
Håvard Johansen DagenborgUiT The Arctic University of Norway · Department of Computer Science
Håvard Johansen Dagenborg
Professor
About
115
Publications
45,139
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,902
Citations
Introduction
Additional affiliations
September 2014 - present
Publications
Publications (115)
In resource-intensive Internet of Things applications, Lightweight Stream Ciphers (LWSCs) play a vital role in influencing both the security and performance of the system. Numerous LWSCs have been proposed, each offering certain properties and trade-offs that carefully balance security and performance requirements. This paper presents a comprehensi...
Sharing information with the public is becoming easier than ever before through the usage of the numerous social media platforms readily available today. Once posted online and released to the public, information is almost impossible to withdraw or delete. More alarmingly, postings may carry sensitive information far beyond what was intended to be...
Kubernetes default configurations do not always provide optimal security and performance for all clusters and IoT edge devices deployed, affecting the scalability of a given workload and making them vulnerable to security breaches and information leakage if misconfigured. We present an adaptive controller to identify the type of misconfiguration an...
Kubernetes default configurations do not always provide optimal security and performance for all clusters and IoT edge devices deployed, making them vulnerable to security breaches and information leakage if misconfigured. Misconfiguration leads to a compromised system that disrupts the workload, allows access to system resources, and degrades the...
IoT applications and container-based clusters are prone to security breaches caused by misconfigurations. The absence of automated tools can exacerbate the misconfiguration problem. The objective is to propose a self-configurable and healing controller that detects, identifies, and recovers from various misconfigurations in clusters and edge compon...
The complex computational environments we often find running modern online services and IoT applications are vulnerable to security breaches and information leakage due to misconfigurations. In this paper, we propose a self-configurable and healing controller that detects, identifies, and recovers from various misconfigurations in complex computing...
Privacy and security require not only strong algorithms but also reliable and readily available sources of randomness. To tackle this problem, one of the causes of single-event upsets is the utilization of a non-deterministic entropy source, specifically ultra-high energy cosmic rays. An adapted prototype based on existing muon detection technology...
Nutrition plays a key role in an athlete’s performance, health, and mental well-being. Capturing nutrition data is crucial for analyzing those relations and performing necessary interventions. Using traditional methods to capture long-term nutritional data requires intensive labor, and is prone to errors and biases. Artificial Intelligence (AI) met...
Misconfiguration of IoT devices and backend containerized-cluster systems can expose vulnerable areas at
the network level, potentially allowing attackers to penetrate the network and disrupt workload and the flow
of data between system components. This paper describes a self-healing model based on a Markov decision
process that can recover the mis...
Digital healthcare systems often run on heterogeneous devices in a distributed multi-cluster environment, and maintain their healthcare policies for managing data, securing information flow, and controlling interactions among systems components. As healthcare systems become more digitally distributed , lack of integration and safe interpretation be...
Ubiquitous sensors and Internet of Things (IoT) technologies have revolutionized the sports industry, providing new methodologies for planning, effective coordination of training, and match analysis post game. New methods, including machine learning, image and video processing, have been developed for performance evaluation, allowing the analyst to...
Ubiquitous sensors and Internet of Things (IoT) technologies have revolutionized the sports industry, providing new methodologies for planning, effective coordination of training, and match analysis post game. New methods, including machine learning, image and video processing, have been developed for performance evaluation, allowing the analyst to...
Video monitoring and surveillance of commercial fisheries in world oceans has been proposed by the governing bodies of several nations as a response to crimes such as overfishing. Traditional video monitoring systems may not be suitable due to limitations in the offshore fishing environment, including low bandwidth, unstable satellite network conne...
The transaction-rate bottleneck built into popular proof-of-work-based cryptocurrencies, like Bitcoin and Ethereum, leads to fee markets where transactions are included according to a first-price auction for block space. Many attempts have been made to adjust and predict the fee volatility, but even well-formed transactions sometimes experience une...
Background
Medical consultations are often critical meetings between patients and health personnel to provide treatment, health-management advice, and exchange of information, especially for people living with chronic diseases. The adoption of patient-operated Information and Communication Technologies (ICTs) allows the patients to actively partici...
The increase of available large clinical and experimental datasets has contributed to a substantial amount of important contributions in the area of biomedical image analysis. Image segmentation, which is crucial for any quantitative analysis, has especially attracted attention. Recent hardware advancement has led to the success of deep learning ap...
Data-driven research is increasingly becoming fueled by access to open datasets, often shared publicly on the Internet. However, many research projects study sensitive data. They cannot easily participate in this shift as access to their data is significantly controlled by ethical and regulatory constraints. This paper discusses the requirements fo...
Methods based on convolutional neural networks have improved the performance of biomedical image segmentation. However, most of these methods cannot efficiently segment objects of variable sizes and train on small and biased datasets, which are common for biomedical use cases. While methods exist that incorporate multi-scale fusion approaches to ad...
Fully Homomorphic Encryption (FHE) and Trusted Execution Environ-ments (TEEs) are complementing approaches that can both secure computa-tions running remotely on a public cloud. Existing FHE schemes are, however, malleable by design and lack integrity protection, making them susceptible to integrity breaches where an adversary could modify the data...
In this paper, we present initial results from our distributed edge systems research in the domain of sustainable harvesting of common good resources in the Arctic Ocean. Specifically, we are developing a digital platform for real-time privacy-preserving sustainability management in the domain of commercial fishery surveillance operations. This is...
Fish crime is considered a global and serious problem for a healthy and sustainable development of one of mankind's important sources of food. Technological surveillance and control solutions are emerging as remedies to combat criminal activities, but such solutions might also come with impractical and negative side-effects and challenges. In this...
Minimally Invasive Surgery (MIS) is a surgical intervention used to examine the organs inside the abdomen and has been widely used due to its effectiveness over open surgery. Due to the hardware improvements such as high definition cameras, this procedure has significantly improved and new software methods have open potential for computer-assisted...
Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify re...
Minimally invasive surgery is a surgical intervention used to examine the organs inside the abdomen and has been widely used due to its effectiveness over open surgery. Due to the hardware improvements such as high definition cameras, this procedure has significantly improved and new software methods have demonstrated potential for computer-assiste...
Methods based on convolutional neural networks have improved the performance of biomedical image segmentation. However, most of these methods cannot efficiently segment objects of variable sizes and train on small and biased datasets, which are common in biomedical use cases. While methods exist that incorporate multi-scale fusion approaches to add...
Researchers and researched populations are actively involved in participatory epidemiology. Such studies collect many details about an individual. Recent developments in statistical inferences can lead to sensitive information leaks from seemingly insensitive data about individuals. Typical safeguarding mechanisms are vetted by ethics committees; h...
Deep learning in gastrointestinal endoscopy can assist to improve clinical performance and be helpful to assess lesions more accurately. To this extent, semantic segmentation methods that can perform automated real-time delineation of a region-of-interest, e.g., boundary identification of cancer or precancerous lesions, can benefit both diagnosis a...
With the increase in available large clinical and experimental datasets, there has been substantial amount of work being done on addressing the challenges in the area of biomedical image analysis. Image segmentation, which is crucial for any quantitative analysis, has especially attracted attention. Recent hardware advancement has led to the succes...
Computer-aided detection, localisation, and segmentation methods can help improve colonoscopy procedures. Even though many methods have been built to tackle automatic detection and segmentation of polyps, benchmarking of state-of-the-art methods still remains an open problem. This is due to the increasing number of researched computer vision method...
Computer-aided detection, localisation, and segmentation methods can help improve colonoscopy procedures. Even though many methods have been built to tackle automatic detection and segmentation of polyps, benchmarking of state-of-the-art methods still remains an open problem. This is due to the increasing number of researched computer-vision method...
Deep Neural Networks (DNNs) have become the de-facto standard in computer vision, as well as in many other pattern recognition tasks. A key drawback of DNNs is that the training phase can be very computationally expensive. Organizations or individuals that cannot afford purchasing state-of-the-art hardware or tapping into cloud hosted infrastructur...
Colonoscopy is the gold standard for examination and detection of colorectal polyps. Localization and delineation of polyps can play a vital role in treatment (e.g., surgical planning) and prognostic decision making. Polyp segmentation can provide detailed boundary information for clinical analysis. Convolutional neural networks have improved the p...
Gastrointestinal endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early Gastrointestinal (GI) cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring p...
Gastrointestinal (GI) pathologies are periodically screened, biopsied, and resected using surgical tools. Usually, the procedures and the treated or resected areas are not specifically tracked or analysed during or after colonoscopies. Information regarding disease borders, development, amount, and size of the resected area get lost. This can lead...
Deep Neural Networks (DNNs) have become the de-facto standard in computer vision, as well as in many other pattern recognition tasks. A key drawback of DNNs is that the training phase can be very computationally expensive. Organizations or individuals that cannot afford purchasing state-of-the-art hardware or tapping into cloud-hosted infrastructur...
Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify re...
Colonoscopy is the gold standard for examination and detection of colorectal polyps. Localization and delineation of polyps can play a vital role in treatment (e.g., surgical planning) and prognostic decision making. Polyp segmentation can provide detailed boundary information for clinical analysis. Convolutional neural networks have improved the p...
Colorectal cancer is the third most common cause of cancer worldwide. According to Global cancer statistics 2018, the incidence of colorectal cancer is increasing in both developing and developed countries. Early detection of colon anomalies such as polyps is important for cancer prevention, and automatic polyp segmentation can play a crucial role...
Colonoscopy is the gold standard for examination and detection of colorectal polyps. Localization and delineation of polyps can play a vital role in treatment (e.g., surgical planning) and prognostic decision making. Polyp segmentation can provide detailed boundary information for clinical analysis. Convolutional neural networks have improved the p...
Colorectal cancer is the third most common cause of cancer worldwide. According to Global cancer statistics 2018, the incidence of colorectal cancer is increasing in both developing and developed countries. Early detection of colon anomalies such as polyps is important for cancer prevention, and automatic polyp segmentation can play a crucial role...
BACKGROUND
A consultation is a meeting between patients and health personnel, conducted physically or in any form of non-face-to-face interaction. Consultations are critical for providing treatment and health-management advice, and for the exchange of information especially for people living with chronic diseases. Consultations can be supported by...
Background:
Complying with individual privacy perceptions is essential when processing personal information for research. Our specific research area is performance development of elite athletes, wherein nutritional aspects are important. Before adopting new automated tools that capture such data, it is crucial to understand and address the privacy...
Gastrointestinal (GI) pathologies are periodically screened, biopsied, and resected using surgical tools. Usually, the procedures and the treated or resected areas are not specifically tracked or analysed during or after colonoscopies. Information regarding disease borders, development and amount and size of the resected area get lost.This can lead...
Precise and efficient automated identification of gastrointestinal (GI) tract diseases can help doctors treat more patients and improve the rate of disease detection and identification. Currently, automatic analysis of diseases in the GI tract is a hot topic in both computer science and medical-related journals. Nevertheless, the evaluation of such...
Semantic image segmentation is the process of labeling each pixel of an image with its corresponding class. An encoder-decoder based approach, like U-Net and its variants, is a popular strategy for solving medical image segmentation tasks. To improve the performance of U-Net on various segmentation tasks, we propose a novel architecture called Doub...
Precise and efficient automated identification of Gastrointestinal (GI) tract diseases can help doctors treat more patients and improve the rate of disease detection and identification. Currently, automatic analysis of diseases in the GI tract is a hot topic in both computer science and medical-related journals. Nevertheless, the evaluation of such...
BACKGROUND
Complying with privacy perceptions is essential when processing personal information for research. Before adopting new automated tools that capture such data, it is crucial to understand and address the privacy concerns of the research subjects that are to be studied. Privacy as contextual integrity emphasizes understanding contextual se...
In this paper, we present the PMdata dataset that aims to combine the traditional lifelogging with sports activity logging. Such a dataset enables development of several interesting analysis applications, e.g., where additional sports data can be used to predict and analyze everyday developments like a person's weight and sleep patterns, and where...
Pixel-wise image segmentation is a highly demanding task in medical-image analysis. In practice, it is difficult to find annotated medical images with corresponding segmentation masks. In this paper, we present Kvasir-SEG: an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical d...
The emerging serverless cloud paradigm, also known as Function as a Service (FaaS), enables auto-scalable cloud services on-demand, but requires complete trust in the surrounding infrastructure. Workloads hosting sensitive data, such as medical records or financial transactions, may not be able to use such cloud services due to these trust assumpti...
Accurate computer-aided polyp detection and seg-mentation during colonoscopy examinations can help endo-scopists resect abnormal tissue and thereby decrease chances of polyps growing into cancer. Towards developing a fully automated model for pixel-wise polyp segmentation, we propose ResUNet++, which is an improved ResUNet architecture for colonosc...
Pixel-wise image segmentation is a highly demanding task in medical-image analysis. In practice, it is difficult to find annotated medical images with corresponding segmentation masks. In this paper, we present Kvasir-SEG: an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical d...
Pixel-wise image segmentation is a highly demanding task in medical-image analysis. In practice, it is difficult to find annotated medical images with corresponding segmentation masks. In this paper, we present Kvasir-SEG: an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical d...
Accurate computer-aided polyp detection and segmentation during colonoscopy examinations can help endoscopists resect abnormal tissue and thereby decrease chances of polyps growing into cancer. Towards developing a fully automated model for pixel-wise polyp segmentation, we propose ResUNet++, which is an improved ResUNet architecture for colonoscop...
We are witnessing the emergence of a myriad of hardware and software systems that quantifies sport and physical activities. These are frequently touted as game changers and important for future sport developments. The vast amount of generated data is often visualized in graphs and dashboards, for use by coaches and other sports professionals to mak...
Technology is having vast impact on the sports industry , and in particular soccer. All over the world, soccer teams are adapting digital information systems to quantify performance metrics. The goal is to assess strengths and weaknesses of individual players, training regimes, and play strategies; to improve performance and win games. However, mos...
Nutritional assessment is key in order to make decisions about the nature and cause of nutrition related health issues that affect an individual. The systematic process of collecting and interpreting relevant nutrition information, however, is still in its technological infancy. Despite technological advances in storage and analysis of nutritional...
Behavioral assessment using smart devices affords novel methods, notably remote self-administration by the individuals themselves. However, this new approach requires navigating complex legal and technical terrain. Given the limited empirical data that currently exists, we provide and discuss anecdotes of the methodological, technical, legal, and c...