sequencing (WES) was carried out for 18 selected patients. The study revealed a

high rate of sex chromosomal DSD (33%) with a wide array of cytogenetic abnormalities.

Sanger sequencing identified pathogenic variants in 33.7% of 46,XY patients, while the

detection rate of WES reached 66.7%. Our patients showed a different mutational profile

compared with that reported in other populations with a predominance of heritable DSD

causes. WES identified rare and novel pathogenic variants in NR5A1, WT1, HHAT,

CYP19A1, AMH, AMHR2, and FANCA and in the X-linked genes ARX and KDM6A. In addi-

tion, digenic inheritance was observed in two of our patients and was suggested to be a

cause of the phenotypic variability observed in DSD.
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1 | INTRODUCTION

The term disorders of sex development (DSD) encompasses a spec-

trum of phenotypes that include three main groups: sex chromosome

DSD, 46,XX DSD, and 46,XY DSD (Hughes, 2008). The overall

incidence of DSD is not precisely detected, owing to the difficulties of

achieving accurate clinical diagnosis and the lack of diagnosis of many

patients until late childhood. Many of DSD phenotypes are rare

(e.g., 46,XY complete gonadal dysgenesis; 1:100,000 births), whereas

others are relatively common (e.g., cryptorchidism; 1:50 births). The

incidence of atypical genitalia in European countries is about

1:4500–1:5500. However, it seems to be increased in populations

with a higher consanguinity rate. The incidence was estimated to be
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higher reaching 1:2500 and 1:3000 livebirths in Saudi Arabia and in

Egypt, respectively (Abdullah et al., 1991; Mazen et al., 2008). An

increased rate of DSD in other societies with a high consanguinity

rate was also observed in other studies, supporting this hypothesis

(Thyen et al., 2006). The rate of parental consanguinity among

patients with genetic diseases in Egypt was reported to be as high as

55%, with a resultant increase in the rate of autosomal recessive dis-

orders including DSD recessive forms (Afifi et al., 2010). There is also

evidence that the incidence of DSD-related phenotypes may be

increasing in some countries (Virtanen et al., 2007). DSD represent a

complex emotional and social problem for the patients and their fami-

lies, especially in Middle Eastern/African countries. It also constitutes

a great burden on public health services due to its sophisticated man-

agement options, lack of professional counselors, and long-term surgi-

cal decisions. Various forms of fetal genital abnormalities and

syndromes with sex chromosomal aneuploidy could be prenatally

diagnosed (Forrester & Merz, 2003). The prognosis and pregnancy

outcome are highly variable depending on the type of aneuploidy and

the association of somatic malformations. Early and precise prenatal

diagnosis can pose a great impact on prenatal counseling and subse-

quent elective termination (Cheikhelard et al., 2000).

Although DSD-related disorders exhibit a broad range of pheno-

types and vary in incidence, there is evidence that they may have a

common genetic etiology (Lourenço et al., 2009). The genetic mecha-

nisms that control sex determination and differentiation are overly

complex and highly dependent on gene dosage and gene expression

threshold levels that are crucial for driving the genetic cascade

required for gonadal development. Although the understanding of the

genetic basis of human gonadal development has been greatly prog-

ressed, since the sex-determining region Y (SRY) was identified in

1990, molecular network mechanisms are still largely obscure (Ahmed

et al., 2014). Overall, a definite molecular diagnosis is usually identi-

fied in approximately 30% of DSD cases (Baxter et al., 2015;

Hughes, 2008). Recently, the expeditious development in exome

sequencing has resulted in the identification of several new genes

associated with DSD (Hughes et al., 2019).

The aim of this work was to use a stepwise combination of

approaches to improve the overall diagnostic yield in a large cohort

study of DSD patients from Egypt.

2 | PATIENTS AND METHODS

2.1 | Editorial policies and ethical considerations

This study was approved by the Ethical Scientific Committee of the

National Research Centre (NRC), Cairo, Egypt, and conducted in

accordance with the declaration of Helsinki ethical principles for med-

ical research involving human subjects. An informed consent was

obtained from the patients or their guardians.

A total of 225 DSD patients referred to the genetic DSD and

endocrinology clinic, NRC, Cairo, Egypt, were studied over a period of

3 years. The patients exhibited different presenting features and their

ages ranged from 2 months to 32 years. All patients were subjected

to detailed clinical and genital examinations, pedigree analysis, family

history of similar or other conditions, and the presence of associated

abnormalities. The patients underwent anthropometric measurements

of height, weight, and arm span, and secondary sexual characters were

classified according to Tanner et al. (1969). Sexual ambiguity was

assessed following the classification of Quigley et al. (1995). Hor-

monal evaluation of congenital adrenal hyperplasia (CAH) was carried

out for suspected patients. Hormonal assay of basal and post human

chorionic gonadotropin (HCG) of serum testosterone and its precur-

sors and dihydrotestosterone (DHT) was done for classification of

defects in hormonal biosynthesis. Serum FSH and LH, anti-Müllerian

hormone (AMH), inhibin B, and serum estradiol were also evaluated

according to each case. Pelvic ultrasonography and genitography were

executed for all the patients. Laparotomy, pelvic laparoscopy, and

gonadal biopsy were performed whenever indicated.

2.1.1 | Cytogenetic studies

Chromosomal analysis of peripheral blood lymphocytes, using

Giemsa-Trypsin-G (GTG)-banding technique, was carried out for the

patients and suspected family members through standard proce-

dures. Karyotype description followed the recommendations of the

International System for Human Cytogenetic Nomenclature

(ISCN, 2016). Fluorescence in situ hybridization (FISH) analysis was

performed, using commercial probes, on metaphases and interphase

cells, when indicated. FISH was also done on gonadal tissue cells in

selected patients. FISH procedure was performed according to the

manufacturer's instructions (Cytocell Inc., Cambridge, United

Kingdom).

2.1.2 | DNA extraction and Sanger sequencing of
common DSD genes

DNA was extracted from peripheral blood lymphocytes of the

patients and available family members using the PAXgene Blood DNA

Kit (Qiagen, Germany). Amplification of AR, 17BHSD3, SRD5A2,

NR5A1, WT1, and SRY genes was performed using intron-specific

primers designed by Primers3 software. Purification of PCR products

was done using the Exo-SAP PCR Clean-up kit (Thermo, Germany),

and it was then sequenced in both directions using the BigDye Termi-

nator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA,

United States). Analysis was performed using the ABI 3500 Genetic

Analyzer (Applied Biosystems) according to the manufacturer's

instructions.

2.1.3 | Whole exome sequencing

Whole exome sequencing (WES) was performed according to

Bashamboo et al. (2014). In brief, Agilent SureSelect Human All Exon
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V4 was used for exon enrichment. Then, paired-end sequencing was

done using TruSeq v3 chemistry on the Illumina HiSeq2000 platform.

Through the manufacturer's proprietary software, read files (Fastq)

were generated from the sequencing platform and were mapped using

the Burrows-Wheeler Aligner. Local realignment of the mapped reads

at potential insertion/deletion (indel) sites was performed using

GATK, version 1.6. Picard, version 1.62, was used to mark duplicate

reads, and additional manipulations of the BAM file were carried out

with Samtools (0.1.18). GATK Unified Genotyper was used for calling

SNP and indel variants for each sample. Analysis of variants was per-

formed through a range of web-based bioinformatics tools, using

EnsEMBL SNP Effect Predictor (http://www.ensembl.org/

homosapiens/userdata/uploadvariations). Manual screening of vari-

ants against the Human Gene Mutation Database Professional

(Biobase) was also performed (http://www.biobase-international.

com/product/hgmd). In silico analysis was carried out using SIFT and

PolyPhen2 to identify the variants' potential pathogenicity. Candidate

phenotype causal variants were verified using Sanger sequencing.

Potentially pathogenic variants identified by exome sequencing were

screened against a number of databases including the Exome Variant

Server (EVS; http://evs.gs.washington.edu/EVS/), dbSNP138 data-

bases (http://www. ncbi.nlm.nih.gov/snp/), the ExAC database

(http://exac.broadinstitute.org/), and the 1000 Genomes Project data-

base (http://browser.1000genomes.org/index.html), in addition to our

internal database (700 exomes).

3 | RESULTS

The most common presenting feature was atypical genitalia

(75 patients) followed by male infertility (58 patients) and then pri-

mary amenorrhea (50 patients). A total of 23 patients presented with

genital anomalies associated with other malformations, 10 patients

presented with undescended testis, and nine presented with delayed

puberty (Table 1). The parental consanguinity rate was about 53%

with a particular rise in the 46,XY DSD group, reaching 70%.

3.1 | Cytogenetic results

Sex chromosomal aberrations were detected in 75/225 patients

(33.3%). Autosomal abnormalities were detected in four patients with

DSD associated with multiple congenital anomalies (all the cytoge-

netic results are presented in Table 2). 46,XX DSD was present in

46/225 patients (20.4%). A total of 11 46,XX patients were diagnosed

with 21-hydroxylase deficiency CAH, as evidenced by increased blood

levels of 17-hydroxyprogesterone, DHEA, and androstenedione and

low cortisol levels. Eight of them were of the salt-losing type and rev-

ealed hyponatremia, hyperkalemia, and high plasma renin, while the

remaining had the simple virilizing type. A total of 10 patients were

diagnosed as 46,XX testicular DSD, seven presented with primary

infertility and azoospermia, two with atypical genitalia, and one with

undescended testis. Five of those patients with infertility were proved

by FISH analysis to have the SRY gene translocated to the distal part

of the short arm of one X chromosome. The remainders were all nega-

tive for SRY gene. Two patients had 46,XX ovotesticular (OT) DSD,

and one of them had a gonadal 46,XX/45,X/46,XY cell line mosaicism.

Other two OT DSD patients revealed 46,XX/46,XY chimerism by kar-

yotype and FISH analysis.

A total of 100/225 patients (44.4%) were diagnosed as 46,XY

DSD. One of the patients presenting with short stature, low serum

testosterone, Mullerian derivatives, and gonadal dysgenesis was found

to have a 45,X gonadal mosaicism by FISH analysis.

3.2 | Molecular results

3.2.1 | Sanger sequencing studies

46,XY patients were classified according to the good response of

androgenic hormones into either androgen insensitivity syndrome or

5-alpha reductase deficiency syndromes, while those with bad

response and low T/A (testosterone/androstenedione) ratio were

provisionally diagnosed as 17 beta hydroxysteroid dehydrogenase

deficiency. Sequencing analysis of AR gene (exons 2,3 encoding the

TABLE 1 Presentations of different categories of studied DSD
patients

Classification Presentation No.

Sex chromosome DSD

(No = 75)

Primary male infertility/small

testes

51

Primary amenorrhea 13

Atypical genitalia 7

DSD with other congenital

anomalies

4

46,XX DSD (No = 46) Atypical genitalia, of them 11

were diagnosed with CAH

(21-hydroxylase deficiency)

15

Male infertility 7

Undescended testis 1

Primary amenorrhea 17

DSD with other somatic

anomalies

6

46,XY DSD (No = 100) Atypical genitalia 53

Primary amenorrhea 20

Undescended testis 9

Delayed puberty 9

DSD with other somatic

anomalies

9

DSD associated with

somatic anomalies and

autosomal abnormalities

4

Total number 225

Abbreviations: CAH, congenital adrenal hyperplasia; DSD, disorders of sex

development.
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DNA-binging domain and exons 4–8 encoding the ligand-binding

domain) was done for 28 46,XY patients and revealed pathogenic vari-

ants in five patients (18%); one of them revealed a novel variant in

exon 8 c.2731delTC that led to a frameshift and premature stop

codon resulting in a truncated protein. Sequencing of both HSD17B3

gene in 20 patients and SRD5A2 gene in 26 patients showed patho-

genic variants in 50%. Eight novel variants were detected in HSD17B3

gene in seven patients; one of them was a compound heterozygous

variant, while three patients showed previously reported gene vari-

ants (Table 3). Sequencing analysis of SRD5A2 gene revealed a charac-

teristic pattern including homozygous variants in nine patients: p.

Gly34Arg (c.100G > A) in exon 1 in three patients, p.Gly196Ser

(c.586G > A) in three patients, p.Tyr91His (c.271 T > C) in two

patients, and p.Glu56Arg (c.167C > G) in one patient, while four

patients showed compound heterozygous variants: p.Ala207Asp

(c.620C > A) + p.Leu89Val (c.265C > G) in three patients and p.

Gly196Ser + p.Leu89Val in one patient. Pathogenic variants in the

WT1 gene were detected in two patients, the first was a boy with

gonadal dysgenesis and gonadoblastoma, who carried a de novo het-

erozygous p.Arg462Try (c.1384C > T) variant. A novel heterozygous

variant p.Lys459Arg (c.689A > G) in WT1 gene was detected in the

other patient who presented with short stature, atypical genitalia with

mixed gonadal dysgenesis, and a mosaic karyotype: 45,X[90]/46,X,idic

(Y)(q11.2)[10] (in both blood and gonadal cells). All the identified vari-

ants are presented in Table 3. Wild-type sequences of NR5A1 and

SRY genes were detected in 10 male patients presenting with hypo-

spadias or gonadal dysgenesis and in three 46,XY female patients with

gonadal dysgenesis, respectively. Moreover, sequencing of NR5A1

and SRY genes was carried out for twelve 46,XX patients with primary

amenorrhea and for five patients with 46,XX testicular DSD, respec-

tively, and revealed positive amplification of SRY and wild-type

sequence of both genes.

TABLE 2 Cytogenetic results of studied DSD patients in relation to presentations

Classification Presentation Karyotype and FISH results No.

Sex chromosome DSD (No = 75) Primary male infertility/small testes (no = 51) 47,XXY 45

45,X/46,XY 2

45,X; FISH: SRY+ 1

48,XXXY 1

47,XYY 1

47,XXY/48,XXXY/49,XXXY/46,XY 1

Primary amenorrhea (no = 13) 46,X,i(Xq); 45,X/46,X,i(Xq) 6

45,X/46,XY 2

47,XXX 2

46,X,add(Xq) 2

46,X,del(Xq) 1

Atypical genitalia (no = 7) 45,X/46,XY 2

45,X/46,X,idic(Yp)

FISH: idicY:SRY++, CEP Y++

3

46,XX /46,XY (OT DSD) 2

DSD with other congenital anomalies (no = 4) 47,XXX 1

47,XXY 1

49,XXXXY 2

46,XX testicular DSD

(No = 10)

Male infertility FISH: SRY+ (no = 5) 7

FISH: SRY− (no = 2)

Atypical genitalia FISH: SRY− 2

Undescended testis FISH: SRY− 1

46,XX OT DSD (No = 2) Atypical genitalia FISH: SRY− 1

FISH on gonadal cells: mos.46,XX/45,X/46,XY 1

DSD associated with somatic anomalies and autosomal abnormalities (No = 4) 47,XY,+mar. FISH: Marker is derived from

chromosome 15

1

47,XX,+mar. FISH: t(11q;22q) (wcp 11+; wcp 22+). 1

46,XY,add(18p) 1

46,XY,add(5p). FISH: added material was derived from

chr. 14.

1

Abbreviations: DSD, disorders of sex development; FISH, fluorescence in situ hybridization; OT, ovotesticular.
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TABLE 3 Distribution of gene variants identified by Sanger sequencing in known DSD genes

Gene Variants
No. of patients
with the variant

ACMG novel

variants
classification

No. of

sequenced
patients Reference

AR

No = 5

NM_000044.6:c.2731delTCa 1 Pathogenic

(PVS1 + PS2)

28 Akcay et al., 2014

Mazen et al., 2014

NM_000044.6:c.2317G > T; p.

Glu773X

1 Previously reported

NM_000044.6:c.2343G > T; p.

Met781Ile

1 Previously reported

NM_000044.6:c.2567G > A; p.

Arg856His

1 Previously reported

NM_000044.6:c.2137C > T p.

Leu713Phe

1 Previously reported

HSD17B3

No = 10

NM_000197.1:c.198G > A; p.

Trp50Xa

1 Pathogenic

(PVS1 + PM2+ PM3)

20 Rosler, 2006

Hassan et al., 2016

NM_000197.1:c.575A > C; p.

Gln176Pro

2 Previously reported

NM_000197.1:

c.777-783delGATAACC

1 Previously reported

NM_000197.1:c.539 T > C; p.

Met164Thra
1 Pathogenic

(PS3 + PM2 + PM3)

NM_000197.1:c.565delGa 1 Pathogenic

(PVS1 + PM2

+ PM3)

NM_000197.1:c.200C > T; p.

Ala51Val * + c.575A > C; p.

Gln176Pro

1 Pathogenic

(PS3 + PM2 + PM3)

NM_000197.1:c.629 T > C; p.

Leu194Pro * + c.588C > T; p.

Ile180 = a

1 Pathogenic

(PS3 + PM2 + PM3)

NM_000197.1:c.208A > G; p.

Thr54Alaa
2 Pathogenic

(PS3 + PM1 + PM3)

SRD5A2

No = 13

NM_000348.4:c.100G > A; p.

Gly34Arg

3 Previously reported 26 Mazen et al., 2003.

Maimoun et al., 2011.

Akcay et al., 2014.

Soliman et al., 2015.

Nagaraja et al., 2019.

NM_000348.4:c.586G > A; p.

Gly196Ser

3 Previously reported

NM_000348.4:c.620C > A; p.

Ala207Asp + c.265C > G; p.

Leu89Val

3 Previously reported

NM_000348.3:c.167C > G; p.

Glu56Arg

1 Previously reported

NM_000348.4:c.586G > A; p.

Gly196Ser + c.265C > G; p.

Leu89Val

1 Previously reported

NM_000348.4:c.271 T > C; p.

Tyr91His

2 Previously reported

WT1

No = 2

NM_024426.4:c.1384C > T; p.

Arg462Try

1 Previously reported 2 Lehnhardt et al., 2015

Mazen, Hassan, et al., 2017

NM_024426.4:c.689A > G; p.

Lys459Arga
1 Likely pathogenic

(PS2 + PM2)

Note: N.B: Total sequenced 46,XY patients = 89.

Abbreviations: ACMG, American College of Medical Genetics and Genomics; DSD, disorders of sex development.
aIndicates novel mutations.
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3.2.2 | Whole exome sequencing

WES was performed for 18 patients and for family members, when

indicated. Pathogenic variants were detected in 12 families (66.7%).

The patients were selected after exclusion of common monogenic

causes according to specific selection criteria:

1. Patients with positive consanguinity and family history of similar

conditions.

2. Patients with atypical phenotypes or with multiple congenital

anomalies after excluding the presence of pathogenic copy number

variants by chromosomal microarray analysis.

3. Patients with 46,XY gonadal dysgenesis showing negative results

by Sanger sequencing.

4. Patients with XX testicular and OT DSD after excluding chromo-

somal abnormalities and obtaining negative FISH signal for the

SRY gene.

Additional two pathogenic variants were identified in WT1 gene

by WES: a de novo p.Arg462Try (c.1384C > T) variant in a 46,XY

gonadal dysgenesis patient and a de novo p:Arg495Gly (c.1483C > G)

variant in a patient with atypical genitalia and 46,XX testicular DSD.

Digenic variants were suggested in two unrelated patients with 46,XY

DSD and atypical genitalia, associated with gonadal dysgenesis in the

first one and with congenital heart defect in the second. They showed

pathogenic variants in NR5A1/MAP3K genes and FGFR1/STARD3

genes, respectively. A novel NR5A1 gene variant, p.Glu206Thrfs*20

(c.614_615insG), was also detected in a 46,XY DSD patient with pri-

mary amenorrhea and gonadal dysgenesis. Another male patient with

46,XX DSD was found to have a splice site variant in CYP19A1 gene.

Novel pathogenic variants in AMH, AMHR2, ARX, and KDM6A genes

were identified in 46,XY DSD-unrelated patients, in addition to rare

HHAT and FANCA variants. Interpretation of novel sequence variants

was performed according to the American College of Medical Genet-

ics and Genomics and the Association for Molecular Pathology stan-

dards and guidelines (Richards et al., 2015). All the detected novel

variants were found to be either pathogenic or likely pathogenic. The

details of gene variants identified by WES are depicted in Table 4.

4 | DISCUSSION

The clinical manifestations of DSD are heterogenous, and patients

may present at any stage of life from the neonatal stage to adoles-

cence or adulthood. Our routine strategy for genetic diagnosis of DSD

patients, after the initial clinical, hormonal, and imaging evaluation,

depends on chromosomal and FISH analysis followed by sequencing

of known DSD genes and chromosomal microarray analysis of

patients with multiple congenital anomalies. In an attempt to increase

our diagnostic yield, we have introduced WES technique to solve out

some undiagnosed patients or patients with atypical phenotypes.

In this cohort, the patients were categorized into four groups: sex

chromosome DSD, 46,XX DSD, 46,XY DSD, and DSD-associated with

autosomal abnormalities (Table 1). The frequency of sex chromosomal

DSD was 33.3%, which is higher than that reported in other studies

(≈ 20%) (Juniarto et al., 2016). This may be due to a high referral rate,

as our specialized center is the main referral center for cytogenetic

studies in Egypt. A wide range of sex chromosome and some autoso-

mal anomalies were detected (Table 2). Sex chromosome dosage

change may lead to abnormal expression of dosage-sensitive sex-

chromosome genes that regulate coexpression networks of autosomal

genes (Raznahan et al., 2018). DSD may also occur as a part of several

malformation syndromes or present with different congenital anoma-

lies due to imbalances affecting autosomal or X-linked genes involved

in sex development machinery (Kim et al., 2015). Among our 46,XX

DSD patients, 11 patients had the 21-hydroxylase deficiency CAH; of

them, eight had the salt-losing type and three showed the simple vir-

ilizing type. The majority of virilized 46,XX infants were diagnosed as

21-hydroxylase deficiency, the most prevalent type of CAH (Baronio

et al., 2019). Ten of our patients had 46,XX testicular DSD (4.4%),

seven presented with infertility, two with atypical genitalia, and one

with undescended testis. 46,XX OT DSD was detected in two patients

as identified by gonadal histopathology, one of them revealed a

gonadal 46,XX/45,X/46,XY cell line mosaicism, “while other two OT

DSD patients had 46,XX/46,XY chimerism detected by FISH analysis

on blood lymphocytes” (Table 2). Unfortunately, examination of other

tissues was not feasible in the latter two patients, thus it still be a pos-

sibility of sex-chromosomal mosaicism. Most of our 46,XX males pre-

senting with infertility were positive for SRY gene (five out of seven),

while the remainders were all SRY-negative. The SRY gene is present

in about 80% of classic XX testicular DSD as a result of abnormal X/Y

interchange during paternal meiosis and could be detected by FISH

analysis on the X short arm, while most patients with atypical genitalia

and OT DSD patients are SRY-negative (McElreavey & Cortes, 2001;

Mekkawy et al., 2020). In patients with no SRY gene, the presence of

gonadal 46,XY cell line may explain testicular development, as

evidenced in one of our 46,XX OT DSD patients. In other cases, dys-

regulation of the expression of other SOX family members (Sry-related

HMG-box) may lead to testis formation (Kim et al., 2015; Sutton

et al., 2011). Loss-of-function variants in WNT signaling factors

including WNT4 and RSPO1 could be also responsible for the pheno-

type (Mandel et al., 2008; Parma et al., 2006). Recently, loss-of-

function variants in the nuclear receptor NR2F2, as well as specific

changes involving the Arginine 92 residue of NR5A1, have been

described in association with testis formation in 46,XX children

(Bashamboo et al., 2016; Bashamboo et al., 2018). However, none of

our 46,XX DSD patients examined by WES revealed abnormalities in

those candidate genes. On the other hand, WES identified a de novo

WT1 variant, p.Arg495Gly (c.1483C > G) in a female-reared child with

46,XX testicular DSD who presented with atypical genitalia and had a

male gender identity. The variant was located in the highly conserved

fourth zinc finger DNA-binding domain of WT1 required for testis for-

mation (Eozenou et al., 2020) (Table 4). Similarly, Gomes et al. (2019)

reported a patient with 46,XX testicular DSD who had a novel hetero-

zygous p.Arg485Glyfs*14 pathogenic variant of WT1, located in the

fourth zinc finger of the protein. WT1 (OMIM # 194070) encodes a
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TABLE 4 Variants identified by WES

Patient phenotype Karyotype Sex of rearing Gene Variants ACMG novel

variants

classification

Ref.

Ambiguous genitalia,

gonadal dysgenesis

46,XY Male WT1 NM_024426.4:

c.1384C > T (p.

Arg462Try)

de novo missense variant

Previously

reported

Mazen

et al., 2018

Ambiguous genitalia,

bilateral testicular

dysgenesis

46,XX

SRY−
(both in blood

and gonadal

tissue)

Female; Changed

to male

WT1 NM_024426.4:

c.1483C > G (p.

Arg495Gly)

Novel de novo missense

variant

Pathogenic

(PS2 + PS3)

Eozenou

et al., 2020

Primary amenorrhea,

Gonadal dysgenesis

46, XY Female NR5A1 NM_004959.5:

c.614_615insG

(p.Glu206Thrfs*20)

Novel de novo frameshift

variant

Pathogenic

(PVS1 + PS2)

Mazen

et al., 2016

Ambiguous genitalia

gonadal dysgenesis

46, XY Female Digenic

NR5A1

MAP3K1

NM_004959.5:c.937C > T

(p.Arg313Cys);

de novo missense variant

NM_005921.2:c.710A > G

(p.Glu237Arg)

Heterozygous missense

variant

Previously

reported

Likely pathogenic

(PM2 + PP1+

PP2 + PP4

+ PP5).

Mazen

et al., 2016

Ambiguous genitalia,

congenital heart defect

46,XY Male Digenic

FGFR1

NM_001174063.2:

c.1418G > A

(p.Arg473Glu)

Novel homozygous

variant

Likely pathogenic

(PM1 + PM2

+ PM3)

Mazen

et al., 2016

STARD3 NM_001165937.2:

c.879C > T (p.

Ala247Val)

Homozygous variant

Likely pathogenic

(PM2 + PM3

+ PP3 + PP5)

Microcephaly, delayed

puberty, gonadal

dysgenesis, mild

Fanconi anemia

46,XY Female FANCA NM_000135.4:

c.4232C > T

(p.Pro1411Leu)

Novel homozygous variant

Likely pathogenic

(PM2 + PM3

+ PP3 + PP4

+ PP5)

Mazen

et al., 2018

Ambiguous genitalia,

bilateral inguinal testes,

no Müllerian

derivatives,

microcephaly, multiple

café au lait patches

46,XY Female with

strong male

gender identity

HHAT NM_001170580:

c.1329C > A (p.

Asp443Lys),

Novel homozygous variant

Likely pathogenic

(PM2 + PM3

+ PP3 + PP4

+ PP5)

Bilateral cryptorchidism,

uterus and fallopian

tubes

46, XY Male AMH NM_000479.5:c.208delC

(p.Leu70Cysfs*7)

Novel homozygous frame

shift variant

Pathogenic

(PVS1 + PM2

+ PM3)

Mazen, El-

Gammal,

et al., 2017.

Bilateral cryptorchidism,

uterus and fallopian

tubes

46, XY Male AMHR2 NM_001164691.2:

c.847A > C

(p.His256Pro)

Novel homozygous

missense variant

Likely pathogenic

(PM2 + PM3

+ PP3 + PP4

+ PP5)

Mazen, El-

Gammal,

et al., 2017.

Impalpable testes,

hypogenitalism, and

penoscrotal

hypospadias

46,XX Male CYP19A1 NM_001205254.1:c.1263

+ 1G > T

Novel homozygous splice

site variant in the donor

splice site

Pathogenic

(PVS1+ PM2

+ PM3)

Mazen,

McElreavey,

et al., 2017.
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zinc finger DNA-binding protein that has a role in transcriptional acti-

vation or repression depending on chromosomal context. It is essen-

tial for the normal development of mesothelial tissues and

genitourinary system (Lehnhardt et al., 2015). The −KTS protein iso-

form acts as a direct activator of the NR5A1 gene and can bind the

SRY promoter region leading to transactivation (Hossain &

Saunders, 2001). WES also identified a novel homozygous splice site

variant in the donor splice site in aromatase (CYP19A1) gene (c.1263

+ 1G > T). The variant occurred in a 46,XX male patient of consan-

guineous parents who presented at the age of 21 years with impalpa-

ble testes and atypical genitalia (Mazen, McElreavey, et al., 2017).

Aromatase is a member of the cytochrome P450 superfamily. It cata-

lyzes the conversion of androgen to estrogen. This was the first report

of this rare disorder in an Egyptian patient. It was recommended to

consider aromatase deficiency in patients with 46,XX DSD after

excluding CAH.

In our cohort, 46,XY DSD was the largest category, constituting

44.4% of the total number. Similarly, Juniarto et al. (2016) and Mazen

et al. (2008) reported 46,XY DSD as the most common category

among DSD patients constituting 68.2% and 65.9%, respectively.

46,XY DSD is largely heterogeneous and often challenging in molecu-

lar diagnosis. Patients usually present with atypical genitalia or female

genitalia with amenorrhea or delayed puberty. While single gene anal-

ysis of six genes in our 46,XY DSD group gave a 33.7% diagnostic

yield, WES in 18 selected patients lacking a molecular diagnosis

reached a 66.7% diagnostic yield (including two 46,XX DSD patients).

The most commonly detected pathogenic variants by Sanger sequenc-

ing were in the HSD17B3 and SRD5A2 genes (50%, each), followed by

the AR gene (18%) (Table 3). The most frequently detected pathogenic

variants in SRD5A2 were the p.Gly34Arg and p.Gly196Ser amino acid

changes (Soliman et al., 2015). p.Gly34Arg represents a mutational

hotspot in Egyptians and was previously reported in other Egyptian

patients, suggesting a founder effect (Mazen et al., 2003). Similarly, p.

Gly196Ser is one of the mutational hotspots in the SRD5A2 gene,

which was reported in several populations (Akcay et al., 2014;

Nagaraja et al., 2019), while p.Tyr91His variant, which has a deleteri-

ous effect on protein function, was reported in Turkish and Palestin-

ian populations (Maimoun et al., 2011). Similar to our findings,

SRD5A2 variants were the second most frequently reported cause of

46,XY DSD in Indian populations (Nagaraja et al., 2019). We have

found that 17β-Hydroxysteroid dehydrogenases III (HSD17B3) defi-

ciency is relatively common in our cohort with a different mutational

profile compared with that observed in other populations (Hassan

et al., 2016) (Table 3). In contrast, only five pathogenic variants were

detected in the AR gene out of 28 patients with suspected androgen

insensitivity. The higher prevalence of the autosomal recessive disor-

ders, HSD17B3 deficiency and 5α-Reductase deficiency (5α-RD2)

deficiency, may be due to the high rate of parental consanguinity

(nearly 70%). Similarly, a high rate of HSD17B3 deficiency

(1:100–300) was identified in the Gaza strip, indicating the relevant

role of consanguinity in increasing the prevalence of HSD17B3 defi-

ciency (Rosler, 2006). A rise in the prevalence of heritable DSD causes

was also reported in India due to the high frequency of consanguine-

ous marriages (Nagaraja et al., 2019). The lower rate of AR pathogenic

variants detected here may be ascribed to the sequencing limited to

exons 2–8 and/or the relative increase in the mutations of genes with

autosomal recessive inheritance. WT1 gene variants were detected in

three of our 46,XY DSD patients with atypical genitalia and variable

degrees of gonadal dysgenesis. Two patients carried a de novo het-

erozygous p.Arg462Try (c.1384C > T) variant in exon 9, identified by

direct sequencing in one patient who manifested an early developing

gonadoblastoma (Mazen, Hassan, et al., 2017), while the other was

diagnosed by WES. A novel heterozygous variant in exon 9, p.

Lys459Arg (c.689A > G), was also detected in a patient carrying a

mosaic karyotype: 45,X[90]/46,X,idic(Y)(q11.2)[10], who had shown

pelvicalyceal dilatation of the left kidney. (Table 3). WT1 gene variants

can result in a range of phenotypes characterized by glomerulopathy

associated with varying degrees of genital anomalies in 46,XY

patients. p.Arg462Try is a mutational hotspot in exon 9 that has been

described in patients with Denys–Drash syndrome and patients with

steroid-resistant nephrotic syndrome (Lehnhardt et al., 2015). How-

ever, none of our patients presented with signs of nephrotic syn-

drome. Patients carrying WT1 pathogenic variants are at an increased

risk of Wilms tumor or gonadoblastoma, and it is recommended to

perform prophylactic nephrectomy or gonadectomy when expected

(Ahn et al., 2017). Further analysis by WES in the selected

undiagnosed patients revealed more interesting findings: Two patho-

genic de novo NR5A1 variants were detected in two unrelated

patients with 46,XY gonadal dysgenesis (Mazen, Abdel-Hamid,

et al., 2016). The first patient presented with amenorrhea and primary

TABLE 4 (Continued)

Ambiguous genitalia,

cardiac defects,

lissencephaly, agenesis

of the corpus callosum,

and colpocephaly

46,XY Male ARX NM_139058:c.196

+ 1G > T

Novel variant in the donor

splice site of the first

exon

Pathogenic

(PVS1 + PS2)

Kabuki syndrome

dysmorphic features,

undescended testes,

and severe intellectual

disability.

46,XY Male KDM6A NM_021140:c.1760G > A

(p.Ser587Asp)

Novel missense variant

Likely pathogenic

(PS2 + PM2)

Abbreviations: ACMG, American College of Medical Genetics and Genomics; WES, Whole exome sequencing.
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infertility and carried a novel heterozygous frameshift variant in exon

4, p.Glu206Thrfs*20 (c.614_615insG), while the other patient pres-

ented at the age of 4 years as a female with atypical genitalia and

gonadal dysgenesis and carried the variant p.Arg313Cys (c.937C > T).

This variant was previously reported by Allali et al. (2011) in a patient

presenting with mild isolated hypospadias. The more severe pheno-

type in our patient may be due to the association of a rare MAP3K1

gene variant inherited from her mother (Table 4). MAP3K1 (OMIM #

600982) is a protein coding gene that has been associated with an

autosomal dominant form of 46,XY gonadal dysgenesis (Le Caignec

et al., 2003). Loke et al. (2014) reported rare missense MAP3K1 vari-

ants in 46,XY DSD patients and postulated that it could alter the

cofactor-binding and/or MAP kinase activity above a required thresh-

old, thereby disrupting the normal testicular development. Different

pathogenic MAP3K1 variants were also identified by Baxter

et al. (2015) in 46,XY DSD patients with variable phenotypes. Digenic

inheritance was suggested in another patient in our cohort with atypi-

cal genitalia, 46,XY DSD, and congenital heart disease, in whom WES

detected a novel homozygous variant, p.R473Q in FGFR1 gene

(OMIM#136350), affecting exon 10. In addition, a homozygous (p.

A247V) variant in the START domain of the STARD3 protein was

detected and predicted to be deleterious on the protein function

(Mazen, Hassan, et al., 2016). These gene mutations were confirmed

by Sanger sequencing performed for the patient and his normal

brother. It revealed that the normal brother was heterozygous for the

same variant affecting FGFR1 gene and carried a wild-type sequence

of the STARD3 gene, raising the possibility of the contribution of

these two mutations to the phenotype. STARD3 (OMIM# 607048)

encodes a cholesterol-binding protein that acts in the endosomal cho-

lesterol transport and is expressed in many adult human tissues at

high levels, including testis and adrenal gland (Watari et al., 1997). It is

worth mentioning that digenic inheritance should be formulated with

caution in consanguineous couples as multiple homozygous variants

could be frequently encountered in their offspring. Thus, studying of

the functional consequences of these variants as well as the analysis

of normal sibs will be of help. Two of our 46,XY DSD boys with bilat-

eral cryptorchidism were shown by laparoscopy to have a uterus and

fallopian tubes. WES identified a homozygous novel frameshift variant

(p.L70Cfs*7) in the AMH gene in the first child, while the second child

had a novel homozygous AMHR2 (p.H256P) missense variant (Mazen,

El-Gammal, et al., 2017). Persistent Müllerian duct syndrome is a very

rare form of 46,XY DSD that results from inactivating mutations

affecting the AMH gene or AMH receptor type II (AMHR2) gene. It is

mostly transmitted in an autosomal recessive pattern, and most cases

were detected among families with a high consanguinity rate

(Picard & Josso, 2019). The majority of AMH gene variants were iden-

tified in the Mediterranean region and Saudi Arabia, while most of

AMHR2 variants were identified in Northern Europe (Ren et al., 2017).

WES had identified other rare variants in patients presenting with

complex phenotypes. A homozygous rare variant, p.Pro1411Leu

(c.4232C > T), involving FANCA gene was detected in a 46,XY gonadal

dysgenesis female patient presenting with atypical external genitalia

and microcephaly. This variant was found to be inherited from the

heterozygous parents (Mazen et al., 2018). The phenotype of Fanconi

anemia patients is highly variable and may be associated with varying

degrees of skeletal, genital, renal, and central nervous system anoma-

lies. Another 46,XY female-reared patient had presented with atypical

genitalia, bilateral inguinal testes with no Müllerian derivatives, micro-

cephaly (−3 SD), and multiple café-au-lait patches and had a strong

male gender identity. This patient was found to harbor a homozygous

missense variant in exon 11 of the HHAT gene p.Asp443Lys

(c.1329C > A) inherited from her heterozygous parents. This novel

variant is predicted to be deleterious by various bioinformatics tools.

HHAT (Hedgehog Acyltransferase; OMIM# 605743) encodes an

enzyme that catalyzes amino-terminal palmitoylation of Hedgehog

gene family and is expressed in XY and XX gonads at the sex determi-

nation critical time (Callier et al., 2014; Chamoun et al., 2001). A single

loss-of-function variant of HHAT has been reported to disrupt testicu-

lar organogenesis and skeletal and embryonic growth development in

humans (Callier et al., 2014).

Interestingly, two different X-linked variants were detected by

WES in two of our patients with multiple congenital anomalies. The

first was a novel ARX gene variant (c.196 + 1G > T) detected in an

eight-day-old 46,XY DSD infant with cardiac defects, lissencephaly,

agenesis of the corpus callosum, and colpocephaly. Similar to this

patient, 46,XY DSD with lissencephaly, agenesis of the corpus cal-

losum, intractable neonatal seizures, congenital heart anomalies, and

atypical genitalia with small dysgenetic testes was separately reported

by Ogata et al. (2000) and Spinosa et al. (2006). Kato et al. (2004) also

identified two recurrent and 13 novel variants in the ARX gene in

20 patients with brain and genital malformations; most of the patients

had X-linked lissencephaly with atypical genitalia (XLAG). XLAG is a

relatively recently recognized syndrome resulting from mutation in

the ARX gene located in Xp22.13. ARX is an X-linked recessive gene

(OMIM# 300382) that encodes the Aristaless-related homeobox pro-

tein, belonging to Aristaless-related subset of the paired (Prd) class of

homeodomain proteins (Lee, 2017), which have a crucial role in cere-

bral development and patterning (Bienvenu et al., 2002). A novel mis-

sense variant p.Ser587Asp (c.1760G > A) in the X-linked gene KDM6A

was also identified in a patient with dysmorphic facies characteristic

of Kabuki syndrome (KS), with undescended testes and severe intel-

lectual disability. Most KS patients (OMIM#147920 and 300867) had

variants in KMT2D gene, whereas about 3% to 5% are due to KDM6A

gene variants with X-linked dominant inheritance (OMIM # 300128)

(Bögershausen et al., 2016; Lederer et al., 2012). Genitourinary anom-

alies including hypospadias and cryptorchidism may occur in males

with KS, while severe intellectual disability is very rare as the majority

exhibit mild to moderate forms (Bögershausen & Wollnik, 2013).

The early prenatal identification of fetal anomalies allows for

proper parental counseling regarding the expected prognosis and

management options and give the opportunity to proceed to in utero

MR imaging or genetic testing. Nevertheless, some abnormalities

including lissencephaly could not be detected until late pregnancy

(20 and 24 weeks) (Williams & Griffiths, 2017). In most Middle East-

ern countries, elective pregnancy termination is forbidden unless the

life of mother is in imminent danger. However, the diagnosis of a
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serious fetal anomaly with a poor outcome by an authorized doctor

may allow termination in specific cases.

In conclusion, we report a large number of patients with DSD

from the same ethnic group. The study enlarges the scope of both

unusual cytogenetic and monogenic pathogenic variants and suggests

digenic inheritance as a cause of phenotypic variability observed in

DSD patients. The role of exome sequencing was emphasized for

more accurate diagnosis and management of DSD patients and for

better genetic counseling.
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