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Scenario-Based Test Automation for Highly
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Abstract— Highly Automated Vehicles (HAVs) must undergo
strict safety testing before being released to the public. Mileage-
based on-road testing suffers from unaffordable time costs and
high safety risks. Simulated scenario-based testing has been
found to be a trustworthy alternative for testing HAVs’ built-
in algorithms and functionalities. Test automation is typically
used to generate target scenarios. This approach facilitates cus-
tomized testing and avoids wasting time on simple and redundant
scenarios. This study aims to review test automation methods
and discuss how to accentuate their strengths rather than be
trapped in their weaknesses under certain applicable conditions.
According to their main purposes, we classify test automation
methods into coverage-oriented, unsafe-scenario-oriented, and
naturalistic-assessment-oriented categories. To further demon-
strate the differences of these methods, we then design numerical
experiment to compare the capabilities of seven test automation
methods. Finally, we compile our observations to form a compre-
hensive guide for selecting test automation methods with different
test requirements in mind.

Index Terms— Highly automated vehicles, test automation,
safety assurance, traffic scenarios.

I. INTRODUCTION

H IGHLY Automated Vehicles (HAVs) are equipped with
advanced perception, planning, and control modules

that enable them to drive precisely with little to no human
involvement. These vehicles have the potential to reduce traffic
accidents, alleviate road congestion, improve commutes, and
even revolutionize travel pattern [1]–[3]. Despite the rapid
development of HAVs, fatal accidents caused by Uber and
Tesla in open streets show that the safety of HAVs is still a
thorny problem [4], [5]. Systematic safety testing is critical
for eliminating or at least reducing possible accidents prior
to large-scale deployment. With the goal of ensuring the
safety of HAVs, multiple national and continental research
projects, such as ENABLE-S3 of the European Union [6]
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and PEGASUS of Germany [7], and organizations, such as
SIP-adus of Japan [8] and SAE International of the United
States [9], are currently in the process of proposing new testing
methodologies and procedures.

Unlike traditional vehicles testing, the focus of HAV testing
is the Safety of the Intended Functionality (SOTIF, [10]) in
complex driving environments. The main concern also shifts
from vehicle mechanical performance to autonomous driving
capability. These changes require a new testing methodol-
ogy. According to the Working Party on Automated and
Connected Vehicles (GRVA) of the United Nations, public
road testing, proving ground testing, and simulation testing
are the three pillars of safety certification for HAVs [11].
Complementary feedback relationships are present between
these three pillars. Testing in the real world has two main
disadvantages: the extremely lengthy testing process [12] and
potential dangers [13]. Thus, high-fidelity simulation-based
testing becomes a necessary step. Instead of simply executing
mileage-driven testing in a simulated environment, scenario-
based testing is the state-of-the-art in this field. In the context
of our paper, we used the definition developed in [14], which
stated that a scenario is a temporal sequence of maneuvers
and environmental elements, including traffic elements, natural
elements, road elements, etc. There are three main reasons
for utilizing scenario-based testing. First, driving mileage is
composed of a chain of scenarios and HAVs should be able to
handle various situations. Second, in scenario-based testing,
we can customize test scenarios and avoid wasting time on
simple and repeated scenarios. Third, it allows researchers to
evaluate rare and extreme scenarios.

However, the core challenges are how to optimize scenario-
based testing and improve the efficiency. According to PEGA-
SUS [15], test scenarios can be termed as either functional
scenarios, logical scenarios, or concrete scenarios according to
their level of abstraction. Functional scenarios contain natural
language descriptions. Logical scenarios are the parameter-
ization of functional scenarios, and contain the ranges and
distributions of dynamic and static parameters. By apply-
ing exact parameter values, a concrete scenario presents a
concrete representation of a logical scenario, which is used
for scenario testing execution. However, due to the large
range of possible scenario parameters and values, parameter
combinations explode when we generate concrete scenarios in
a simulation [16].
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Fig. 1. Technological process of scenario-based simulation testing.

Inspired by software and avionics systems safety verifica-
tion [17], [18], test automation has been applied. According to
PEGASUS [19], test automation automatically generates target
concrete scenarios, such that a reliable conclusion of HAV
safety performance can be drawn from a smaller number of
tests. This approach is one possible workaround for tackling
this combination explosion. The functionality to be tested in
the scenarios is the System Under Test (SUT). It can be an
individual software function or hardware. Here, we do not
focus on what the SUT is and its desired level of certification.
We instead focus on general methods for automating the
testing procedure. The relationships between the SUT, test
automation, and scenario-based testing are shown in Fig. 1.
The word “scenario” mentioned later mainly refer to concrete
scenarios, otherwise we will state clearly.

Test automation methods are evolving rapidly. Some works
have summarized the state of the art [19]–[21] based on limited
HAV test automation methods. Riedmaier et al. [22] carried
out a literature review on scenario-based safety assessment.
But they paid more attention to steps of scenario-based testing
process. The applicability of test automation methods was not
fully revealed, mainly due to the following knowledge gaps:

(1) Previous reviews failed to provide a contrastive analysis
of different test automation purposes.

(2) Previous reviews ignored the quantitative compar-
isons between methods about their effectiveness and
efficiency.

(3) There is no systematic summary of the applicability of
different test automation methods, which hinders the
popularization of test automation methods for practical
use.

HAV safety testing requires thorough methodology and
advanced guidance. To better sort known test automation
methods and shed light on test automation methods selection
based on these previous works, this paper seeks to make the
following three contributions:

(1) We review and classify existing test automation meth-
ods according to their purposes. A detailed summary of
the 50 mainstream test automation methods is conclued,
including their testing purposes, System Under Test,
the type of scenarios, scenario parameters, simulation
environment and related metrics.

(2) We prove quantitatively that different methods vary
in their applicability. Our experiment design makes it
possible to intuitively reveal the comparable advantages
and disadvantages of various methods.

Fig. 2. Classification of test automation methods.

(3) We propose a systematic workflow for test automation
methods selection. It aims at the methods selection
problem that many HAV testers face.

The rest of this paper is organized as follows. In Section II,
we review and classify existing HAV test automation meth-
ods. In Section III, we present a detailed quantitative meth-
ods comparison. In Section IV, a systematic test automation
workflow for HAVs’ safety assurance is proposed based on
the qualitative and quantitative observations in the previous
sections. Section V summarizes the findings and suggests
future research directions.

II. CLASSIFICATION AND REVIEW

OF TEST AUTOMATION METHODS

According to their corresponding purposes and applications,
we divided test automation methods into coverage-oriented,
unsafe-scenario-oriented and naturalistic-assessment-oriented
test automation methods (see Fig. 2). The definitions for each
category are as follows:

(1) Coverage-oriented test automation method: Methods
that maximize testing coverage under a certain coverage
metric in a specific Operational Design Domain (ODD).

(2) Unsafe-scenario-oriented test automation method:
Methods that generate specific types of scenarios
such as high-risk, boundary, collision, and worst-case
scenarios to facilitate fault detection.

(3) Naturalistic-assessment-oriented test automation
method: Methods that generate scenarios in accordance
with naturalistic distributions and can quickly estimate
HAV safety indicators such as injury rate, conflict rate
and collision rate.

We review the corresponding test automation methods in
the order of this classification.

A. Coverage-Oriented Test Automation

One ambition of HAV safety testing is to test as thoroughly
as possible with limited time and money resources (i.e. testing
resources), such that the successes and failures of HAVs can
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be systematically shown. The higher the testing coverage,
the more reliable the verification of HAVs’ safety. Coverage-
oriented test automation can be utilized to maximize testing
coverage.

According to Tatar [23], there are five types of possi-
ble coverage measures: 1) functional requirement coverage,
2) software source code coverage, 3) operational state cov-
erage, 4) input coverage for a given logical scenario, and
5) coverage across logical scenarios and situations. For HAVs
involving many deep learning models, input coverage for a
given logical scenario and coverage across logical scenarios
and situations are the main focuses.

If testing resources are sufficient, one solution for enlarging
testing coverage is to simply generate as many scenarios
as possible. Standards, guidelines and expert knowledge can
be used for increasing coverage across logical scenarios and
situations. Bagschik et al. [24] presented an ontology-based,
five-layer model for logical scenario representation. It included
roads (L1), traffic infrastructure (L2), manipulation of L1 and
L2 together (L3), objects (L4) and environment (L5). The
model was able to identify comprehensive logical scenarios
based on knowledge at hand Jesenski et al. [25] divided
scenario parameters into vehicle parameters and global para-
meters such as the traffic light state and weather conditions.
To be more realistic, Bayesian networks were used to build
the joint distribution of scenario parameters from real-world
datasets.

Considering that traffic scenarios and situations are infinite,
input coverage is more likely to be measured. Input coverage
corresponds to specific logical scenario ODD. If all parameters
in the ODD are discrete and have finite values, testing all
possible combinations of levels for all factors is the same as
achieving 100% input coverage.

A widely-adopted solution for dealing with parameter com-
bination explosion is running thousands of scenarios simulta-
neously on the cloud. According to some industry reports,
companies often use brute force enumeration with cloud
computing to save computational time [26]. However, testing
on the cloud may still be intractable if the size of the ODD is
enormous.

Instead of input coverage and coverage across logical sce-
narios and situations, the T-wise method (i.e. combinatorial
testing method) intelligently selects parameters to maximize
T-wise coverage [27]. It is also adopted to verify software
products and communication systems [28], [29]. This method
assumes that T-parameter combinations can trigger most sys-
tem circumstances and that the value of other parameters are
not related to the results. T-wise coverage refers to the ratio of
distinct T -parameter combinations covered during testing to
the total number of possible T -parameter combinations [30].
Xia et al. [31] used a T-wise test tool to ensure coverage
and test scenarios complexity. This strategy was also applied
in [32], where the Analytic Hierarchy Process (AHP) method
was adopted to measure the relative importance of scenario
parameters. Rocklage et al. [33] generated T -parameter com-
binations for a vehicle merging scenario through non-recursive
backtracking. However, the value of T should come from
empirical evidence, which is currently absent for HAV testing.

TABLE I

FOUR TYPES OF UNSAFE SCENARIOS

As such, it remains unclear whether a T-wise method could
guarantee that HAVs are fully tested in most circumstances.

For a small-scale ODD, enumeration is possible. For highly
complex ODDs, the trade-off between testing resources and
test coverage is still fairly ambiguous. Another main obstacle
for coverage-oriented testing automation is that traffic sce-
narios in the real world can never be fully parameterized.
Currently, there is no unified and widely recognized standard
that relates the coverage of an ODD to the coverage in a
naturalistic traffic environment. Achieving full coverage in a
naturalistic traffic environment is currently infeasible, but it
can remain as an ideal goal.

B. Unsafe-Scenario-Oriented Test Automation

Considering the difficulty of full-coverage testing, exploring
unusual, dangerous, and extremely critical scenarios can be
seen as low-hanging fruit. All test automation methods that
fulfill this purpose are termed as unsafe-scenario-oriented test
automation. Unsafe scenarios found in simulation can be
reproduced in proving ground or public road testing, which
facilitates the efficiency of HAVs’ defects detection and safety
verification. Unsafe-scenario-oriented test automation methods
can be further divided into four sub-categories according to
what they try to detect: finding high-risk, boundary, colli-
sion, and worst-case scenarios. Their definitions are shown
in TABLE I.

Unsafe-scenario-oriented test automation can also be termed
as falsification, which seeks to find counterexamples that
violate the safety requirements [34]. In the review of Ried-
maier et al. [22], we noted that falsification methods included
three options: (1) using an accident database, (2) taking an
exemplary concrete scenario and increasing its criticality, and
(3) taking a logical scenario and finding unsafe scenarios
within it. Option (1) mainly applies for generating collision
scenarios. For Options (2) and (3), they can be widely used
for all four unsafe scenario sub-categories.

Different types of unsafe scenarios have different metrics
and levels of criticality. Based on existing research (see
TABLE II), they are generally measured by relative speed,
relative distance, deceleration fluctuation, etc.

Unsafe scenario formulations and searching strategies are
hot research topics. A comprehensive introduction of relevant
methods is presented below.
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Unsafe Scenario Type Definition

High-risk scenarios 

Boundary scenarios 

Collision scenarios 

Worst-case scenarios 

Scenarios that require emergency 
operations, such as large decelerations 
and steering, or near-collision scenarios.
Scenarios between the safe and unsafe 
domains in an ODD.
Scenarios where the range between 
vehicles is zero or negative.
Extremely unsafe scenario(s)  for HAVs 
in a certain ODD.
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TABLE II

SUMMARY OF TEST AUTOMATION METHODS FOR HAVS SAFETY TESTING

1) High-Risk Scenarios: High-risk scenarios can pose
potential dangers to HAVs or surrounding subjects. If these
high-risk scenarios were to occur in the real world, severe
accidents may take place. As such, HAVs must be capable of
dealing with high-risk scenarios.

There is no universal definition for high-risk scenarios.
Generally, these scenarios are viewed as dangerous, emergency
situations [35], [36]. The most commonly used metric is “Time
To Collision”, which is defined as the time until two road
users collide if they continue at their present speed along
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the same path [37]. For instance, Hallerbach et al. [38] set
a threshold for high-risk scenarios at TTC = 3.9 s. Wang
and Winner [39] used TTC, WTTC (Worst-Time-to-Collision)
and the lateral distance between HAVs and other vehicles to
determine whether a scenario was high-risk or not.

Some searching methods have emerged in recent years.
Althoff and Lutz [40] adopted a binary search method to find
high-risk driving situations on straight, non-intersecting roads.
Klischat and Althoff [41] used evolutionary algorithms to
generate high-risk test scenarios for complex road layouts and
dynamics. Feng et al. [42] defined high-risk scenarios based
on maneuver difficulty and exposure frequency. This criterion
differs from most existing studies, which usually don’t take
frequency into account. Feng et al. [42] also designed a
search algorithm based on multi-start optimization and seed-
fill method. Klischat et al. [43] generated high-risk scenarios
by increasing the criticality of general traffic scenarios using a
nonlinear optimization method. They are now available on the
CommonRoad website [44]. Nonnengart et al. [45] applied
unsafe constraints to transform normal maneuvers of HAVs
into emergency situations. The unpredicted risks may cause
HAV modules to lose the expected performance. As such, the
idea of Fault Injection (FI) is adopted to validates the fault tol-
erant of systems. Chen et al. [46] applied ANN-based classifier
to quickly indicate the safety of FI-scenarios. Jha et al. [47]
presented a machine learning-based fault injection engine
named DriveFI. By mining high-risk scenarios, 561 safety-
critical faults were found within 4 hours. Considering that
multi-agent systems (MASs) have been studied extensively,
Wang et al. [48] concluded some fault-tolerant strategies for
HAVs platoon system.

TestWeaver, originally developed by QTronic, is a test
automation software applied to HAV safety testing. It imple-
ments game theory to maximize coverage for high-risk sce-
narios [49], and has been adopted by Daimler for HAV safety
testing [50].

Currently, most research can assess the impact of dynamic
objects, but few models involve static objects and environ-
mental parameters (see TABLE II). Some high-risk scenarios
should correspond to different metric thresholds in different
environments. Taking TTC as an example, it is not appropriate
to adopt a consistent TTC to judge if a scenario is high-risk
no matter how poor the road conditions are. The definition
of high-risk scenarios still lacks a uniform standard, and
thresholds mainly rely on subjective expert experience.

2) Boundary Scenarios: Boundary scenarios are defined as
regions in the parameter space where small changes can lead to
transitioning between testing results. It distinguishes between
safe domain and unsafe domain in an ODD. Testing these
scenarios is vital as they mark the limit of HAVs’ safety
quality.

There are various methods used to recognize bound-
ary scenarios. Stellet et al. [51] used analytical deriva-
tion to discover vital transitions in performance over sensor
detection ranges and autonomous emergency brake systems.
Tuncali et al. [52] designed a robustness evaluation func-
tion that found boundaries between safe and unsafe behav-
ior. Mullins et al. [53], [54] introduced an adaptive search

technique. This technique was designed to find performance
boundaries for a SUT with higher parameter dimensions.
Surrogate Models (SMs) are always a part of adaptive search
and help address the searching problem [55]. Using data
fed back from the SUT, SMs can approximate the SUT
and generate more samples, which provides a fast estimation
of the objectives. Successful use of SMs results in signifi-
cant computational time savings [56]. A framework named
Sim-ATAV was developed to specifically detect boundary
scenario collisions [57], and was used by Tuncali et al. [58]
to develop adversarial test scenarios generation. It contributed
to evaluating the closed-loop properties of HAV models that
include the machine learning components. Batsch et al. [59]
used Gaussian process classification to find boundary scenarios
in sparse data sets.

If a test ODD already exists, the primary advantage of
boundary scenario evaluation is that it can be used as a
benchmark to quickly categorize safe and unsafe scenarios.
Analyzing performance changes in these boundary scenarios
helps to improve HAV behaviors.

3) Collision Scenarios: Collision scenario evaluation is one
of the most important topics for researchers, as it reveals the
fairly dangerous aspects of HAVs.

There are two main methods used to extract collision sce-
narios. One involves a Test Matrix, which is a compilation of
test scenarios based on accumulated collision data and expert
knowledge. Simulation platforms can be used to reconstruct
these collisions based on recorded speed, acceleration, road
curvature, etc. HAVs can then be placed in these dangerous
scenarios to see if they can perform better than human drivers.

Many projects and institutions have explored collision
data and defined test scenarios [60]–[62]. The ASSESS
projects [63] used representative collision datasets from four
countries to build collision scenarios. Scenarios were selected
based on a combination of injury severity and frequency.
Gambi et al. [64] generated collision scenarios from police
accident reports. They also invited 34 participants to assess
the accuracy of reconstructed collision scenarios. To generalize
test scenarios, several researchers have also explored the con-
nection between collision data and collision causes [65]–[67].
Better understanding of the underlying reasons for collisions
can let researchers create prototype collision scenarios. The
Test Matrix method has typically been used to verify HAV
performance in recorded human accidents. However, it is time-
consuming and costly to collect sufficiently detailed collision
data.

To overcome these problems, another idea involves
intelligent search algorithms [68]–[70]. Masuda et al. [71]
proposed a rule-based method to search for collision sce-
narios on a three-lane highway and a signalized intersection.
Abdessalem et al. [72] provided a test approach that combined
a multi-objective search with SMs. It mainly tried to detect and
predict pedestrian-vehicle collisions. Koren et al. [73] applied
an adaptive stress testing methodology. Monte Carlo Tree
Search (MCTS) and Deep Reinforcement Learning (DRL)
were implemented to find collision scenarios caused by sto-
chastic element perturbance. Koschi et al. [74] presented
two novel falsification methods to reveal safety flaws in the
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ACC systems of HAVs. Rapidly-exploring random tree meth-
ods have also been used to generate rear-end collisions. They
found that a backward search algorithm was able to find
targeted scenarios much faster than a forward search approach.
Sun et al. [75] proposed an Adaptive Search method to quickly
search for collision scenarios and also compared the perfor-
mance of six SMs. Ding et al. [76] combined a specific task
algorithm with a generative model to specifically learn the rare
event distribution, which helped to overcome the inefficiency
of collisions searching. Calò et al. [77] used jMetal 5.7 as a
search framework to identify dangerous collisions, and then
searched for collisions that could be avoided by changing the
parameters of the path planner algorithm.

Unlike the Test Matrix method, these approaches do not
restrict researchers to vague and limited information mined
from existing collision data. These methods also generalize
potential collision scenarios to a larger range.

4) Worst-Case Scenarios: The worst-case scenarios gen-
erally indicate the most destructive situations HAVs can
encounter in a specific ODD. Investigating the functionality of
HAVs in worst-case scenarios also helps to improve safety in
other scenarios to some extent. Once worst-case scenarios are
available, they can be used as a benchmark for the evaluation
of various development schemes.

Worst-Case Scenario Evaluation (WCSE) allows researchers
to test a wide variety of dangerous scenarios, including ones
that are not feasible or too costly to try in the field. For
example, Jung et al. [78] generated worst-case scenarios for
Integrated Chassis Control (ICC) systems about rolling over.

Traditional WCSE of vehicles focused on mechanical per-
formance [79], [80]. For autonomous systems, black-box
or gray-box attributes are taken into consideration, such
as stochastic error, perturbation and probability uncertainty.
Srikanthakumar and Chen [81] used a genetic algorithm and
GLOBAL algorithm to assess worst-case scenarios of moving
obstacle avoidance systems. Nilsson et al. [82] analyzed
collision avoidance systems, including measurement errors,
nonideal state prediction, sensor delays, and actuator delays.
They derived closed-form expressions for worst-case scenarios
caused by systematic errors and unexpected future object
motion. Liu et al. [83] developed a double-worst-case for-
mulation, which considered both the most likely worst-case
scenario and the less likely one. This approach improved the
robustness of the obstacle avoidance algorithm when dealing
with parametric uncertainty. Chelbi et al. [84] identified worst-
case scenarios with an unsupervised classification technique,
where the prediction model of vehicle’s driving state contained
18 machine learning techniques. In the study of Xu et al. [85],
worst-case scenarios were mined by a single layer recurrent
neural network with Long Short-Term Memory (LSTM) neu-
rons. They also found similar perceiving defects among several
vehicle detectors. In PEGASUS [19], they mentioned that
Particle Swarm and Simulated Annealing approaches can also
be chosen to generate worst-case scenarios.

A common criticism of “worst-case” analysis is that worst-
case scenarios may never occur and designs taking these cases
into account are very costly under most operating conditions.
However, WCSE is crucial for increasing public trust in HAVs.

For instance, in 1992, Consumer Reports rated the safety of the
Isuzu Trooper as “unacceptable” after it rolled over in a test
maneuver. Isuzu countered that the maneuver performed was
extreme and rarely occurred in the real world. Nevertheless,
its sales plunged 53% in one year [79].

C. Naturalistic-Assessment-Oriented Test Automation

Testing HAVs in specific scenarios contributes to micro-
level fault detection. However, the ultimate goal of safety test-
ing is to validate the performance of HAVs under real driving
conditions and to ensure HAVs are safer than average human
drivers. Naturalistic-assessment-oriented test automation meth-
ods have been proposed to derive safety indicators such as risk
rate or collision rate under naturalistic distributions.

Monte Carlo approaches can be used to generate scenarios
for naturalistic assessment via the Law of Large Numbers.
It samples scenarios from naturalistic driving data. With
reliable data and statistical tools, this approach ensures that
the distribution of generated test scenarios is consistent with
the real traffic environment. Sampling won’t finish until the
collision rate or risk rate converges within a set confidence
interval.

Monte Carlo has been widely used to assess threats in
driving scenarios. Nicolao et al. [86] used Monte Carlo to
develop risk assessment on DaimlerChrysler PROTECTOR.
In Danielsson et al. [87], they used a Monte Carlo approach
to estimate the safety improvements with advanced vehicle
dynamic models. Eidehall and Petersson [88] promoted this
method and claimed that Monte Carlo can both assist with
online safety applications in a vehicle and offline data analy-
sis. However, ()Lam [89] noticed that randomly sampling
of Monte Carlo introduced input uncertainty. To assess this
problem, Huang et al. [90] provided a solution to construct
valid confidence intervals for evaluation results.

One problem that cannot be ignored is the efficiency of
Monte Carlo. Because vehicle collisions are naturally rare,
the estimated collision rate can be an extremely small number.
Accurate assessments using Monte Carlo thus require massive
samples, making it extremely time-consuming.

Therefore, Importance Sampling (IS), a classical variance
reduction technique [91], can be used to accelerate rare-
event probability estimation [92]. The core idea of Importance
Sampling is to replace the original probability density function
with a new one where rare events are more likely to occur.
Huang et al. [93] and Zhao et al. [94], [95] applied this
approach to study HAV behavior in traffic scenarios like cut-in,
lane changing and car-following. Simulation results show that
using Importance Sampling can reduce the required simulation
time by 300 to 100,000 times. Xu et al. [96] used a genetic
algorithm to calculate Importance Sampling parameters, which
further improved the efficiency of testing. Feng et al. [97]
made adversarial adjustments to the naturalistic driving envi-
ronment, which can significantly reduce the required testing
time of Importance Sampling and guarantee the unbiasedness
of estimation. Other than Importance Sampling, rare event sim-
ulation methods can be found in Juneja and Shahabuddin [98],
Estecahandy et al. [99], Straub et al. [100], etc. It can be
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further applied to HAV naturalistic-assessment-oriented test
automation.

However, naturalistic-assessment-oriented test automation
does have limitations. First, since empirical expectations are
estimated from field data, the authenticity of data has a
direct effect on result reliability. Second, Monte Carlo and
Importance Sampling suffer from probabilistic errors due
to the random sampling in the initial conditions. As such,
distributions and results may differ from execution to execu-
tion [101]. Third, sampling considering the joint distribution
of parameters in high-dimensional scenarios has not yet been
realized.

D. Format of Test Scenarios

Many of the test automation methods mentioned above are
based on numerical simulations. For theoretical research, this
is a convenient simplification. However, the formal test scenar-
ios need to be digitized and formalized in a standard format
before they can be loaded and executed by test automation
software.

There exist brief reviews on scenario specification language
in [102] and [103]. The OpenX series, developed by German
company VIRES, is the mainstream file format standard for
HAV simulated-based testing. It includes OpenDRIVE [104],
OpenCRG [105], and OpenSCENARIO [106]. Additionally,
scenario specification languages such as Scenic [107], Traffic
Sequence Charts [108] and Paracosm [109] also prompt the
development of test automation [102], [110].

E. Summary of Literature Review

The contents of 50 well-received works on test automation
are summarized in TABLE II. These methods have all con-
tributed to the development of test automation. We can easily
see that the unsafe-scenario-oriented test automation research
accounts for the largest proportion, followed by naturalistic-
assessment-oriented test automation research. The research on
coverage is relatively sparse.

Existing test automation methods for HAV safety have
been verified in individual experiment designs. It is hard to
intuitively distinguish the applicability of these categories of
test automation methods. In addition, although many methods
have been designed to achieve the same test purpose, different
experiment designs make it impossible to perform any quan-
titative comparison of their efficiency.

Furthermore, quantitative comparison results may vary for
different logical scenarios. This may instead mislead future
implementations of different logical scenarios if not interpreted
properly. Therefore, methods comparison and generalized con-
clusion are necessary in order to facilitate method selection out
of all these choices.

III. QUANTITATIVE METHOD COMPARISON

After considering existing methods’ purposes and appli-
cations, we classified them into three categories. To verify
the correctness of this classification and the necessity of
test methods selection, we sought to quantitatively prove the

Fig. 3. Procedure of the numerical experiment.

superiority of various test automation methods. We designed
the method comparison experiment with three aspects in mind:

(1) Comparing the capabilities of test automation methods
from different categories for achieving the same test
purpose.

(2) Comparing the capabilities of test automation methods
from the same category for achieving the same test
purpose.

(3) Comparing the capabilities of test automation methods
when testing in different ODDs.

Experiment platform can be simulation tools such as Vires
VTD and Cognata [111], [112]. The specific procedure used
for comparison is shown in Fig. 3.

We chose seven methods to compare. Enumeration and
T-wise are two representatives of coverage-oriented category.
Enumeration is the most basic and straightforward test automa-
tion method, and we treated it as a baseline. Monte Carlo and
Importance Sampling were chosen to represent the naturalistic-
assessment-oriented category. Although these two approaches
have been compared in many past studies, a full analysis
focusing on the three aforementioned aspects has never been
done. For the unsafe-scenario-searching category, we selected
Seed-Fill, Particle Swarm Optimization (PSO) and the Adap-
tive Search Method, due to their similarities in output and
differences in searching strategy.

The SUT in our experiment was the rear-end collision avoid-
ance functionality fulfilled by a motion planning algorithm.
We chose Car-following and Cut-in as the logical scenarios.
Not only is this scenario universal in a naturalistic driving
environment, the designed low-dimensional Car-following and
high-dimensional Cut-in scenarios can provide two distinct
ODD spaces. As such, the performance of a method with
different ODD spaces can be examined.

A. Methods Description

1) Enumeration: Enumeration tests scenarios within the test
ODD space one by one. If only part of the scenarios are
enumerated, they should be randomly selected.

2) T-Wise: T-wise is performed by AllPairs, an open source
test combinations generator written in Python. If the logical
scenario has m scenario parameters, T can be 2, 3, . . . , m −1.
A candidate scenario is qualified only if its T -parameter com-
binations were not included in previously sampled scenarios.
When the maximum T-wise coverage rate is reached, testing
terminates.
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3) Seed-Fill: Seed-Fill is a classic algorithm from computer
graphics [113]. Its key idea is to exhaustively explore the
adjacent points of a known space [114]. In the test ODD, each
scenario can be treated as a point. We used Seed-Fill to check
the unknown scenario points surrounding the tested scenario
points.

4) Adaptive Search Method: Measured by an acquisition
function [115], the Adaptive Search Method gives testing pri-
ority to scenarios predicted to be collisions. In our experiment,
we selected KNN (K-Nearest Neighbor) as a surrogate model
due to its simplicity, effectiveness and intuitiveness in the field
of fault detection [116].

5) Particle Swarm Optimization (PSO): The PSO algorithm
randomly samples particles in the test ODD. Particles were
set to move towards the collision scenarios in the test ODD
space. They continuously adjusted their speeds and positions
according to the collision scenarios collected in their own
path and the collision scenarios collected by the entire particle
swarm.

6) Monte Carlo: To obtain the occurring of collision sce-
narios, Monte Carlo tests scenarios within the test ODD space
using random sampling. Sampling scenarios are selected based
on the original probability of each scenario in the test ODD.

7) Importance Sampling: Importance Sampling works by
replacing the original probability of scenarios with a new one
which increases the occurrences of rare events. The testing
process is the same as for Monte Carlo, but sampling sce-
narios need to be selected based on the Importance Sampling
probability of each scenario.

All seven methods are recorded in TABLE II. A more
detailed description of these methods can be found in cor-
responding literatures.

B. Logical Scenario Design

1) Car-Following: Car-following is the most basic func-
tional scenario that a HAV is required to handle. The rear-end
collision avoidance functionality of an HAV is characterized
by the Intelligent Driver Model (IDM, [117]). IDM is a popu-
lar continuous, microscopic, single-lane Car-following model,
and has been widely used in adaptive cruise control system
simulation [118], [119]. It involves an acceleration process in
a free flow state and a deceleration process within congested
flow. However, the IDM can decelerate at a rate greater than
desired deceleration if the gap between vehicles becomes too
small. This braking strategy makes IDM collision-free [120].
In order to capture more failures, we introduced an addi-
tional parameter bm = 5m/s2 as a hard-coded cap on
the deceleration. The IDM parameter calibration is shown
in Appendix. A.

Car-following is defined as “following the same vehicle
ahead within 50 meters in the same lane for more than ten
seconds.” We considered a case with only one HAV involved.
We used the initial speed of the HAV (vs), the initial speed
of the leading vehicle (vl), and the initial distance between
them (S) as the key input parameters (see Fig. 4).

HighD [121] was applied as the data source. A total of
30,292 Car-following scenarios were extracted. The upper

Fig. 4. Car-following logical scenario.

TABLE III

PARAMETER RANGES FOR THE CAR-FOLLOWING SCENARIOS

and lower boundaries of the three key input parameters
were rounded to construct a test ODD via Full Factorial
Design [122] (see TABLE III). According to all the possible
levels of each parameter, we can produce 43 × 41 × 46 =
81, 098 concrete scenarios in all. The probability of each
scenario was determined using Gaussian Mixed Model (GMM)
joint distribution of vs , vl and S from naturalistic Car-
following scenarios. For a Gaussian Mixture Model with
K components, the kth component has a mean of �μk and
covariance matrix of

∑
k for the multivariate case. The mixture

component weights are defined as �k for component Ck ,
with the constraint that

∑K
i=1 �i = 1. The scenario probabil-

ities p(�x) can be formulated as (1):

p (�x) =
K∑

i=1

�i N(�x | �μk,
∑

i
)

N
(
�x | �μk,

∑
i

)
= 1√

2πk | ∑i |
exp(−1

2
(�x − �μk)

T

×
∑−1

i
(�x − �μk)) (1)

2) Cut-In: Cut-in is commonly seen and may cause severe
collisions. When a Cut-in maneuver is performed in real traffic,
related elements and influencing factors are often complicated.
Traffic participants in surrounding lanes can all impact the
outcome of a cut-in maneuver. In order to simplify the
model and ensure simulation accuracy, we considered three
participants in a Cut-in scenario: the HAV, the Cut-in HAV,
and the leading vehicle. We used the initial speeds of three
vehicles (v1, v2, v3), the initial longitudinal gaps (S1x , S2x )
and the initial lateral gap (dis1y) as the key input parameters
(see Fig. 5).

We decoupled the Cut-in motion into longitudinal and lat-
eral motion. In the longitudinal direction, the motion between
the three cars can be regarded as two separate Car-following
behaviors. As such, we still applied the IDM and bm for
motion planning. In the lateral direction, we treated the Cut-
in motion trajectory as a third-order Bezier curve. The testing
results recorded if any two cars collided.

We only considered the Cut-in maneuver within 50 meters
in the front of a HAV. A total of 993 Cut-in scenarios were
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Fig. 5. Cut-in logical scenario.

Fig. 6. Unavoidable collisions caused by irrational parameter combinations.

extracted from HighD. The upper and lower boundaries of the
six key input parameters were rounded to construct a test ODD
via Full Factorial Design (see TABLE IV). The probability of
each scenario was determined from the GMM joint distribu-
tion of v1, v2, v3, S1x , S2x and dis1y from naturalistic Cut-in
scenarios.

3) Elimination of Unavoidable Collisions: Constructing the
test ODD through Full Factorial Design has one shortcoming.
This approach causes it to contain many parameter combi-
nations that obviously result in unavoidable collisions just
from the initial state. These unavoidable collisions are actually
meaningless for testing and need to be removed due to their
irrational existence. In our experiment, they were simply
defined as collisions that could not be avoided even if the
following vehicle braked at the highest deceleration bm at the
very start. It represented situations where the initial distance
between the two vehicles was too close or the initial speed of
the following vehicle was too high. Take Car-following sce-
nario as an example, the deceleration time td can be formulated
as vs/bm , and unavoidable collisions were formulated as (2):

S≤v2
s − 2vsvl

2bm
(2)

After removing these unavoidable collisions, there were
68,335 scenarios left in the Car-following test ODD and
1,778,745 scenarios left in the Cut-in test ODD. Since the Car-
following scenarios can be described by a three-dimensional
matrix, we visualize the unavoidable collisions within the Car-
following scenarios in Fig. 6.

C. Comparison Criteria

We executed several rounds of testing and used different
numbers of scenarios for each round (e.g., 10,000 scenarios
or 20,000 scenarios). That being said, the scenarios being
sampled in later rounds were not an accumulation of the
previous rounds. If fewer scenarios were needed to achieve
the testing purpose, the method was determined to be more
capable.

Fig. 7. Comparison results for coverage in Car-following test ODD.

As stated in Fig. 3, we have three purposes for testing.
“Calculating coverage” means evaluating the input coverage
and T -wise combination coverage for the sampled scenar-
ios across the entire ODD. “Searching collision scenarios”
means prioritizing collision scenarios searching instead of safe
scenarios. “Estimating collision rate” means estimating the
collision rate of the tested motion planner for the two logical
scenarios.

D. Comparison of Results for Car-Following Test ODD

We use green lines to represent coverage-oriented methods,
orange lines for unsafe-scenario-oriented methods, and blue
lines for naturalistic-assessment-oriented methods. We exe-
cuted 15 rounds of testing for each testing purpose.

The performance of each method for achieving coverage is
shown in Fig. 7. For most methods, the same number of sam-
pled scenarios corresponded with the same input coverages.
However, for some unsafe-scenario-oriented methods, such as
Seed-Fill and PSO, repeated samples were involved in the
searching process, so it was difficult to achieve the ideal input
coverage.

The 2-wise method achieved 2-wise coverage of 75.7% with
1,690 scenarios, which required far less time when compared
with enumeration, which only achieved 70.0% 2-wise coverage
with 3,000 scenarios. Theoretically, 2-wise can achieve 100%
coverage of 2-parameter orthogonal combinations as shown
in Fig. 6 (a) with 2,006 scenarios. Once unavoidable colli-
sion scenarios were removed, the test ODD was no longer
orthogonal and some 2-parameter orthogonal combinations
were accordingly removed (same for the Cut-in test ODD).
The other methods lagged far behind T-wise and enumeration
in terms of achieving coverage.

The performance of each method when searching for col-
lision scenarios is shown in Fig. 8. Using enumeration to
explore the test ODD, we found a total of 6,320 collision
scenarios. If a method was able to find all 6,320 collisions,
that method achieved 100% collision scenario coverage.

One can easily see that unsafe-scenario-oriented methods
have a notable advantage over other methods in terms of
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Fig. 8. Comparison results for collision searching in Car-following test ODD.

Fig. 9. Comparison results for collision rate estimation in Car-following
test ODD.

finding collision scenarios. To identify more than 90% of the
collision scenarios, the Adaptive Search Method only needed
7,000 sampled scenarios. Essentially, one collision scenario
was captured by every 1.1 samples on average. However,
it took more than 60,000 and 55,000 sampled scenarios for
Enumeration and Monte Carlo to reach the same collision
scenarios coverage. Seed-Fill and PSO also had good effi-
ciency for the first several rounds. However, due to the stronger
randomness of these two methods, the number of collision
scenarios being captured did not strictly increase with the
number of sampled scenarios.

Importance Sampling also found more collision scenarios
than Enumeration and Monte Carlo since it sampled collision
scenarios with higher probability. However, it was still not
as capable as unsafe-scenario-oriented methods in general.
In addition, the 2-wise method only found 141 collision
scenarios, which means that collisions in our experiment could
not be explained by only 2 parameters.

The performance of each method when estimating collision
rate is shown in Fig. 9. The exact collision rate calculated by
Monte Carlo was 1.13−7. This was also used as the benchmark
to evaluate the collision rate estimation error of the other
methods.

Between the two naturalistic-assessment-oriented methods,
Importance Sampling was much more efficient than Monte
Carlo. Importance Sampling only needed 7,000-10,000 sam-
pled scenarios to achieve an estimation error below 5%.
Although the speed of Monte Carlo was slower than Impor-
tance Sampling, it was still reliable enough to obtain the

Fig. 10. Comparison results for coverage in Cut-in test ODD.

exact collision rate. Its estimation error dropped to 10% after
30,000 sampled scenarios. Unsafe-scenario-oriented methods
such as Seed-Fill and PSO in our experiments were even
hard to achieve an estimation error below 40%. In contrast,
Adaptive Search showed great promise. By capturing a large
proportion of collisions with high efficiency, the collision
rate was easily calculated by considering the GMM joint
distribution in HighD. Enumeration was also able to obtain the
exact collision rate, but it required a total of 68,335 sampled
scenarios to achieve so.

E. Comparison of Results in Cut-in Test ODD

We executed 14 rounds of testing for each test purpose. The
performance of each method to achieve coverage is shown
in Fig. 10. To make the it more concise, we unified the
horizontal axis of Fig. 10. Since there were six key input
parameters for the Cut-in scenarios, we implemented 2-wise,
3-wise, 4-wise and 5-wise methods. Due to the limitations of
our local machine, we were only able to achieve 41.4% 3-wise
coverage over 899 sampled scenarios, 11.2% 4-wise coverage
over 2,438 sampled scenarios and 1.1% 5-wise coverage
over 2,223 sampled scenarios. As stated by Amersbach and
Winner [27], the 2-wise method is still tractable, whereas
the computational burden quickly grows in higher-dimensional
T-wise algorithms.

However, we were still able to see that the 2-wise method
achieved 81.3% 2-wise coverage with only 234 scenarios. This
means fewer sampled scenarios were necessary since each
6-paramater Cut-in scenario contained many more pairwise
parameter combinations.
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Fig. 11. Comparison results for collision searching in Cut-in test ODD.
scenarios.

Fig. 12. Comparison results for collision rate estimation in Cut-in test ODD.

In general, coverage-oriented methods dominated in terms
of input coverage and 2-wise coverage. The overall perfor-
mance trend for each method was the same as that in the
Car-following test ODD.

The performance of each method to search for collision
scenarios is shown in Fig. 11. Using enumeration to explore
the test ODD, we found a total of 15,344 collision scenarios.
Since the order of magnitude of the test ODD was large, the
efficiency of each method dropped when compared to that of
the Car-following test ODD in general.

Nevertheless, Adaptive Search still outperformed the others.
It took 100,000 sampled scenarios to find 85.5% of the
collision scenarios. One collision scenario was captured by
every 7 samples on average. This approach benefited from the
dispersed sampling strategy. The other two unsafe-scenario-
oriented methods only had a slight advantage in the first few
rounds of testing. When searching the test ODD, Seed-Fill
merely gave priority to unknown scenarios adjacent to known
collision scenarios, resulting in limited searching ability. PSO
was easily trapped by local optimal solutions. In this complex
and large-scale test ODD, the advantages of Seed-Fill and PSO
were weakened.

It is also worth pointing out that 1.1% 5-wise coverage was
able to cover 3.4% of the collision scenarios, which is more
effective than 2-wise, 3-wise, and 4-wise. As such, we specu-
late that collisions in Cut-in scenarios can be explained using
five parameter combinations.

The performance of each method to evaluate collision rate
is shown in Fig. 12. The exact collision rate calculated by

Monte Carlo was 3.9−4. This is higher than that of the Car-
following test ODD, which indicates that Cut-in collisions
have a higher probability of occurrence.

It is interesting to note that the performances of the two
naturalistic-assessment-oriented test automation methods were
similar, which means that the efficiency of Importance Sam-
pling was less significant when collisions were not extremely
rare. If so, it is not necessary to use Importance Sampling to
estimate the collision rate since the solution for the Importance
Sampling probability requires additional computational time.
Just like in the Car-following test ODD, the capability of
Adaptive Search to estimate collision rate was demonstrated
in the Cut-in test ODD.

F. Further Discussion

During the method comparison, each test automation
method is applied to attempt at three testing purposes respec-
tively, even included the purposes they are not designed
to achieve. The comparison results proved that bypassing
the boundaries of different method categories would cause
potential performance deterioration.

Despite that some methods, such as Adaptive Search, show
potentials to deal with multiple purposes, most methods are
only appropriate for one certain purpose. For instance, we can
also find some collision scenarios using Monte Carlo. How-
ever, these collision scenarios were not found explicitly by
searching for unsafe scenarios. So, the efficiency was not
guaranteed. Therefore, distinguishing methods with different
purposes is crucial. This step can help researchers avoid
unnecessary wastes during the testing process and go straight
to the point.

Comparing different methods with the same purpose is also
crucial on a practical level. As our comparison results show,
the capability of methods can vary greatly for ODDs with
different sizes and collision rates.

In our numerical experiment, we tested automated vehicles’
local motion planning algorithms, but in the future, such
analysis can be implemented to test any functionality of HAVs
as long as they can be parameterized and regulated in a
scenario.

IV. A SYSTEMATIC SAFETY ASSURANCE TEST

AUTOMATION WORKFLOW

Our ultimate purpose is not limited to demonstrating the dis-
tinctions between methods. Based on the decentralized review
methods in Section II and comparison results in Section III,
we create a tree-like workflow diagram (see Fig. 13). Com-
pared to individual test automation methods, the advantage of
our workflow is that we suggest different test automation meth-
ods after considering testing purposes, the size of test ODD,
testing resources, and the test stage.

Most parts of the test automation workflow come from
the comparison results in Section III. For example, if the
required testing resources are affordable, testers can adopt
enumeration to conduct full-coverage testing. As the testing
process evolves, the test ODD expands exponentially. T-wise
can be applied if testers need to get a rough idea of the HAVs’
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Fig. 13. Workflow conceptual diagram.

safety performance. When the purpose is to search for specific
unsafe scenarios, Seed-Fill and PSO can be used, whereas
the Adaptive Search Method can handle a similar task for
complex test ODDs. Unsafe-scenario-oriented test automation
also benefits bug-fixing. When HAVs have progressed to a
relatively mature stage, naturalistic-assessment-oriented test
automation can be carried out. Monte Carlo is applicable
when the collision rate is relatively high. However, during
later stages of development, collisions will become rarer due
to more sophisticated built-in algorithms. At this time, the
probability of rare events can be quickly evaluated using
Importance Sampling. HAVs’ safety performance needs to be
compared with a certain safety standard. If it is inferior to said
safety standard, it needs to be examined for bug-fixing again.

To ensure that the workflow covered all testing purposes
discussed in Section II, the rest of it was derived from
literature review. The dotted line marks this distinction in
Fig. 13. The Adaptive Search Method can also be used to
recognize boundary scenarios if they exist [54]. Simulated
Annealing can also be chosen if the test focuses is on worst-
case scenarios [19].

By choosing the most appropriate test automation methods
or combinations of methods, the efficiency and effectiveness

TABLE IV

PARAMETER RANGES FOR THE CUT-IN SCENARIOS

TABLE V

MODEL PARAMETERS OF IDM

of the entire testing process can be greatly optimized. The
workflow is still not fully comprehensive, and some options
are still open for discussion. With future supplements, this
customized testing scheme will play a significant role for the
future development of HAVs.

V. CONCLUSION

In this study, we classified and reviewed related works
on test automation methods. Then the distinctions of
coverage-oriented, unsafe-scenario-oriented, and naturalistic-
assessment-oriented test automation methods were revealed
through numerical experiment. A systematic safety assurance
test automation workflow was developed to help guide method
selection for testers.

There also remain some gaps in this research. First, among
the test automation methods with the same purpose, further
classifications should be made according to their algorithm
design such that relevant methods can be solidly interpreted,
compared, and applied. Second, the motion planner and inputs
of scenarios are simplified. The efficiency and effectiveness of
test automation methods in more complex scenarios need to be
discussed. Third, it would be very informative to have many
local minima across the test ODD to see if test automation
methods could address such case. We are now trying more
searching methods and advanced commercialized products
such as Apollo and Autoware, which will potentially shed
more light on the final guidance proposed.

As HAV technology evolves, machine learning methods
such as deep learning and deep reinforcement learning have
become prominent. This leaves us with plenty of black boxes
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where we are not able to clearly see why failures occur
and how we can avoid them. One possible workaround is to
enlarge the test coverage and eliminate failures as much as
possible. However, coverage-oriented test automation methods
are still limited. In the future, there will be more end-to-end
applications, and many functions are difficult to parameterize.
Therefore, the generalization of test automation remains a
challenge.

APPENDIX

A. Model Parameters of the IDM

The specific explanations and values of IDM parameters are
shown in TABLE V:
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