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Abstract  
Video compression takes place increasingly in many applications which are constantly involving. It becomes 

more demanding in terms of performance at the expense of more power consumption. Discrete Cosine transform 

is the most common technique used in the compression field. In this paper we present an efficient fast Row 

Column Frame (RCF) 3D_DCT algorithm recently introduced in video compression. The optimization consists 

on the elimination of all the multiplications needed to compute the coefficients of the 3D DCT. The 

multiplications are gathered at the end of the 3D DCT and merged in the quantization cube. The mathematical 

demonstration and complexity comparisons with other techniques are presented, showing that new (RCF) 3D 

_DCT introduced makes important savings on arithmetic operations, even if there is a little decrease on the 

quality of the videos but it respects the video standards. We made 59% savings on the number of additions and 

eliminate totally (100%) the multiplications in reference to the standard RCF technique. The resulting transform 

is regular and symmetric. We present hardware architectures to implement the 3D DCT and detailed their 

properties. We proposed ping pong buffers as transpose memory to increase the performance of the 

architectures. An implementation on a 180 nm FPGA chip has been done and discussed at the end. We can 

process high resolution video standards like HDTV using our architectures with both reduced power and area. 

 

Keywords  3D DCT, video and image compression, real time processing, FPGA. 

 

I. INTRODUCTION 

 

The cosine transform is a technique which directly eliminates duplication of data using the frequency 

domain. 2D DCT removes   spatial   redundancies   in   the   frames of a video by eliminating inter 

correlations between each pixel. The 3D DCT goes beyond the spatial correlation and eliminates the 

temporal redundancies in the spatiotemporal N×N×N cubes. The 3D DCT is now widely used for 2D 

and 3D video compression standards. The 2D video compression standard including H264/AVC uses 

the prediction and motion compensation [1, 2] which are recently replaced by 3D DCT algorithm. The 

inter-frame prediction and motion compensation are heavy operations demanding blocks because of 

their complex mathematical manipulation. As consequence both it degrades the performance of the 

coder and it is very demanding in term of needed resources and power consumption.  

3D DCT is used in 3D video compression to eliminate interview redundancies in the MVC pattern 

(multi-view coding) [3,4]. Recent works has have proven that the use of the 3D DCT is more efficient 

than MPEG-2 but can’t outperform the MPEG-4 in very high data rates [5,6]. Performances of 3D 

DCT in terms of compression, video quality, and the statistical distribution coefficients were analyzed 

in several studies [7-14]. Even if the 3D DCT is less complicated than the coders cited above, the 

computation of its coefficients requires a lot of mathematical and arithmetic manipulations including 

multiplication [15]. Several studies were performed to simplify the 3D DCT. The row column (RC) 

technique is extended to row column frame (RCF) technique, which consist of applying the 1D DCT 
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on each dimension of the cube using transposition buffers. Many works simplifies the 1D DCT in 

order to reduce the computation of the 3D DCT. The minimum of multiplications needed to perform a 

1-D DCT is 11 [16]. A proposed method by Loeffler [17], gave indeed the most efficient calculations 

because it requires 11 multiplications and 29 additions. The scaled DCT makes the hardware 

complexity of DCT designs lower than direct implementation [18-22]. The coder in figure 1 shows the 

data flow of a 3D DCT based video compressor. The video stream is divided by a group of 888 

cubes, each cube is computed by the 3D DCT block, and it’s followed by a 3D quantization which is a 

point wise division of each 3D coefficient.  

 

N.Bozˇinovic et al [23] proposed a method based on a translational motion property in the DCT 

domain. They proposed a motion estimation algorithm based on a plane fitting to high-energy DCT 

coefficients. The performance of this method is the same in comparison with block matching 

algorithm [24]. S.saponara [25] proposed an optimization flow to meet real time and low power 

requirement. He proposed a context aware fast 3D transform and introduces a preprocessor based on 

statistical rules to avoid the computation of a zero input.  J.li et al [26] proposed an analytical model to 

avoid the computation of redundant DCT coefficients without visual quality degradation. Also S. 

Boussakta et al [27] proposed a 3-D vector-radix DIF algorithm to compute the 3-D DCT. The 

algorithm was developed to optimize the number of multiplications; the number of additions was 

untouched. 

In literature few works have been done on hardware implementation for real time and low power 

processing of the 3D DCT algorithm. The direct FPGA implementation of such complex algorithm 

needs lot of multiplications and a larger area, in addition the multiplication reduces the performances 

of the design in comparison with additions, which makes it difficult to respect the real time processing 

requirements of video standards. Our approach performs the 3D DCT using only additions and zero 

multiplications. With mathematical operations on a matrix based representation of the DCT we 

gathered all the multiplications at the end of the transform and merged them on the quantization stage. 

This paper is organized as follows: section 2 describes the 3D DCT algorithm and its mathematical 

formulation.  In section 3 we introduce our approach to optimize the (RCF) 3D DCT and give a 

comparison on the computation saving with other state of the art techniques. In section 4 we detail the 

properties of the hardware architectures of the 3D DCT, and discuss its FPGA implementation in 

section 5. Before concluding the work in Section 7, we present some future perspectives in section 6.   
 

II. THE 3D DCT ALGORITHM 
 

The mathematical properties of the 1D DCT [28, 29] is extended to the third dimension. The forward 

3D-DCT of an image data volume of dimensions NxLxM is defined by the following equations: 

F u, v, w = Ku,L . Kv,M . Kw,N .    f l, m, n . Cl,u,L,. Cm,v,M . Cn,w,N
N−1
n=0

M−1
m=0

L−1
l=0  

where f (l,m, n) is the pixel value at position l,m,n of the cube , and F(u,v,w) is the 3d DCT coefficient 

at position u, v,w of the transformed cube. The quantities K a,d and C a,b,c are given by Eq.2 and Eq.3 

respectively. 

Ka,d =  
 1/d  if  a = 0

 2/d  if  1 ≤ a ≤ d − 1
 Ca,b,c = cos

π 2a+1 b

2c
 

The inverse transform is given by a set of similar equations as described in what follows: 

f l, m, n =    Ku,L . Kv,M . Kw,N . F u, v, w . Cl,u,L,. Cm,v,M . Cn,w,N

N−1

n=0

M−1

m=0

L−1

i=0

 

where K a,d , C a,b,c as defined in Eq.2 and Eq.3 respectively. The optimal dimensions of the cube, 

used in literature are 888. wish alows a minimum of rate distortion .we will optimize the 888 3D 

DCT in the next chapter. 
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Fig.1  The 3D DCT based video codec 

 

III. DEVELOPMENT OF MULTIPLIERS MERGED 3D DCT TRANSFORM 
 

The transform can be implemented either directly by using a fast 3D-DCT algorithm as the one 

presented in [29, 30] or by applying three one dimensional DCTs sequentially on each dimension, 

based on the separability property (RCF) of multidimensional DCT [28]. In this paper we will use the 

row, column, frame separability to optimize the algorithm. Our approach relies on a fast 1D SDCT 

transform [30] which it is given by: 
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It can be verified that the proposed 8×8 transform matrix given by (4) is orthogonal (i.e, 
'''-1 D TCC   ) where t denotes the matrix transpose-operation.  The matrix T is expressed as the 

product of 3 matrixes: 

 

T = T3×T2×T1, with: 
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3.1 Mathematical development 

 

Let define X an 8×8×8 pixels input cube and Y1, Y2, Y3 the 1D, 2D and 3D_DCT outputs 

respectively. Applying the 1D DCT on the lines of the cube we get: 

∀ k ∈  1,  8 ∶  Y1 ∗,∗,k = (D × T × X ∗,∗ ,k 
′ )′ 

                           Y1 ∗,∗,k = (Dpp  .× T × X ∗,∗ ,k 
′ )′ 

                             Y1 ∗,∗,k = (X ∗,∗ ,k 
 × T ′) .× Dpp ′ 

Where . × denotes the point wize multiplication , and the matrix Dpp  is defined by: 

Dpp = [Diag D , Diag D , Diag D , Diag D , Diag D , Diag D , Diag D , Diag D ] 

Applying the 1D DCT on the columns of Y1 we get: 

∀ k ∈  1,  8 ∶  Y2 ∗,∗,k = D × T × Y1 ∗,∗,k  

                                    Y2 ∗,∗,k = Dpp  .× (T × Y1 ∗,∗,k ) 

                                                           Y2 ∗,∗,k = Dpp  .× (T × X ∗,∗ ,k 
 × T′) .× Dpp ′ 

                                                                 Y2 ∗,∗,k = (Dpp  .×  Dpp ′) × (T × X ∗,∗ ,k 
 × T ′)   

Let’s define the matrix S  and the cube  M i,j,k  as: 

S = Dpp   .×  Dpp ′ 

                    M i,j,k =   T × X ∗,∗ ,k 
 × T′    

The cube Y2 will be written as: 

(10) 

(5) 

(6) 

(7) 

(8) 

(9) 

(11) 
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                          Y2 ∗,∗,k = S × M ∗,∗,k  
 

Let’s define Cj   matrixes as: 

∀ j ∈  1,  8 ∶  Cj = [S ∗,j , S ∗,j , S ∗,j , S ∗,j , S ∗,j , S ∗,j , S ∗,j , S ∗,j ] 

The cube Y2 will be rewritten as: 

∀ j ∈  1,  8 ∶            Y2 ∗,j,∗ = Cj  .× M ∗,j,∗  
 

We apply the 1D_DCT on the z axe of the Y2 cube, and we will obtain: 

∀ j ∈  1,  8 ∶  Y3 ∗,j,∗ = (D × T × Y2 ∗,j,∗ ′  )′ 

Y3 ∗,j,∗ = (Dpp  .× T × Y2 ∗,j,∗ ′  )′ 

Y3 ∗,j,∗ = (Y2 ∗,j,∗ ×  T ′) .× Dpp ′ 

Y3 ∗,j,∗ = (Y2 ∗,j,∗ ×  T ′) .× Dpp ′ 

Y3 ∗,j,∗ = ( Cj  .× M ∗,j,∗  
×  T ′)  .× Dpp ′ 

Y3 ∗,j,∗ =   Cj  .× Dpp
′   .× (M ∗,j,∗  

×  T ′) 

Y3 ∗,j,∗ = Multij .×   3D_DCT_Coeff ∗,j,∗  

With ∀ j ∈  1,  8 ∶  Multij  = Cj  .× Dpp
′  

3D_DCT_Coeff ∗,j,∗ = M ∗,j,∗  
×  T ′ 

The cube Multi contains all the multiplications needed to compute the 3D DCT transform. All the 

multiplications are gathered at the end of the 3D DCT and will be merged on the quantification stage. 

The 3D DCT will be computed using only the matrix T which means only additions are used. The 

quantized 3D DCT coefficient will be calculated as: 

 

 Quantized_3D_DCT i,j,k =  .
Multi i,j,k  .×   3D_DCT_Coeff i,j,k 

Q(i,j,k)
  

                                                      =  3D_DCT_Coeff i,j,k   .×    .
Multi i,j,k   

Q(i,j,k)
   

                   =  .
3D_DCT _Coeff  i,j ,k     

QNew (i,j ,k)
 

Where   QNew(i,j,k) =   .
Q(i,j ,k)  

Multi  i,j ,k 
  is the new quantitizing cube. 

 

The same 3D_IDCT optimization is done. 

 

let’s define the UQuantized an 8×8×8 cube which contains the unquantized 3D DCT coefficients. 

 

UQuantized3DDCT  i,j,k 
= Quantized_3D_DCT i,j,k   .×  Q(i,j,k) 

                                           
We apply the 1D IDCT on the unquantized 3D DCT coefficients cube: 

 

IY2 ∗,j,∗ = ((T ′ × D′) × UQuantized_3D_DCT i,j,k 
′

 
)′ 

=  ( UQuantized_3D_DCT i,j,k 
 

 
.× Dpp

 ) × T   

Applying 1D IDCT on IY2: 

∀ k ∈  1,  8 ∶  IY1 ∗,∗,k =  T ′ × D′ × IY2 ∗,∗,k 
  

                                          =   T′ .× (Dpp
′ .× IY2 ∗,∗,k )

  

Applying 1D IDCT on IY1 : 

∀ k ∈  1,  8 ∶  X ∗,∗,k = ( T′ × D′ × IY1 ∗,∗,k 
′  

)′  

=  IY1 ∗,∗,k   .×
  Dpp    .× T                                

=    T′ .× (Dpp
′ .× IY2 ∗,∗,k )

  .×  Dpp    .× T   

=   T′ .× (Dpp
′ .× IY2 ∗,∗,k 

  .×  Dpp  ) .× T      

=   T′ .× (Dpp
′ .×  IY2 ∗,∗,k 

  .×  Dpp  ) .× T     

(19) 

(20) 

 
 (10) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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   =   T′   .× ((Dpp
′ .× Dpp ) .× IY2 ∗,∗,k )

    .× T   

=   T′   .×  
 
M ∗,∗, k .×  T                                     

=   T′   .×  (T′  
.×  M ∗,∗, k ′)′                             

=   T′   .×  (T′  
.×  M ∗,∗, k ′)′                             

 

Where  ∀ k ∈  1,  8 ∶  M ∗,∗,k  = (Dpp
′ .× Dpp ) .× IY2 ∗,∗,k )

  

                              = S .× IY2 ∗,∗,k  

∀ j ∈  1,  8 ∶   M ∗,j,∗   = Cj  .× IY2 ∗,j,∗  

 = Cj  .× ( UQuantized_3D_DCT ∗,j,∗ 
 

 
.× Dpp

 ) × T   

=  ( UQuantized_3D_DCT ∗,j,∗  .× ( Cj  
.× Dpp

 ) ) × T   

=   Quantized_3D_DCT ∗,j,∗   .×  Q(∗,j,∗) .× ( Cj  
.× Dpp

 ) × T   

=   (Quantized_3D_DCT ∗,j,∗   .× ( Q(∗,j,∗) .× ( Cj  
.× Dpp

 ))) × T   

 

The unquantizition cube will be calculated as follows: 

 UQuantized3DDCT    
=  Quantized_3D_DCT  .× ( Q  .× ( Cj

 
.× Dpp

 ) ) 

                =   Quantized_3D_DCT  .× UQNew 
 
 
 

The new unquantitizing matrix is  

UQNew(i,j,k) = Q(∗,j,∗).×  ( Cj .× Dpp
 ) 

All the multiplications of the 3D IDCT are gathered and merged on the unquantitizing stage. The 

3D_IDCT will be computed by the matrix T’. The quantization cube used in this work is defined by 

Zamarin et al [3] as :  

Q(i,j,k) = 0.69 × 2(Q_step /6)
 ×   ∆max (i,j,k) 

 

Where 

∆max (i,j,k)= [8,16,23,25,27,29,30,34]/8 

 

And Q_step is the quantization step. 

 

Based on the row, column, frame separability (RCF), which means that the 1D_DCT transform is 

applied on each dimension, we can conclude from the equations 11,16,19 and 21 that the 

1D_DCT/IDCT transforms in our case will be computed by the matrix T and T’.  The flow graphs of 

the 1D_DCT/IDCT have been established and shown in figure 2 and figure 3.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2  The flow graph of the 1D_DCT 
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Fig. 3 The flow graph of the 1D_IDCT 

3.2   Visual Quality validation 

 

In order to test the quality of video produced by the proposed algorithm, an implementation on Matlab software 

was done. Figure 4,5 present respectively the PSNR and SSIM quality factors in term of quantization step both 

for our approach and the conventional RCF (row,column,frame) one. The obtained results of our approach 

respects the quality requirements of video standards, even if the PSNR is reduced by an average of 0.9 db and 

SSIM reduced by an average of 0.017 db in comparison with the standard algorithm.  

 

Fig. 4  The  evolution  of the PSNR  results of our method against the conventional one for different quantization 

steps 

    

Fig. 5  The  evolution  of the SSIM  results of our method against the conventional one for different quantization 

steps 
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3.3 Related works 

It  is obvious that the number of arithmetic operations needed to compute a 888 video cube is 

considerably reduced using our algorithm. In comparison to the separability technique (RCF) of the 

the standard algorithm we achieved 59% savings on the number of additions, and the multiplications 

are completely removed. The algorithms introduced in [25,26] uses statistical and heuristic roles to 

choose the coefficient which needs to be computed. The performances of these methods depend on the 

motion of the video.  They can be very effective on videos with constant background and low motion. 

These algorithms use preprocessors before each 1D DCT, based on the computation of SAD ( Sum of 

Absolute Difference ) between the inputs. The arithmetic operations savings of these methods are 

evaluated by the percentage of non computed coefficients, and were estimated between 28% and 50% 

depending on the dynamic of the video sequence. These methods lead to solutions with larger area. A 

class of algorithms based on polynomial transform was introduced in the literature [31,32, 33]. These 

algorithms are based on mapping the multidimensional transforms into 1D DCT cosine and 

polynomial transforms. The algorithm in [32] present an efficient optimization, it achieved 66% 

savings on the number of multiplications and about 40% savings on the number of additions operation. 

The main disadvantage of this class of algorithms is they don’t have a regular form which makes them 

unsuitable either for hardware solutions or for software implementation. The method in [27] is a vector 

radix decimation-in-frequency (VR DIF) optimization, it allows computing 8 3D DCT coefficients by 

directly exploiting the multiplication redundancies. It achieving 40% savings on the number of 

multiplications and keeps the same number of additions. Even if the proposed VR DIF has a regular 

form and uses one butterfly stage, it must include a first stage of reordering inputs before the 

computation but achieves the computations without using any transpose buffers. The work [36] 

combined between the polynomial transform and the approximation of the cosine with the ramanujan 

numbers. The ramanujan ordered numbers are those which approximate 2π/N by 2
-l
 + 2

-m
, where l and 

m are integers. The cosine angles can then be computed using Chebyshev type of recursion using only 

shifters and adders. Another algorithm was introduced using the tensor product [35] it has the same 

performances as the polynomial transform but is more suitable for hardware implementation. Table 1 

shows a comparison between the total of the operations needed to compute a 8×8×8 cube of pixels 

using our algorithm and other state of the art .the savings of the methods are shown in the table 2. The 

savings are calculated in reference to the standard RCF 3D DCT algorithm.  
 

Table 1 Comparison of the arithmetic operations needed to process an 8×8×8 cube of pixels 
Method Add/Sub Shift Mult 

Our algorithm 3840 0 0 

Radix-2 RCF [25] 5376 1536 1536 

VR DIF [27] 5568 0 1344 

Poly Ramanujan[36] 5600 768 0 

Tensor Product [37] 5594 0 768 

Polynomiale [32] 5600 0 768 

 

Our proposed algorithm is a very simple and fast 3D DCT algorithm and suitable for hardware 

implementation even if it requires considerable memory as transpose buffers. 

 

Table 2 Comparison of the arithmetic operations savings made by our method and other state of the 

art techniques 
Method Add/Sub Mult 

Our algorithm 59% 100% 

Context aware [25,26] 28% - 50% 

Radix-2 RCF [25] 43% 75% 

VR DIF [27] 41% 89% 

Polynomiale [32] 40% 94% 

Poly Ramanujan[36] 40% 94% 

Tensor Product [37] 41% 94% 
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IV. FPGA Implementation and discussion 

4.1   Hardware Architectures 

To perform the 3D DCT using the separability technique (RCF), the 1D_DCT/IDCT must be applied 

on each dimension of the cube, this leads to the standards architectures based on 1D_DCT/IDCT. The 

difference between architectures is the number of 1D_DCT/IDCT blocks, this impacts it’s properties 

such as the throughput, area, power consumption and clock frequency. The state of the art 

architectures are mainly parallel, serial and iterative. We modified the parallel architecture developed 

in [25]. The architectures are presented and analyzed based on their properties. Table 3 summarizes 

the properties of each architecture. 

4.2.1.    Full parallel  

The architecture shown in figure 6 gives a maximum parallelization degree of the 3D-DCT algorithm. 

It allows us to process 8×8 pixels at every clock edge. The number of 1D DCT block is 3×8. To 

compute the second stage an 8×8 memory registers is needed for every 1D DCT. The memory is 

designed as follows: The lines of the memory are right shift registers, every register is used to store a 

processed pixel. The columns of the memory are also shift registers. The memory works as follows: 

During 8 Clock cycles, the outputs of every 1D DCT in the first stage are stored in the first column of 

every corresponding memory and the old values are right shifted. The inputs of every 1D DCT in the 

second stage are the last line of every memory registers. At every Clock edge the old values in the 

memory are shifted down vertically during 8 cycles and fed to the second stage to compute the 1D 

DCT on the columns of the matrix. This memory has a latency of 8 cycles, because the second stage 

has to wait 8 cycles before starting the computations and the first stage has to wait 8 cycles when the 

second stage is processing. To eliminate this latency we doubled the memory to build a ping pong 

memory with a more complex memory controller. The memory works as follows: when the first stage 

is writing on a side of the memory the second stage is reading from the other during 8 cycles, after that 

the stages switch the sides. Using this modification we will process, for each 1D DCT, 8 pixels every 

single clock cycle at the expense of a doubled memory area. Figure 7 shows the detailed memory 

register scheme. In the second stage, 1×8 memory register is used for each 1D DCT. The outputs of 

every DCT in the second stage are stored in a buffer of 8 registers every register stores a computed 

pixel.  The registers are named Ri with i Є {0,…,7} where i is the number of the DCT block and Ri(j) 

is the pixel number j stored in the register Ri , with j Є {0,…,7}. In the third stage 8 DCTs are 

necessary to compute in parallel the outputs of the second stage. The inputs of the 1D DCT number i 

will be:  Rj(i) where j Є {0,…,7} , for example the inputs of the first DCT are the first pixels of each 

registers . This memory present a latency of 1 clock cycle , to eliminate this latency we built, like in 

the first memory a  ping pong memory wich allows us to compute 88 pixels per clock cycle. The 

Work in [34] uses RAM memory to transpose data. 8 SRAM are used before the third stage every 

SRAM store 88 pixels, the memory addresses are chosen carefully and are extremely important as 

explained in [35].The total size of memory word registers needed is 2×8
2
× (8+1). The detailed 

hardware design of this architecture is illustrated in figure 8. 

 
Fig.6  The 3 stages full parallel architecture of the 3D_DCT 
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Since we can produce 8×8 pixels per every clock cycle the throutput of this architecture is 8×8×Fclk, 

where Fclk is the operating frequency of the 1D DCT block. A parallel architecture was introduced in 

[25]. This architecture uses 281D_DCT/IDCT in the two first stages and only one at the third stage. 

Since the second stage produces 88 coefficients at every clock edge, the last stage must compute 

them all in the same time, this leads to the use of two clock domains, the frequency of the first is fclk 

used by the DCT blocks in the first and second stages and 8fclk used by the DCT in the last stage.  

4.2.2  Serial architecture  

This architecture uses 3 1D DCT blocks as shown in figure 9, it compute 8 pixels per clock cycle. The 

lines of each bloc of the cube are multiplexed on the input of the system. The memory used remains 

the same as before with an additional logic to do the multiplexing of the output into the corresponding 

8×8 buffers. In this stage we use a Memory of  8×1×8 Words to store the results of the second one so 

the total memory needed using ping pong memory registers is : 2×8
2
×(8+1) with additional controller. 

Every 8
2
 and 1×8 memory block in each stage is used to store the results of a transformed frame .The 

throughput of this architecture is Fclk. 
 

 
Fig. 9 The serial architecture of the 3D_DCT 

4.2.3 Iterative architecture 

The iterative scheme uses only one 1D DCT block, which is used to compute the three levels of the 3D DCT. 

The 1D_DCT/IDCT is used to compute first all the lines of the cube, then to compute all columns of the 

resulting cube and finally used to compute the transform on the third dimension. The hardware design of this 

system is shown in the figure 10. The throughput of the system is Fclk/3.Table 3 summarizes the complexity of 

the 3 architectures.  

Table 3 Complexity of the different architectures 

 
 

Fig.10 The iterative architecture of the 3D_DCT 
 

V. IMPLEMENTATION RESULTS  
 

In this section we present the implementation results of the 3D DCT introduced. In the literature we 

did not find much works on FPGA implementation of the 3D DCT. The implementation has been 

achieved on Altera’s 180 nm cyclone 2 chip using the VHDL hardware language, and the synthesis 

and implementation tool Quartus II. The power consumption was obtained by the Power Play tools 

analyzer of Quartus tools. The implementation will allow us to evaluate the performances of different 

proposed architectures and check whether they meet the real time requirements of video standards. 
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5.1 logic usage and frequency 
 

In this part we will present and discuss the frequency and the logic usage of the FPGA 

implementation. There is an increase of the used logic when going respectively from iterative, serial to 

full parallel architecture. This is essentially due to the number of 1D_DCT/IDCT blocks used to 

achieve better parallelization level. This can be explained by the same needed storing capacity for all 

the architectures and the decreasing complexity of logic used before and after each stage of memory 

registers. The total registers used include those used to pipeline data in the 1D_DCT blocks. Table 4 

summarizes the resources of each architecture. 
Table 4 Logic usage of the different architectures 

Design Parallel Serial Iterative 

Registers 13250 9550 4457 

Combinational functions 15320 10820 7502 

The parallel and serial architectures can operate with high frequencies up to 300 MHz, 200 MHz 

respectively, this allows the processing of the most demanding video standard.  Table 5 summarizes 

the frequency requirement to real time processing of some video standards. The frequency 

requirements calculated are based on the throughput, the size of the video. The video format is 4:2:0 

and the sampling frequency is 30 Hz.  

 

Table 5 Frequency needed to real time processing different video standards 

 

Analyzing the results of table 5, we can observe that when the parallelization level increases the 

frequency requirement is reduced. This is due essentially to the increasing of the throughput which 

allows more data to be processed at each clock cycle. Table 6 summarizes the max frequency of each 

architecture. According to table 5 and table 6 we can conclude that serial and parallel architectures can 

achieve the real time processing of the entire video format. The iterative architecture can reach a 

frequency up to 100 MHz while to process the HDTV video standard the design must run with 113 

MHz according to table 5. This means that the iterative architecture can process the entire video 

format except the HDTV. Architecture reported in [38], works with an operating frequency of 127 

MHz, it’s based on a distributed arithmetic based algorithm which requires complex logic to achieve 

accumulations in the final stage. The work in [39] has a structure composed of an interface and three 

successive stages. The interface reads the data to be calculated. Stage l performs the multiplication 

operations. Stage 2 performs the accumulation of stage 1 outputs, and finally stage 3 stores the 

intermediate results and output the resultant DCT coefficients. The architecture in [39] has an 

operating frequency of 50 MHz, and the architecture presented in [40] works with a max frequency of 

12.5 MHz in the encoder side and 24.15 MHz at the decoder side. A comparison between the 

operating frequencies is shown in table 7. 

 

Table 6 The max operating frequency of the different architectures 
Design Parallel Serial Iterative 

Frequency 310 Mhz 202 Mhz 106 Mhz 

 

Table 7 Comparison between operating frequency of our methods and others in the stat of the art 

  

 QCIF 176*144 SIF 352*288 CCIR-TV 576*704 16CIF 1408*1152 HDTV 1152*1928 

Parallel 0.05 MHz 0.21 MHz 0.85 MHz 3.42 MHz 4.68 MHz 

Serial 0.42 MHz 1.71 MHz 6.84 MHz 27.36 MHz 37.48 MHz 

Iteratif 1.28 MHz 5.13 MHz 20.52 MHz 82.08 MHz 112.44 MHz 

Architectures 
Our work   Work 

 in [38] 

Work 

 in [39] 

Work 

in [40] parallel serial iterative 

Op Frequency  310 Mhz 202 Mhz 106 Mhz 127 Mhz 50 Mhz 

12.5Mhz encoder  

24.55 Mhz 

decoder 
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5.2 Power consumption 

 

The power consumption corresponding to the frequency required for r real time processing of the 

video formats is summarized in table 8. The minimum power consumption to process a same video 

format is consumed by the full parallel architecture and the maximum with the iterative one.  These 

results can be explained by the fact that the operating frequency used to run the full parallel 

architecture is very low in comparison with the one used to run the iterative one, thanks to the 

throughput and to the fact that the used resources are note considerably increased from a level of 

parallelism to another as explained above. All the cited reasons and taking in consideration the 

simplicity of the algorithm, we can easily conclude that increasing the parallelization level reduces 

effectively the power consumption. Analyzing all the implementation results and taking in 

consideration the complexity of our optimized method, the choice between the different architectures 

is application oriented. The full parallel architectures uses the largest area but achieves good 

performances and maximizes the throughput, it consumes less power which makes it suitable for 

application requiring lower power consumption .The serial architecture complexity is lower than the 

parallel architectures but consumes more power, and present important latency namely 64 clock cycle 

to process an 888 cube. Our implementation of parallel and serial architectures allows real time 

processing of different video format. The iterative architecture uses the minimum area and has lower 

complexity, at the expense of low throughput which increases the constraints for to real time 

processing of presented video formats, thus the power consumption becomes the highest in 

comparison with the others.  
 

Table 8 Power consumption of the different architectures in different video formats 

 

VI. Future Work 

 

The next work will handle a multiplier less multidimensional DCT based on the concept presented in 

this work. We will work also on other hardware architectures to offer more choice depending on the 

applications. We will study how we can use the various architectures of the 3D DCT to build a 

reconfigurable video compressor. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 The Hardware Architecture of the transposition memory 
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VII. Conclusion 
 

An optimized RCF 3D DCT/IDCT is presented in this paper. The main contribution of our work has 

been the gathering of all  multiplications needed to achieve the 3D DCT/IDCT at the end of the 

transform, and then merged in the quantization stage. This makes the transform possible using only 

additions. Consequently, The new proposed fast (RCF) 3D DCT/IDCT saves 59% on the number of 

additions and eliminates totally the multiplications which increase significantly its performance. In 

addition new quantitizing and unquantitizing cubes are introduced. A study of the implementation the 

3D DCT/IDCT architectures leads us to conclude that the parallel architecture has the lowest power 

consumption and it offers low operating frequencies while it compute video standards with high 

resolution. The serial one can compute also all the video standards using reduced resources. The 

iterative architecture is the best solution for area optimization at the expense of important power 

consumption. The presented fast RCF 3D DCT/IDCT in this paper is an efficient algorithm which 

allows us to meeting the real time requirement with the required visual quality. 
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Fig. 8    The Hardware Architecture of full parallel architecture of the 3D_DCT 
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