He Wang

He Wang
University of Leeds · School of Computing

PhD

About

81
Publications
16,648
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
309
Citations
Introduction
I am an Associate Professor in the Visualisation and Computer Graphics group, at the School of Computing, University of Leeds, UK, a Turing Fellow, an Academic Advisor at the Commonwealth Scholarship Council, the Director of High-Performance Graphics and Game Engineering, and an academic lead of Centre for Immersive Technology. My current research interest is mainly in computer graphics, vision and machine learning and applications.
Additional affiliations
September 2016 - present
University of Leeds
Position
  • Professor (Associate)
June 2014 - May 2016
Disney Research
Position
  • PostDoc Position
July 2012 - April 2014
The University of Edinburgh
Position
  • Research Associate

Publications

Publications (81)
Preprint
Full-text available
Data-driven modeling of human motions is ubiquitous in computer graphics and vision applications. Such problems can be approached by deep learning on a large amount data. However, existing methods can be sub-optimal for two reasons. First, skeletal information has not been fully utilized. Unlike images, it is difficult to define spatial proximity i...
Article
Full-text available
Fig. 1. Overview of our framework. Crowd simulation is a central topic in several fields including graphics. To achieve high-fidelity simulations, data has been increasingly relied upon for analysis and simulation guidance. However, the information in real-world data is often noisy, mixed and unstructured, making it difficult for effective analysis...
Article
We describe a new algorithm for the generation of high quality tetrahedral meshes using artificial neural networks. The goal is to generate close-to-optimal meshes in the sense that the error in the computed finite element (FE) solution (for a target system of partial differential equations (PDEs)) is as small as it could be for a prescribed number...
Conference Paper
Full-text available
Action recognition has been heavily employed in many applications such as autonomous vehicles, surveillance, etc, where its robustness is a primary concern. In this paper, we examine the robustness of state-of-the-art action recognizers against adversarial attack, which has been rarely investigated so far. To this end, we propose a new method to at...
Conference Paper
Full-text available
Skeletal motion plays a vital role in human activity recognition as either an independent data source or a complement. The robustness of skeleton-based activity recognizers has been questioned recently, which shows that they are vulnerable to adversarial attacks when the full-knowledge of the recognizer is accessible to the attacker. However, this...
Article
Full-text available
Automatic container handling plays an important role in improving the efficiency of the container terminal, promoting the globalization of container trade, and ensuring worker safety. Utilizing vision-based methods to assist container handling has recently drawn attention. However, most existing keyhole detection/localization methods still suffer f...
Article
Full-text available
Existing studies on formation control for unmanned aerial vehicles (UAV) have not considered encircling targets where an optimum coverage of the target is required at all times. Such coverage plays a critical role in many real-world applications such as tracking hostile UAVs. This paper proposes a new path planning approach called the Flux Guided (...
Preprint
Full-text available
Real-time in-between motion generation is universally required in games and highly desirable in existing animation pipelines. Its core challenge lies in the need to satisfy three critical conditions simultaneously: quality, controllability and speed, which renders any methods that need offline computation (or post-processing) or cannot incorporate...
Preprint
Full-text available
Numerical simulations of groundwater flow are used to analyze and predict the response of an aquifer system to its change in state by approximating the solution of the fundamental groundwater physical equations. The most used and classical methodologies, such as Finite Difference (FD) and Finite Element (FE) Methods, use iterative solvers which are...
Conference Paper
Full-text available
Layout design is ubiquitous in many applications, e.g. architecture/urban planning, etc, which involves a lengthy iterative design process. Recently, deep learning has been leveraged to automatically generate layouts via image generation, showing a huge potential to free designers from laborious routines. While automatic generation can greatly boos...
Preprint
Full-text available
Deep learning has been regarded as the `go to' solution for many tasks today, but its intrinsic vulnerability to malicious attacks has become a major concern. The vulnerability is affected by a variety of factors including models, tasks, data, and attackers. Consequently, methods such as Adversarial Training and Randomized Smoothing have been propo...
Article
Numerical simulations of groundwater flow are used to analyze and predict the response of an aquifer system to its change in state by approximating the solution of the fundamental groundwater physical equations. The most used and classical methodologies, such as Finite Difference (FD) and Finite Element (FE) Methods, use iterative solvers which are...
Conference Paper
Full-text available
Differentiable physics modeling combines physics models with gradient-based learning to provide model explicability and data efficiency. It has been used to learn dynamics, solve inverse problems and facilitate design, and is at its inception of impact. Current successes have concentrated on general physics models such as rigid bodies, deformable s...
Preprint
Full-text available
Differentiable physics modeling combines physics models with gradient-based learning to provide model explicability and data efficiency. It has been used to learn dynamics, solve inverse problems and facilitate design, and is at its inception of impact. Current successes have concentrated on general physics models such as rigid bodies, deformable s...
Preprint
Generating new images with desired properties (e.g. new view/poses) from source images has been enthusiastically pursued recently, due to its wide range of potential applications. One way to ensure high-quality generation is to use multiple sources with complementary information such as different views of the same object. However, as source images...
Article
Full-text available
We introduce an automatic texture synthesis-based framework to convert an arbitrary input image into embroidery style art for garment design and online display. Given an input image and some reference textures, we first extract key embroidery regions from the input image using image segmentation. Each segmented region is single-colored and labeled...
Preprint
Full-text available
Image generation has been heavily investigated in computer vision, where one core research challenge is to generate images from arbitrarily complex distributions with little supervision. Generative Adversarial Networks (GANs) as an implicit approach have achieved great successes in this direction and therefore been employed widely. However, GANs ar...
Article
This paper provides a new avenue for exploiting deep neural networks to improve physics-based simulation. Specifically, we integrate the classic Lagrangian mechanics with a deep autoencoder to accelerate elastic simulation of deformable solids. Due to the inertia effect, the dynamic equilibrium cannot be established without evaluating the second-or...
Article
Manual auscultatory is the gold standard for clinical non-invasive blood pressure (BP) measurement, but its usage is decreasing as it requires substantial professional skills and training, and its environmental concerns related to mercury toxicity. As an alternative, automatic oscillometric technique has been used as one of the most common methods...
Preprint
Full-text available
In this survey paper, we analyze image based graph neural networks and propose a three-step classification approach. We first convert the image into superpixels using the Quickshift algorithm so as to reduce 30% of the input data. The superpixels are subsequently used to generate a region adjacency graph. Finally, the graph is passed through a stat...
Preprint
Full-text available
We describe a new algorithm for the generation of high quality tetrahedral meshes using artificial neural networks. The goal is to generate close-to-optimal meshes in the sense that the error in the computed finite element (FE) solution (for a target system of partial differential equations (PDEs)) is as small as it could be for a prescribed number...
Preprint
Full-text available
Autonomous vehicles should be able to predict the future states of its environment and respond appropriately. Specifically, predicting the behavior of surrounding human drivers is vital for such platforms to share the same road with humans. Behavior of each of the surrounding vehicles is governed by the motion of its neighbor vehicles. This paper f...
Article
Full-text available
Character rigging is universally needed in computer graphics but notoriously laborious. We present a new method, HeterSkinNet, aiming to fully automate such processes and significantly boost productivity. Given a character mesh and skeleton as input, our method builds a heterogeneous graph that treats the mesh vertices and the skeletal bones as nod...
Preprint
Full-text available
Predicting future behavior of the surrounding vehicles is crucial for self-driving platforms to safely navigate through other traffic. This is critical when making decisions like crossing an unsignalized intersection. We address the problem of vehicle motion prediction in a challenging roundabout environment by learning from human driver data. We e...
Preprint
Character rigging is universally needed in computer graphics but notoriously laborious. We present a new method, HeterSkinNet, aiming to fully automate such processes and significantly boost productivity. Given a character mesh and skeleton as input, our method builds a heterogeneous graph that treats the mesh vertices and the skeletal bones as nod...
Preprint
Full-text available
While multiple studies have proposed methods for the formation control of unmanned aerial vehicles (UAV), the trajectories generated are generally unsuitable for tracking targets where the optimum coverage of the target by the formation is required at all times. We propose a path planning approach called the Flux Guided (FG) method, which generates...
Preprint
Full-text available
Skeletal motion plays a vital role in human activity recognition as either an independent data source or a complement. The robustness of skeleton-based activity recognizers has been questioned recently, which shows that they are vulnerable to adversarial attacks when the full-knowledge of the recognizer is accessible to the attacker. However, this...
Preprint
Action recognition has been heavily employed in many applications such as autonomous vehicles, surveillance, etc, where its robustness is a primary concern. In this paper, we examine the robustness of state-of-the-art action recognizers against adversarial attack, which has been rarely investigated so far. To this end, we propose a new method to at...
Preprint
Full-text available
This paper provides a new avenue for exploiting deep neural networks to improve physics-based simulation. Specifically, we integrate the classic Lagrangian mechanics with a deep autoencoder to accelerate elastic simulation of deformable solids. Due to the inertia effect, the dynamic equilibrium cannot be established without evaluating the second-or...
Preprint
Full-text available
In this paper, we propose an effective global relation learning algorithm to recommend an appropriate location of a building unit for in-game customization of residential home complex. Given a construction layout, we propose a visual context-aware graph generation network that learns the implicit global relations among the scene components and infe...
Article
Insect swarms are common phenomena in nature and therefore have been actively pursued in computer animation. Realistic insect swarm simulation is difficult due to two challenges: high‐fidelity behaviors and large scales, which make the simulation practice subject to laborious manual work and excessive trial‐and‐error processes. To address both chal...
Preprint
Human motion modelling is crucial in many areas such as computer graphics, vision and virtual reality. Acquiring high-quality skeletal motions is difficult due to the need for specialized equipment and laborious manual post-posting, which necessitates maximizing the use of existing data to synthesize new data. However, it is a challenge due to the...
Article
Electroencephalograph (EEG) has been widely applied for brain-computer interface (BCI) which enables paralyzed people to directly communicate with and control of external devices, due to its portability, high temporal resolution, ease of use and low cost. Of various EEG paradigms, steady-state visual evoked potential (SSVEP)-based BCI system which...
Article
Full-text available
The cover image is based on the Original Article FASTSWARM: A Data‐driven FrAmework for Real‐time Flying InSecT SWARM Simulation by Wei Xiang et al., https://doi.org/10.1002/cav.1957.
Chapter
We introduce a novel approach to automatic unstructured mesh generation using machine learning to predict an optimal finite element mesh for a previously unseen problem. The framework that we have developed is based around training an artificial neural network (ANN) to guide standard mesh generation software, based upon a prediction of the required...
Preprint
Full-text available
The scarcity of class-labeled data is a ubiquitous bottleneck in a wide range of machine learning problems. While abundant unlabeled data normally exist and provide a potential solution, it is extremely challenging to exploit them. In this paper, we address this problem by leveraging Positive-Unlabeled~(PU) classification and conditional generation...
Preprint
Full-text available
Human sensorimotor decision-making has a tendency to get ‘stuck in a rut’, being biased towards selecting a previously implemented action structure (‘hysteresis’). Existing explanations cannot provide a principled account of when hysteresis will occur. We propose that hysteresis is an emergent property of a dynamical system learning from the conseq...
Data
The objective of this project is learning high-level manipulation planning skills from humans and transfer these skills to robot planners. We used virtual reality to generate data from human participants whilst they reached for objects on a cluttered table top. From this, we devised a qualitative representation of the task space to abstract human d...
Preprint
Full-text available
Crowd simulation is a central topic in several fields including graphics. To achieve high-fidelity simulations, data has been increasingly relied upon for analysis and simulation guidance. However, the information in real-world data is often noisy, mixed and unstructured, making it difficult for effective analysis, therefore has not been fully util...
Preprint
Full-text available
We introduce a novel approach to automatic unstructured mesh generation using machine learning to predict an optimal finite element mesh for a previously unseen problem. The framework that we have developed is based around training an artificial neural network (ANN) to guide standard mesh generation software, based upon a prediction of the required...
Article
Full-text available
Warp knitted fabrics are typically three-dimensional (3D) structures, and their design is strongly dependent on the structural simulation. Most of existing simulation methods are only capable of two-dimensional (2D) modeling, which lacks perceptual realism and cannot show design defects, making it hard for manufacturers to produce the required fabr...
Preprint
Full-text available
Humans, in comparison to robots, are remarkably adept at reaching for objects in cluttered environments. The best existing robot planners are based on random sampling of configuration space -- which becomes excessively high-dimensional with large number of objects. Consequently, most planners often fail to efficiently find object manipulation plans...
Conference Paper
Humans, in comparison to robots, are remarkably adept at reaching for objects in cluttered environments. The best existing robot planners are based on random sampling in configuration space- which becomes excessively highdimensional with a large number of objects. Consequently, most of these planners suffer from limited object manipulation. We addr...
Preprint
Full-text available
Adversarial attack has inspired great interest in computer vision, by showing that classification-based solutions are prone to imperceptible attack in many tasks. In this paper, we propose a method, SMART, to attack action recognizers which rely on 3D skeletal motions. Our method involves an innovative perceptual loss which ensures the im-perceptib...
Preprint
Full-text available
Data-driven modeling of human motions is ubiquitous in computer graphics and computer vision applications, such as synthesizing realistic motions or recognizing actions. Recent research has shown that such problems can be approached by learning a natural motion manifold using deep learning to address the shortcomings of traditional data-driven appr...