
2014, pages 1–7
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu062

Gene expression Advance Access publication January 30, 2014

Adaption of the global test idea to proteomics data with

missing values
Klaus Jung1,*, Hassan Dihazi2, Asima Bibi2, Gry H. Dihazi2 and Tim Beißbarth1

1Department of Medical Statistics, and 2Department of Nephrology and Rheumatology, University Medical Center
Göttingen, Göttingen 37099, Germany

Associate Editor: Ziv Bar-Joseph

ABSTRACT

Motivation: Global test procedures are frequently used in gene ex-

pression analysis to study the relationship between a functional subset

of RNA transcripts and an experimental group factor. However, these

procedures have been rarely used for the analysis of high-throughput

data from other sources, such as proteome expression data. The main

difficulties in transferring global test procedures from genomics to

proteomics data are the more complicated way of obtaining functional

annotations and the handling of missing values in some types of prote-

omics data.

Results: We propose a simple mixed linear model in combination with

a permutation procedure and missing values imputation to conduct

global tests in proteomics experiments. This new approach is moti-

vated by protein expression data obtained by means of 2-D gel elec-

trophoresis within a mouse experiment of our current research.

A simulation study yielded that power and testing level of the mixed

model alone can be affected by missing values in the dataset.

Imputation of missing values was able to correct for a bias in some

simulation settings. Our new approach provides the possibility to rank

Gene Ontology (GO) terms associated with protein sets. It is also

helpful in the case in which a specific protein is represented by mul-

tiple spots on a 2-D gel by considering these spots also as a protein

set. Analysis of our data points at correlations between the deficiency

of the protein ‘calreticulin’ and protein sets related to biological pro-

cesses in the heart muscle.

Availability and implementation: Our proposed approach is

included in the R-package ‘RepeatedHighDim’, which already con-

tains a global test procedure for gene expression data. The package

can be retrieved from http://cran.r-project.org/.
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1 INTRODUCTION

Can certain molecular functions, cellular components or biolo-

gical processes be related to the levels of the grouping factor of a

study or an experiment? This question is frequently studied in the
analysis of expression data from high-throughput experiments

(e.g. with DNAmicroarrays). To answer this question, expression

levels of those features that are connected to a particular molecu-

lar function can be compared between the different study groups.

With this approach, Grond-Ginsbach et al. (2008), for example,

detected a relation between a set of genes involved in the molecu-

lar mechanisms of inflammation and acute ischemic stroke. In

another study, Groene et al. (2006) detected a relation between
genes involved in the p53 pathway and the Union for

International Cancer Control (UICC) stages of colorectal
cancer. Statistically, the previously mentioned questions can be

analyzed by means of global test procedures. In contrast to meth-

ods that analyze the expression levels of all features from a high-
throughput experiment individually (Smyth, 2004), a global test

focuses on sets of features that are all involved in the same bio-
logical function or cellular pathway. Although a number of global

test approaches for the analysis of functional gene sets have been

published (Goeman et al., 2004; Jung et al., 2011; Mansmann and
Meister, 2005), the idea was rarely considered in protein expres-

sion data from proteomics experiments. In such experiments, pro-
tein expression is usually measured in a high-throughput manner

by eithermass spectrometry (MS) (Aebersold andMann, 2003) or

2-D gel electrophoresis (2-DE) (Klose and Kobalz, 1995). For
protein expression data measured by MS, a global test approach

based on Hotelling’s T2-statistic to relate specific phenotypes to
functionally related sets of proteins was proposed by Chen et al.

(2011). Besides, an approach for testing protein set enrichment in

MS experiments was presented (Louie et al., 2010).
In this article, we present a new approach for global testing of

functional protein sets in the case where expression levels are

measured by 2-DE. Although the MS-based protein expression

data referred to by Chen et al. (2011) present as a complete
(d� n)-matrix, i.e. without missing values, up to 30% of entries

may be empty in the matrix of 2-DE-based expression data (Jung
et al., 2006). However, missing values are also not atypical in

MS-based data because of missing peaks in the mass spectra

(Käll and Vitek, 2011; Karpievitch et al., 2012; Smith et al.,
2006). Here, d denotes the number of proteins and n the

sample size. Missing values in protein expression data from
2-DE are because features on a 2-D gel are not placed on an

ordered grid like the probe sets on a DNA microarray where the

location of each particular feature is known. In contrast, spots of
labeled proteins appear at more or less different locations on 2-D

gels, and spot matching algorithms must be used to bring the
information of the experimental replications in line (Xin and

Zhu, 2009). For a number of protein spots the matching fails,

and missing values ‘occur’.
Therefore, a global test procedure for proteomics data from

2-DE has to deal with two main difficulties. On the one hand,
there is an issue of missing values, and on the other hand, it is

more complicated to get functional annotations for the protein*To whom correspondence should be addressed.
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spots, as these spots must first be removed from the gel and the
underlying protein must be identified by MS (Koenig et al.,
2008)—unlike DNA microarray data, where the identity of a

probe set is given directly. Not specific for 2-DE data, the prob-
lem for all high-throughput data is that the number d of features
in a functional set can be much larger than that of the sample size

n. The new approach we present here is based on a simple mixed
linear model, which is able to handle missing values, in combin-
ation with a permutation algorithm to account for the high

dimensionality. We evaluate this approach when being applied
on the incomplete data on the one hand and on data filled up by
a missing value imputation procedure proposed by Troyanskaya

et al. (2001) on the other hand.
Our article is structured as follows. We first detail the mixed

linear model, the permutation procedure and the missing value

imputation algorithm, followed by a description of our prote-
omics experiment. Next, we evaluate the methods in a simulation
study and apply them to the data example. Finally, we provide a

discussion of the results and give some conclusions.

2 METHODS AND EXAMPLE DATA

2.1 Simple mixed linear model

Our approach is based on a simple mixed linear model of the

following form:

Yijk ¼ �þ �j þ �k þ ð��Þjk þUi þ "ijk, ð1Þ

where Yijk represents the expression level of protein k in group j

and individual i after normalization and variance stabilization.
The model is composed of an overall mean �, the effect �j of
group j (j ¼ 1, 2), the effect �k of protein k (k ¼ 1, . . . , d) and a

(group� protein)-interaction ð��Þjk. In addition, the model con-
tains a random effect Ui � Nð0, �jÞ for the ith individual
(i ¼ 1, . . . , n) and an overall random error "ijk � Ndð0,ZjÞ.

Classically, the aforementioned model would assume that there
are less proteins than individuals, i.e. d5n.
To test the hypothesis that the mean expression profile of the d

proteins is the same in both groups, one would test the null
hypothesis of no interaction effect, i.e. H0 : ð��Þjk ¼ 0 for all j,
k. For example, this hypothesis can be tested by means of like-

lihood ratio tests (Faraway, 2006).
To ensure that the data meet the linearity assumption of the

model raw 2-DE data should be pre-processed by normalization

and transformed by some variance stabilizing function such as
the logarithm or the arsinh (Huber et al., 2002; Kreil et al., 2006).

2.2 Permutation procedure

Under unequal covariance matrices for the random errors, i.e. if

Z1 6¼ Z2, or if sample sizes are unbalanced, the application of
model (1) can fail to maintain the pre-specified level of signifi-
cance, particularly if the number d of proteins is much larger

than that of the samples size n, as typical for high-throughput
data. As a consequence, the true testing level would often become
too much liberal yielding to many false-positive test results.

Therefore, we embed this model into a permutation procedure
to correct for this bias. The working principle of the permutation
procedure is as follows. Assume, the test of H0 on the un-

permuted data yields the P-value pdata, whereas the tests on B

permuted datasets yield the P-values pb (b ¼ 1, . . . ,B). The per-

mutation P-value is then given by pperm ¼ #fpb5pdatag=B (Efron

and Tibshirani, 1993).

2.3 Missing values imputation

As incomplete datasets are typical in gel-based proteomics experi-

ments, a loss of power is to be expected for the aforementioned

testing procedures. Therefore, we propose an approach of com-

bining the mixed model not only with a permutation procedure

but also with a missing values imputation algorithm. For that

purpose we use an existing algorithm based on the idea of nearest

neighbors. This algorithm determines neighbors of the protein

with the missing value for subject i in the sense of correlated

expression levels among all other individuals. The missing value

is then determined, for example, by the mean expression levels in

subject i from the neighboring proteins. This approach has ori-

ginally been proposed for missing values imputation of DNA

microarray data (Troyanskaya et al., 2001) and has already

been applied to gel-based proteomics data (Jung et al., 2006).

2.4 Case study: proteomics data from 2-DE

As a case example we studied protein expression data from

2-DE, generated as part of our current proteomics research.

Specifically, we focus on the role of the protein ‘calreticulin’ in

the heart muscle. To this end, we compared three calreticulin

heterozygote (Calrþ/�) and three wild-type (WT) littermate

mice in identical C57BL/6J genetic background. Animals were

obtained from Prof. Marek Michalak, University of Alberta,

Edmonton, Alberta, Canada. Mice were bred under specific

pathogen-free housing conditions and genotyped as previously

described in Michalak et al. (1999). All experimental procedures

were performed according to the German animal care and ethics

legislation and were approved by the local government authori-

ties at the University Medical Centre Götttingen.

Immediately after cervical dislocation, the freshly excised

hearts from adult mice (WT, Calrþ/�) were quickly removed,

cleaned, washed in sterile saline solution and weighed. Mice

hearts were homogenized in buffer containing 50-mmol/l Tris-

HCl (pH 7.4), 1% Triton X-100, 100-mmol/L NaCl and protease

inhibitors. After incubation for 30min at 4 �C, heart tissue hom-

ogenates were centrifuged two times at 14 000 rpm for 30min,

and the supernatant was collected. To reduce the salt contamin-

ation and to enrich the proteins, protein precipitation was

performed. Whole tissue homogenate was precipitated using

methanol-chloroform.
Next, processed samples were analyzed by means of 2-DE. In

total, six gels were run where three of them were prepared with

WT samples and the other three with Calrþ/� samples. After

scanning and image analysis (using the software Delta2D, ver-

sion 4, Decodon), 103 matched gel spots were identified by MS

and assigned a UniProt accession number (UniProt Consortium,

2007). Probably because of alternative splicing and post-

translational modifications, some of the spots carried the same

protein so that 63 proteins could be related to the 103 spots. In

detail, 37 proteins were represented by only 1 spot, 16 by 2 spots,

8 by 3 spots, 1 (‘ATP synthase subunit beta’) by 4 spots and 1

(‘electron transfer flavoprotein subunit alpha’) by 6 spots.
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Via the accession number, the identified spots could further be

linked to 264 different biological processes, 87 different cellular

components and 99 different molecular functions. The most fre-

quent biological process ‘transport’ was related to 30 gel spots;

the second frequent one ‘glycosis’ was related to 12 gel spots.

Concerning cellular components, the most frequent component

‘mitochondrion’ was related to 38 gel spots. The most frequent

molecular function ‘ATP binding’ was related to 23 gel spots.

The complete distribution of functional set sizes is given in

Table 1.
Approximately 3% of values were missing in the (103� 3)-

data matrix of the untreated samples, and �15% were missing

in the matrix of the treated samples.

3 RESULTS

3.1 Simulation studies

To study the effect of missing values on the testing level and the

power of the proposed global test approach, we performed two

different series of simulation studies. In the first one, we simu-

lated expression data with certain types of arranged covariance

matrix (autoregressive or unstructured scenarios A1–A4), and we

used a shrinkage covariance estimate (Schäfer and Strimmer,

2005) from the example data in the second one (scenarios B1–

B6). The shrinkage method allows the estimation of a covariance

matrix in the case of high-dimensional data. Besides, we varied,

in both simulation studies, the proportion of missing values, the

size d of the protein sets and the sample sizes per group.

Expression levels were drawn from the multivariate normal

distribution.
The off-diagonal entries of the autoregressive covariance

matrices were calculated by �jj0 ¼ �
i�i0b c ði, i0 ¼ 1, . . . , dÞ with

� ¼ 0:5 and those of the unstructured covariance matrices were

drawn from the standard normal distribution. In both cases, the

diagonal elements were increased evenly from 1 to 2 to have

unequal variances for the proteins.

In the case of the arranged covariance matrices, log-fold

changes were drawn from normal distributions Nð0, �Þ, where �
started with 0 and was increased until a power of 1 was reached

in each simulation scenario. In the simulations with shrinkage

covariance matrices, the log-fold changes were all zero when

simulating the null hypothesis and were drawn from the fold

change distribution of the real data example when simulating

global effects. For smaller group effects, log fold changes were

simulated as a fraction of the distribution of the real data,

and for larger effects, log fold changes were a multiple of this

distribution.

In each simulation setting, the ‘optimal’ number of neighbors

was assessed individually for each proportion of missing values

within a further simulation loop, where the imputed matrix was

compared with the original complete matrix using the normal-

ized root mean squared error as proposed by Troyanskaya et al.

(2001). In general, the number of neighbors increased with the

proportion of missing values. For 10% of missing values, the

mean number of neighbors over all settings was 24 (34 and 41

in the cases of 20% and 30% of missing values, respectively).

3.1.1 Arranged covariance structures Four different scenarios

with arranged covariance structures were simulated. Under scen-

arios A1 and A2, autocorrelated covariance structures were

simulated, where group sizes were equal in scenario A1 (i.e.,

n1 ¼ n2 ¼ 10, n1 þ n2 ¼ n) and unequal in scenario A2 (n1 ¼ 5

and n2 ¼ 15). Expression data for scenarios A3 and A4 were

simulated with unstructured covariance matrices with sample

sizes n1 ¼ 5 and n2 ¼ 15 in scenario A3 and to study especially

the case of small sample sizes n1 ¼ n2 ¼ 4 in scenario A4. The set

size d¼ 100 was fixed in all scenarios A1–A4.
In these four scenarios, the simple model without permutation

procedures yielded completely unacceptable testing levels ranging

from 32% to 39% false-positive rejections of H0 in scenarios A3

and A4 and�70% in scenarios A1 and A2. Applying instead the

mixed model in combination with the permutation procedure,

the pre-specified testing level of 5% was sufficiently maintained

in all scenarios, in the case of no missing values (Table 2). The

introduction of missing values did not seriously affect the testing

levels. Imputation of missing values by the k-nearest neighbor

method, however, led to a decrease of testing levels in scenarios

A2 and A3, down to 2.7% in A2 and down to 3.6% in A3.
To study the influence of missing values onto the power, we

selected that alternative � for the log-fold changes where each

scenario reached 80% power in the case when there were no

missing values in the data (Figs. 1 and 2). Under scenario A1,

there was only a small loss of power because of the missing

values, and imputation did not correct for this loss. In scenarios

A2 and A3 (unequal sample sizes), the loss of power through the

‘existence’ of missing values was much stronger, but the imput-

ation procedure could correct for this loss. A strong power

decrease was also observed in scenario A4 (small group sizes);

however, the imputation approach could not help to compensate

for this loss.

3.1.2 Shrinkage covariance estimate An overview of samples
sizes for simulation scenarios B1–B6 is provided in Table 3. In

these scenarios, the set size d was 10, 50 or 100. When covariance

matrices were estimated by the shrinkage approach from the real

data and no permutation procedure was applied to linear model

analysis, simulated testing levels were either too small or too

large in most settings (Table 3). Only in the cases with set sizes

of d¼ 50, simulated testing levels were near the required 5%.

Table 1. Frequency of functional protein sets sizes in the proteomics case

example

Ontology domain Set size d (absolute frequency)

Biological process 1 (136), 2 (73), 3 (26), 4 (6), 5 (6), 6 (5), 7 (2),

8 (1), 9 (4), 10 (2), 11 (1), 12 (1), 30 (1)

Cellular component 1 (29), 2 (31), 3 (9), 4 (1), 5 (1), 6 (2), 7 (2), 8 (1),

9 (4), 11 (1), 12 (1), 13 (1), 17 (1), 18 (1), 33

(1), 38 (1)

Molecular function 1 (47), 2 (16), 3 (16), 4 (4), 5 (2), 6 (6), 7 (3),

8 (1), 9 (2), 11 (1), 23 (1)

Note: Most of the functional terms were related to only small number of gel spots.

For example, Each 136 biological processes were related to only one gel spot, while

the largest set was given by a cellular component that was related to 38 gel spots.
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In most cases without permutation procedure, simulated testing

levels increased with an increasing proportion of missing values.

Imputation of these missing values could not correct for this bias.

When the linear model analysis was combined with the per-

mutation procedure, the pre-specified testing level was main-

tained in most cases (Table 3). There were only some smaller

deviations, yielding testing levels of �4% (B6) or 5.5% (B2).

The introduction of missing values led either to small decreases

(B1, B2, B4) or to small increases (B3, B5, B6) of the testing

levels. Imputation of these missing values led to a clear improve-

ment in scenarios B2 and B6. However, for scenarios B4 and B5

(i.e. with unequal sample sizes and small or moderate set sizes d),

the imputation of missing values was counterproductive.

In most of the scenarios with shrinkage covariance estimates,

power was not seriously affected by the introduction of missing

values. A strong decrease in power could, however, be observed

in scenario B5, i.e. with a set size of d¼ 50 and unequal samples

sizes. Missing value imputation could not adjust for this bias

(Fig. 3).

3.2 Analysis of case study

To detect differences between the Calrþ/� and the WT mice, we

first compared each protein spot individually between the two

experimental groups by means of Welch’s t-test, yielding no sig-

nificant result.

Table 2. Simulated testing levels for simulation scenarios with arranged correlation structures

Scenario Imputation Covariance structure Sample sizes Missing values (%)

0 10 20 30

A1 False Autoregressive n1 ¼ n2 ¼ 10 0.046 0.050 0.053 0.049

True 0.049 0.053 0.053

A2 False Autoregressive n1 ¼ 5, n2 ¼ 10 0.049 0.051 0.046 0.040

True 0.045 0.038 0.027

A3 False Unstructured n1 ¼ 5, n2 ¼ 10 0.053 0.052 0.051 0.048

True 0.044 0.042 0.036

A4 False Unstructured n1 ¼ n2 ¼ 4 0.054 0.058 0.054 0.054

True 0.047 0.045 0.043

Note: Each scenario was either simulated with or without missing values imputation. Only results for the combined approach (linear model

plus permutation procedure) are shown.

Fig. 1. Power versus proportion of missing values in simulation scenarios

A1 and A2 with arranged covariance matrices. Power was studied under

that alternative where it reached the 80% level in the case of no missing

values. Dashed line: without missing values imputation; solid line: after

missing values imputation

Fig. 2. Power versus proportion of missing values in simulation scenarios

A3 and A4 with arranged covariance matrices. Power was studied under

that alternative where it reached the 80% level in the case of no missing

values. Dashed line: without missing values imputation; solid line: after

missing values imputation
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As next step, each protein set, according to the functional

terms of the different ontology domains, was analyzed individu-

ally. The top five terms in each ontology domain, i.e. with the

smallest P-value, are listed in Table 4. The sizes of the listed sets

were rather small, ranging from 2 to 11 protein spots. Missing

values were only ‘present’ in the Calrþ/� group with proportion

from 11% to 50%. In the biological process domain, the top

three terms were related to cardiac processes. Among the cellular

components, only the term ‘actomyosin actin part’ yielded a

P55% level. None of the molecular function terms reached a

P50.05.
As several gel spots were assigned to the same protein, these

spots were also analyzed as set (lower part of Table 4). Among

these, ‘Actin, alpha cardiac muscle 1’ yielded a P-value of 0.02.

Missing values were again only on the treatment group.

4 DISCUSSION

The 2-DE is widely used in proteomics research. To date, gel

spots are typically compared between the experimental groups

only individually; also, several spots may belong to the same

protein or to the same functional term related to some biological

processes, cellular component or molecular function. Like in

DNA microarray analysis, global tests for comprehensive testing

of functional subsets of genes are not available for gel-based

proteomics data. Furthermore, most global tests used for the

analysis of genomics data do not allow for missing values as

typical in gel-based or MS-based protein expression data. In

this regard, we studied the applicability of a simple global test

procedure to such proteomics data and evaluated the effect of

missing values onto the testing level and the power.

Our simulations with arranged and real-world covariance

matrices have shown, that in combination with a permutation

procedure, a pre-specified testing levels can be maintained in

diverse scenarios. Permutation approaches were also successfully

used in global test procedures in genomics to correct for biases in

the testing level (Goeman et al., 2004; Mansmann and Meister,

2005). With regard to our simulation results, we would generally

Table 3. Simulated testing levels for scenarios with shrinkage covariance estimated from the real data example

Scenario Set size Sample sizes Missing values (%) With permutation Without permutation

With imputation Without imputation With imputation Without imputation

B1 10 n1 ¼ n2 ¼ 5 0 0.050 0.083

10 0.058 0.054 0.080 0.069

20 0.056 0.047 0.098 0.108

B2 50 0 0.055 0.055

10 0.052 0.052 0.046 0.041

20 0.050 0.045 0.045 0.044

B3 100 0 0.054 0.007

10 0.058 0.057 0.006 0.006

20 0.064 0.062 0.015 0.015

B4 10 n1 ¼ 5, n2 ¼ 10 0 0.054 0.092

10 0.063 0.043 0.109 0.089

20 0.072 0.046 0.109 0.075

B5 50 0 0.047 0.053

10 0.065 0.054 0.059 0.065

20 0.084 0.066 0.078 0.079

B6 100 0 0.040 0.011

10 0.052 0.045 0.013 0.013

20 0.060 0.062 0.015 0.006

Fig. 3. Power versus proportion of missing values in simulations with

shrinkage covariance matrices. Power was studied under that alternative

where it reached the 80% level in the case of no missing values. Dashed

line: without missing values imputation; solid line: after missing values

imputation
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recommend the permutation approach for global tests on gel-

based proteomics data with missing values. Without permutation

procedures, the global test performed poor in each of our simu-

lated scenarios.
Our simulations also yielded that scenarios with unequal sizes

of the experimental groups (A2, A3, B4–B6) are critical with

regard to testing level and power. However, in one of these

cases (B6), a bias through missing values could be corrected by

means of a missing values imputation approach. In more detail,

an inappropriate decrease of simulated levels was observed in

scenarios A2 and A3, whereas an inappropriate increase of simu-

lated levels was observed in scenarios B4 and B5. From these

results, we would recommend that users should use the mixed

model without imputation procedure in the case of unequal

sample sizes.
Interestingly, the missing values were more frequent in the

Calrþ/� than those in WT group in our example. From this,

one could conclude that the missingness is group-specific here.

However, it is known that in multiplex gel approaches, where a

gel is prepared with more than one sample (e.g. one treatment

and one control sample), missing values ‘appear’ parallel in both

groups.

Although, the P-values in our analysis of the real data from

our mouse experiment were not adjusted for multiple testing

(Dudoit et al., 2003), the generation of P-values by the global

test procedure allowed at least for a ranking of functional terms.

Therefore, we are cautious with the biological conclusions in this

concrete example. Nevertheless, the analysis of our mouse data

points at correlations between the deficiency of the protein ‘cal-

reticulin’ and protein sets related to biological processes in the

heart muscle. These correlations were also reported in the

context of other experiments (Lee et al., 2013; Li et al., 2002).

Moreover, our analysis detected a correlation between the pro-

tein ‘Actin, alpha cardiac muscle 1’ and the experimental group

factor ‘calreticulin’. Likewise, this correlation was reported

earlier in another experiment (Papp et al., 2010). Both reproduc-

tions of known results show, additional to the simulation results,

that our methods produced reasonable results.
It should also be pointed out that the protein ‘Actin, alpha

cardiac muscle 1’ was not detected in the analysis of the individ-

ual spots but detected only when analyzed as a set of multiple

spots. This might be explained by an increased statistical power

when testing a set of spots globally in comparison to individual

testing.
An alternative to global tests can be enrichment analysis.

In microarray analyses, for example, enrichment tests are used

to see whether a certain functional term is overrepresented

among the differentially expressed features compared to the

non-significant features. In the context of gel-based expression

data, such an enrichment approach appears to be less reasonable

because not each gel spot is identified and related to a functional

annotation. An enrichment procedure, proposed for mass spec-

trometric protein expression data by Louie et al. (2010), is, there-

fore, not adequate for gel-based data. Thus, our proposed global

test procedure is a more useable approach for the biological

interpretation of group comparison in gel-based proteomics.
Although we focused specifically on global tests for gel-based

proteomics data, other proteomics data, e.g. from Liquid chro-

matography-MS/MS (LC-MS/MS) experiments, are also con-

cerned with missing values. For these cases, further methods

Table 4. Global test results in the real data example

Ontology domain Description Set size P Missing values (%)

WT Calrþ/�

Biological process Cardiac muscle contraction 2 0.01 0 0

Cardiac muscle tissue morphogenesis 2 0.01 0 0

Cardiac myofibril assembly 2 0.03 0 0

Skeletal muscle thin filament assembly 2 0.03 0 0

Actin–myosin filament sliding 2 0.05 0 0

Cellular component Actomyosin actin part 2 0.03 0 0

I band 2 0.05 0 0

Pyruvate dehydrogenase complex 3 0.09 0 11

Mitochondrial matrix 11 0.10 0 18

Nucleolus 2 0.24 0 50

Molecular function Cysteine-type endopeptidase inhibitor activity involved in apoptotic process 3 0.10 0 22

Creatine kinase activity 3 0.25 0 0

Isocitrate hydro-lyase cis-aconitate-forming activity 3 0.31 0 0

Citrate hydro-lyase cis-aconitate-forming activity 11 0.33 0 15

Nucleolus 3 0.36 0 0

Individual protein Actin, alpha cardiac muscle 1 2 0.02 0 0

Alpha-enolase 3 0.11 0 11

Creatine kinase M-type 3 0.18 0 0

Stress-70 protein, mitochondrial 2 0.21 0 50

Beta-enolase 3 0.30 0 11

Note: The upper part lists the top five terms in the different ontology domains. In the lower part, gel spots that were assigned to the same protein were tested as a set.
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for missing values imputation have been proposed (Karpievitch

et al., 2012; Smith et al., 2006). Because the frequency of LC-MS/

MS experiments has overtaken that of 2-DE experiments in

proteomics, the adaption of the global test idea to these types

of data presents an interesting challenge for subsequent research.

5 CONCLUSIONS

Our proposed global test procedure can detect differences be-

tween experimental groups that would be omitted by standard

protein-wise testing in proteomics experiments. Like in other al-

ready published global test approaches, we used a permutation

procedure to correct for a bias in the testing level. As missing

values are frequent in protein expression data, our simulation

results show that their imputation can adjust for a loss in

power. In addition, the presented method allows for the ranking

of GO terms related to certain protein sets and thus facilitates the

biological interpretation of a proteomics experiment.
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