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Eryptosis, the suicidal death of erythrocytes, is characterized by cell shrinkage and cell membrane scrambling with
phosphatidylserine exposure at the erythrocyte surface. Eryptosis is triggered by increase in cytosolic Ca?* concentration
upon energy depletion. The present study explored the involvement of leukotrienes. Western blotting was employed to detect
the cysteinyl-leukotriene receptor cysLT1, competitive immune assay to determine leukotriene release from erythrocytes,
Fluo3 fluorescence to estimate cytosolic Ca?* concentration, forward scatter to analyse cell volume and annexin V-binding
to disclose phosphatidylserine exposure. As a result, erythrocytes expressed the leukotriene receptor CysLT1. Glucose
depletion (24 hours) significantly increased the formation of the cysteinyl-leukotrienes C,/D,/E,. Leukotriene C, (10 nM)
increased Ca?* entry, decreased forward scatter, activated caspases 3 and 8, and stimulated annexin V-binding. Glucose
depletion similarly increased annexin V-binding, an effect significantly blunted in the presence of the leukotriene receptor
antagonist cinalukast (I pM) or the 5-lipoxygenase inhibitor BW B70C (1 uM). In conclusion, upon energy depletion
erythrocytes form leukotrienes, which in turn activate cation channels, leading to Ca*" entry, cell shrinkage and cell

membrane scrambling. Cysteinyl-leukotrienes thus participate in the signaling of eryptosis during energy depletion.
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INTRODUCTION

Energy depletion triggers suicidal erythrocyte death or
eryptosis (1), which is characterized by cell shrinkage and
scrambling of the cell membrane with phosphatidylserine exposure
at the cell surface (2). Cell shrinkage and cell membrane
scrambling are at least in part secondary to activation of Ca**-
permeable erythrocyte cation channels with subsequent Ca>* entry
(3-8). The channels are activated by prostaglandin E, which is
increased upon cell shrinkage and thus participates in the
stimulation of suicidal erythrocyte death following osmotic shock
(9). However, the eryptosis following energy depletion is not
abrogated in the presence of cycloxygenase inhibitors (unpublished
observations). Thus, additional mechanisms must contribute to the
signaling of eryptosis following energy depletion.

Candidate signaling molecules are cysteinyl-leukotrienes C,,
D, and E,. Erythrocyte progenitor cells express the cysteinyl-
leukotriene receptor cysLT1 (10-12) and mature erythrocytes are
able to metabolize leukotrienes (13-15). Leukotrienes may
signal through increase in cytosolic Ca?* activity (12, 16-27). On
the other hand, Ca?" has been shown to stimulate phospholipase
A, leading to formation of the leukotriene precursor arachidonic
acid and leukotrienes (28-31).

The present study was performed to elucidate, whether
cysteinyl-leukotrienes participate in the stimulation of Ca?*entry
and subsequent eryptosis of mature erythrocytes following
glucose withdrawal. As a first step, Western blotting was
performed to determine expression of cysLT1. In a second step,
the formation of cysteinyl-leukotrienes C4, D4 and E4 was

determined in the presence and absence of glucose. In a third
step the effects of cysteinyl-leukotriene C, on cytosolic Ca*"
activity, cell volume, caspase 3 and 8 activity, and cell
membrane scrambling were explored. In a final step, the effects
of the cysLT1 antagonist cinalukast (32) or of inhibition of the 5-
lipoxygenase (33) using the inhibitor BW B70C on eryptosis
following energy depletion were determined.

MATERIALS AND METHODS

Erythrocytes, solutions, and chemicals

Experiments were performed at 37°C with banked
erythrocyte concentrates provided by the blood bank of the
University of Tubingen (34). According to legislative standards
in Germany, 1 pl of the erythrocyte concentrate could have
contained at most 150 leukocytes compared to 107 erythrocytes.
In erythrocyte concentrates leukocytes are, therefore, depleted
by a factor of at least 2000 as compared to whole blood. The
study was approved by the ethics committee of the University of
Tubingen (184/2003V).

Ringer solution contained (in mM): 125 NaCl, 5 KCl, 1
MgSO,, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic
acid (HEPES), 5 glucose, 1 CaCl,; pH 7.4.

Leukotriene B4 and C4, the CysLT1 antagonist cinalukast,
and the 5-lipoxygenase inhibitor BW B70C were purchased
from Sigma (Schnelldorf, Germany). Leukotriene C4 was stored
under argon gas to prevent degradation. Leukotriene B4 was
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dissolved in ethanol, leukotriene C4 in methanol. The effect of
the solvent methanol was investigated as follows: In the
experiments shown in Fig. 34,B, 44,B, and 54,B,C,D,E,F the
control samples contained the same amount of methanol as the
samples treated with the highest concentration of Leuktriene C,
shown in the respective figure.

FACS analysis of annexin V-binding and forward scatter

FACS analysis was performed as described (35, 36). After
incubation, cells were washed in Ringer solution containing 5 mM
CaCl,. Erythrocytes were stained with Annexin V-Fluos (Roche,
Mannheim, Germany) at a 1:500 dilution. After 15 min, samples
were measured by flow cytometric analysis (FACS-Calibur from
Becton Dickinson; Heidelberg, Germany). Cells were analysed by
forward scatter, and annexin V fluorescence intensity was
measured in fluorescence channel FL-1 with an excitation
wavelength of 488 nm and an emission wavelength of 530 nm.

Measurement of intracellular Ca**

Intracellular Ca** was measured 48 hours after incubation as
described previously (9, 37, 38). Briefly, erythrocytes were
washed in Ringer solution and then loaded with Fluo-3/AM
(Calbiochem; Bad Soden, Germany) in Ringer solution containing
5 mM CaCl, and 2 uM Fluo-3/AM. The cells were incubated at
37°C for 20 min and washed twice in Ringer solution containing
5 mM CaCl,. The Fluo-3/AM-loaded erythrocytes were
resuspended in 200 pl Ringer. Then, Ca**-dependent fluorescence
intensity was measured in fluorescence channel FL-1. To study
leukotriene Cgy-induced Ca?* uptake of erythrocytes at
physiologically low concentrations, erythrocytes were stained
with Fluo3 in Ringer containing 5 mM Ca?" as decribed above.
Then, erythrocytes were further handled in a box filled with argon
gas to prevent leukotriene C, degradation. The samples were
purged by argon gas for 2 minutes to remove oxygen.
Subsequently, the samples were kept under argon gas for different
time periods in the absence or presence of 10 nM leukotriene C4.
Then, Fluo3-dependent fluorescence was determined as a measure
of the cytosolic Ca?* concentration as described above.

Determination of leukotriene formation

5x108 erythrocytes taken from erythrocyte concentrates were
incubated in Ringer solution either with or without 5 mM glucose

for 24 hours. After incubation, cells were pelleted by centrifugation
at 4°C, 450 g for 5 min. The supernatants were removed and stored
at -80°C. Leukotriene C,,D,,E, concentrations in the supernatant
were determined using the Cysteinyl Leukotriene Enzyme
Immunoassay Kit (Assay Designs, Ann Arbor, MI, USA)
according to the manufacturer's instructions. Leukotriene release
from erythrocytes is expressed as pg cysteinyl leukotriene
determined in the supernatant per 10° erythrocytes. Despite the
high depletion factor leukocyte contaminations could in theory
account for leukotriene formation. To rule out this possibility, 50 ul
fresh whole blood and erythrocytes were similarly exposed to
37°C, and leukotriene formation was detected. As a result,
leukotriene formation in whole blood was at the most 10 times
higher than in erythrocyte concentrates (data not shown). Thus, the
contribution of the residual leukocytes in the erythrocyte
concentrates was too low to significantly bias the result.

Immunoblotting

100 pl whole blood, buffy coat or concentrates of banked
erythrocytes were washed in Ringer solution and then
hypotonically lysed in 50 ml of 20 mM HEPES/NaOH (pH 7.4)
containing a cocktail of protease inhibitors composed of 2.5 mM
EDTA, 10 pg/ml pepstatin A, 10 pg/ml leupeptin, 5 pg/ml
aprotinin, and 0.1 mM phenylmethylsulfonyl fluoride (PMSF)
from Roche (Mannheim, Germany) at 4°C. Membranes were
pelleted (15,000 rpm for 20 min at 4°C). Then, membranes were
solubilized in 125 mM NaCl, 25 mM HEPES/NaOH (pH 7.3), 10
mM EDTA, 10 mM Na-pyrophosphate, 10 mM NaF, 0.1% SDS,
0.5% deoxycholic acid, 1% Triton-X-100, 0.4% (-
mercaptoethanol. The protein concentration of the samples was
determined with the Bradford method (Biorad, Munchen,
Germany) with bovine serum albumin (BSA; Sigma) as standard.
Equal amounts of lysate protein (40 pg per lane) were separated
by 10% SDS-PAGE, and proteins were transferred to a PVDF
membrane. After blocking with 5% nonfat milk in TBS-0.1%
Tween 20 at room temperature for 1 h, the blot was probed at 4°C
overnight with a commercial rabbit CysLT lantibody (Gene Tex,
Hiddenhausen, Germany; 1:500 dilution in TBS-0.1% Tween 20
- 5% nonfat milk). After washing in TBS-0.1% Tween 20, the blot
was incubated with a secondary anti-rabbit antibody (1:2000 in
TBS-0.1% Tween 20 - 5% nonfat milk) conjugated with
horseradish peroxidase (Amersham, Freiburg, Germany) for 1 h
at room temperature. Antibody binding was detected with the
enhanced chemoluminescence ECL kit (Amersham).
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Fig. 1. Expression of the leukotriene
receptor CysLT1 in human erythrocytes.
A. Original Western Blot demonstrating
the expression of CysLT1 in membrane
preparations of enriched leukocytes
(buffy coat), whole blood cells (whole
blood) and human erythrocytes (RBC).
B. Examination of CysLT1 expression
in erythrocytes from a whole blood
. - | preparation by confocal microscopy.
~ & | The left panels show CysLT1-dependent
- fluorescence in human erythrocytes. For
9 comparison, the right panel shows the
corresponding  transmission  light
photograph.
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Fig. 2. Effect of glucose depletion on leukotriene formation in
human erythrocytes. Arithmetic means + SEM (n = 4-5) of
leukotriene C,/D,/E; abundance determined by competitive
immunoassay in the supernatant following a 24 hours incubation
of human erythrocytes at 37°C in glucose-containing (open bar)
and glucose-deficient (closed bar) Ringer. * indicates significant
difference from presence of glucose (P < 0.05, #-test).

Confocal microscopy

Fresh EDTA whole blood was taken and suspended in PBS
at a cell density of 5*¥107 cells/ml. 20 pl of the suspension were
smeared onto a glass slide, air dried for 30 min, and then fixed
with methanol for 2 min. After four washing steps with PBS for
10 min, the specimen was blocked by incubation with 10% goat
serum. Following three washing steps with PBS for 5 min, the
specimen was incubated with rabbit CysLT1 antibody (Gene
Tex; 1:200) at 4°C overnight. The slide was washed again three
times for 5 min and then incubated with Cy3-conjugated
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Affinipure goat anti-rabbit antibody (Jackson Immuno Research,
Hamburg, Germany) at room temperature for 1.5 h. Then, the
specimen was mounted using Prolong® Gold antifade reagent
(Invitrogen, Karlsruhe, Germany). Images were taken on a Zeiss
LSM 5 EXCITER Confocal Laser Scanning Microscope (Carl
Zeiss Microlmaging GmbH, Germany) with a water immersion
Plan-Neofluar 40/1.3 NA DIC.

Caspase 3 and 8 assays

After incubation in the presence of LTC, or of vehicle alone,
the activities of caspase 3 and 8 were determined independently
using the CaspGlow Fluorescein Active Caspase-3 or -8 Staining
kits from BioVision (Mountain View, CA, USA) according to
the provided protocols.

Statistics

Data are expressed as arithmetic means = SEM, and
statistical analysis was made by paired or unpaired t-test or
ANOVA using Tukey's test as post hoc test, as appropriate.

RESULTS

The cysteinyl-leukotriene receptor CysLT1 is expressed in
haematopoetic progenitor cells (10). Accordingly, we explored,
whether the receptor is similarly expressed in mature erythrocytes.
As illustrated in Fig. 14, in erythrocyte membrane preparations a
specific antibody directed against CysLT1 indeed bound to a
protein band with the correct size (right lanes). The same band was
readily detected in membrane preparations of whole blood cells
containing leukocytes as well as in the membrane preparation of a
buffy coat enriched in leukocytes. Further experiments were
performed to determine CysLT1 expression in human erythrocytes
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Fig. 3. Effects of Leukotriene C, on cytosolic
Ca?* concentration. A. Histogram of Fluo3
fluorescence in a representative experiment of
erythrocytes from healthy volunteers exposed to
Ringer solution without (-) or with 10 pM
leukotriene C, (+) for 48 hours at 37°C. B. Dose
dependence of the effect of leukotriene C, on
Fluo3 fluorescence. Arithmetic means + SEM (n
= 12-20) of the normalized geo means of Fluo3
fluorescence of erythrocytes exposed to Ringer
solution without (white bar) or with leukotriene
C, (black bars) at the indicated concentrations
for 48 hours at 37°C. *** (P < 0.001, ANOVA)
indicates significant difference from values in
the absence of leukotriene. C. Histogram of
Fluo3 fluorescence in a representative
experiment of erythrocytes from healthy
volunteers exposed to Ringer solution without
(-) or with 10 nM leukotriene C, (+) in argon gas
for 15 minutes. D. Arithmetic means + SEM (n=
8-10) of Ca?*-dependent Fluo3 fluorescence of
erythrocytes incubated in argon gas to prevent
leukotriene degradation at room temperature for
the indicated time periods in the absence (open
bars) or presence (closed bars) of 10 nM
leukotriene C,. * (P < 0.05, paired #-test)
indicates significant difference from the absence
of leukotriene C,.
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Fig. 4. Effects of Leukotriene C, on erythrocyte forward scatter.
A. Histogram of forward scatter in a representative experiment
of erythrocytes from healthy volunteers exposed to Ringer
solution without (-) or with 5 uM leukotriene C4 (+) for 48
hours. B. Dose dependence of the effect of leukotriene C, on
forward scatter. Arithmetic means = SEM (n = 12-16) of the
normalized forward scatter of erythrocytes exposed to Ringer
solution without (white bar) or with leukotriene C, (black bars)
at the indicated concentrations for 48 hours. *** (P < 0.001)
indicates significant difference from values in the absence of
leukotriene (ANOVA).

using confocal microscopy. As shown in Fig 1B, confocal
microscopy of a preparation of human whole blood indeed
revealed the expression of CysLT1 on human erythrocytes.

In a next step, we explored the possibility that erythrocytes
synthesize cysteinyl-leukotrienes. As shown in Fig. 2, a
competitive immune assay indeed detected -cysteinyl-
leukotrienes in the medium (Ringer solution) of incubated
erythrocytes. Moreover, the assay revealed that glucose
depletion significantly increased the formation of cysteinyl-
leukotrienes. Due to extreme instability of the different cysteinyl
leukotrienes we could not discriminate between LTC,, LTD, and
LTE,. All three leukotrienes are known to activate cysLT1 (12).

Erythrocytes express cation channels permeable to Ca?* (39).
Activation of those channels is expected to increase the cytosolic
Caz* concentration. Therefore, Fluo3 fluorescence was
employed to determine cytosolic Ca?" activity in erythrocytes
prior to and following treatment with different concentrations of
cysteinyl-leukotriene LTC,. As demonstrated in Fig. 34, B,
LTC,-treatment was indeed followed by a significant increase in
the cytosolic Ca?* concentration. In contrast, leukotriene LTB4
did not significantly modify the cytosolic Ca?* concentration
(data not shown). LTC4 is known to be extremely instable. This
might be the reason for the high concentrations of leukotrienes
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Fig. 5. Stimulation of phosphatidylserine
exposure and caspase activation by Leukotriene
C,. A. Histogram of annexin V-binding in a
representative experiment of erythrocytes from
healthy volunteers exposed to Ringer solution
without (-) or with 5 uM leukotriene C, (+) for
48 hours. B. Dose dependence of the effect of
leukotriene C, on phosphatidylserine exposure.
Arithmetic means + SEM (n = 12-20) of the
percentage of annexin V-binding erythrocytes
exposed to Ringer solution without (white bar)
24 or with leukotriene C, (black bars) at the
indicated concentrations for 48 hours. *** (P <
0.001) indicates significant difference from
values in the absence of leukotriene (ANOVA).
C. Histogram of caspase 3-dependent
fluorescence of erythrocytes exposed for 48
hours to Ringer solution without (1) or with 5
UM leukotriene C, in the absence (2) or
presence (3) of pancaspase inhibitor zVAD-
FMK. D. Arithmetic means + SEM (n = 10-12)
of the percentage of erythrocytes with activated
caspase 3 after exposure to Ringer solution
without (white bar) or with 5 uM leukotriene C,
in the absence (black bar) or presence of

fluorescence [rel units] B pancaspase inhibitor ZVAD-FMK (grey bar) for
E F 80+ 48 hours. *** (P < 0.001) indicates significant
T e difference from values in the absence of

SE leukotriene (ANOVA). ## (P < 0.01) indicates

2 5 604 significant difference from the absence of

g_g zVAD-FMK. E. Histogram of caspase 8-

.$ ol 40- dependent fluorescence of erythrocytes exposed

o 8 to Ringer solution without (1) or with 5 uM

% g leukotriene C, (2) for 48 hours. F. Arithmetic
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Fig.6. Inhibition of eryptosis by the CysLT1 antagonist cinalukast during energy depletion. A. Histogram of annexin V-binding in a
representative experiment of erythrocytes incubated in Ringer solution free of glucose in the absence (-) or presence (+) of cinalukast
(1 uM) for 48 hours. B. Arithmetic means + SEM (n = 32) of the percentage of annexin V-binding erythrocytes after a 48 hours treatment
with Ringer solution in the presence (left bars) or absence (right bars) of glucose in the absence (white bars) or presence (black bars) of
cinalukast (1 uM). *** indicates significant difference (ANOVA, P < 0.001) from control (presence of glucose). # indicates significant
difference (ANOVA, P < 0.05) from absence of cinalukast. C. Arithmetic means + SEM (n = 28) of normalized forward scatter of
erythrocytes after a 48 hours treatment with Ringer solution in the presence (left bars) or absence (right bars) of glucose in the absence
(white bars) or presence (black bars) of cinalukast (1 pM). *** indicates significant difference (ANOVA, p<0.001) from control
(presence of glucose). ## indicates significant difference (ANOVA, P < 0.01) from absence of cinalukast.
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Fig.7. Inhibition of eryptosis by the 5-lipoxygenase inhibitor BW B70C during energy depletion. A. Histogram of annexin V-binding in
a representative experiment of erythrocytes incubated in Ringer solution free of glucose in the absence (-) or presence (+) of BW B70C
(1 uM) for 48 hours. B. Arithmetic means £ SEM (n = 19-20) of the percentage of annexin V-binding erythrocytes after a 48 hours
treatment with Ringer solution in the presence (left bars) or absence (right bars) of glucose in the absence (white bars) or presence (black
bars) of BW B70C (1 uM). *** indicates significant difference (ANOVA, P < 0.001) from control (presence of glucose). # indicates
significant difference (ANOVA, P < 0.05) from absence of BW B70C. C. Arithmetic means = SEM (n = 19-20) of normalized forward
scatter of erythrocytes after a 48 hours treatment with Ringer solution in the presence (left bars) or absence (right bars) of glucose in the
absence (white bars) or presence (black bars) of BW B70C (1 uM). *** indicates significant difference (ANOVA, p<0.001) from control
(presence of glucose). ### indicates significant difference (ANOVA, P < 0.001) from absence of BW B70C.

required to induce Ca?" influx into erythrocytes within 48 hours alterations of cell volume. As shown in Fig. 4, LTC,-treatment
of incubation. To check this possibility, erythrocytes were was indeed followed by a decrease of forward scatter.
exposed to 10 nM LTC4 in argon gas to prevent LTC4 An increase in the cytosolic Ca?" concentration is further
degradation for different time periods, and Ca?>*-dependent Fluo3 expected to trigger scrambling of the cell membrane with
fluorescence was monitored. As shown in Fig. 3C, D, 10 nM phosphatidylserine exposure at the cell surface (41, 42). Annexin
LTC4 induced a significant increase in the cytosolic Ca? V-binding to phosphatidylserine at the cell surface was utilized
concentration of erythrocytes within 5 min at room temperature. to detect cell membrane scrambling. As displayed in Fig. 54, B,
An increase in the cytosolic Ca?* concentration is expected the treatment of erythrocytes with LTC, indeed significantly
to activate Ca’*-sensitive K* channels with subsequent exit of enhanced the percentage of annexin V-binding erythrocytes.
KCl and osmotically obliged water and thus to shrink the cells LTB,, applied at the same concentrations, did not induce

(40). Accordingly, the forward scatter was determined to depict appreciable annexin V-binding of erythrocytes (data not shown).
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Further experiments revealed that LTC,-induced eryptosis is
associated with activation of caspases. As shown in Fig. 5C, D,
LTC, led to activation of caspase 3, an effect, significantly
blunted in the presence of the pancaspase inhibitor zZVAD-FMK
(Fig. 5C, D). Similarly, caspase 8 activity was significantly
enhanced upon incubation in the presence of LTC, (Fig. 5E, F).

A further series of experiments explored, whether the
activation of the cysteinyl-leukotriene receptor cysLT1 is
involved in the stimulation of phosphatidylserine exposure and
cell shrinkage during energy depletion as suggested from
increased endogenous leukotriene formation during enery
depletion (Fig. 2). As illustrated in Fig. 64, B, the cysLTl1
inhibitor cinalukast (1 uM) significantly blunted the effect of
glucose withdrawal on cell membrane scrambling. Moreover,
cinalukast significantly blunted erythrocyte shrinkage following
glucose withdrawal as deduced from forward scatter (Fig. 6C).

If suicidal cell death of energy-depleted erythrocytes is indeed
mediated by endogenously formed leukotrienes, inhibition of the
S-lipoxygenase should blunt phosphatdidylserine exposure and
cell shrinkage following enery depletion. As shown in Fig. 74, B,
exposure of energy-depleted erythrocytes to 1 uM of the selective
5-lipoxygenase inhibitor BW B70C indeed significantly blunted
phosphatidylserine exposure. Similarly, inhibition of the 5-
lipoxygenase significantly reduced the cell shrinkage following
energy depletion (Fig. 7C).

DISCUSSION

The present study discloses a novel function of leukotrienes,
i.e. the stimulation of eryptosis. The cysteinyl-leukotriene C,
presumably activates cation channels leading to influx of Ca?*,
cell shrinkage, and phosphatidylserine exposure at the
erythrocyte surface. As glucose withdrawal enhances the
formation of cysteinyl-leukotrienes, the effects participate in the
signaling of eryptosis during energy depletion. Accordingly,
antagonizing the cysteinyl-leukotriene receptor CysLT1 by
cinalukast or inhibition of the 5-lipoxygenase by BW B70C blunt
the eryptosis following glucose withdrawal and energy depletion.

While nothing has previously been known about
leukotriene-induced increase in cytosolic Ca?* activity and
suicidal death of erythrocytes, several studies disclosed a role of
leukotrienes in the regulation of cytosolic Ca?* activity and cell
survival of nucleated cells. Specifically, cysteinyl leukotrienes
were shown to stimulate Ca?" entry into mast cells (43).
Interestingly, Ca?* influx into mast cells was followed by
stimulation of leukotriene formation (44, 45). Leukotrienes
further increase cytosolic Ca?* activity in human bronchiolar
smooth muscle cells (46, 47), eosinophil leukocytes (48) and
macrophages (49). Leukotrienes are further known to
participate in volume regulation of nucleated cells (50). Ca?*
entry in turn is well known for its ability to trigger apoptosis
(51). Several, partially conflicting observations demonstrate a
role of leukotrienes in the regulation of cell survival (52-54).
Cysteinyl leukotrienes are involved in the apoptotic effect of
energy depletion in the brain (55), and leukotrienes have been
shown to stimulate apoptosis (56). In contrast, leukotriene D4
has been shown to confer survival of intestinal cells (57), and
inhibition of lipoxygenase inhibits proliferation (58) and
stimulates apoptosis (59-61) of colon cancer cells. Similarly,
blockage of the CysLT1 receptor enhances apoptosis of prostate
cancer cells (62). Lipoxygenase further confers survival of
neuroblastoma cells (63).

In erythrocytes, the increase in phosphatidylserine
exposure is the result of Ca?*-sensitive scrambling of the cell
membrane (41, 42), the cell shrinkage due to activation of
Ca?*-sensitive K* channels with subsequent K* exit,

hyperpolarization, and exit of CI~ together with osmotically
obliged water, thus eventually leading to cell shrinkage (40).
The cell shrinkage then contributes to the triggering of
scrambling of the cell membrane (64). In addition to cell
membrane scrambling and cell shrinkage, increased cytosolic
Ca?" activity affects the architecture of the cytoskeleton (65,
66) and activates several enzymes such as transglutaminase
(67), phospholipases (68), calpain (67), protein kinases, and
phosphatases (69, 70). Calpain-dependent degradation of
membrane proteins leads to membrane blebbing, a further
hallmark of eryptosis (41, 42).

Eryptosis eventually results in disposal of affected
erythrocytes (2), as phosphatidylserine-exposing erythrocytes
are engulfed by macrophages equipped with phosphatidylserine
receptors (71) and thus eliminated from circulating blood (72).
Phosphatidylserine-exposing erythrocytes could further adhere
to the vascular wall and thus compromise microcirculation (73,
74). Suicidal erythrocytes have thus been proposed to participate
in vascular injury of metabolic syndrome (75). Leukotrienes are
known to interfere with microcirculation, an effect mainly
attributed to their effect on vascular smooth muscle cells (76,
77). Along those lines, inhibition of leukotriene formation may
counteract atherosclerosis (78, 79).

Leukotrienes may not only be involved in the triggering of
eryptosis by energy depletion. Phosphatidylserine exposure in
erythrocytes could be elicited by ligation of several surface
antigens, such as glycophorin-C (80), the thrombospondin-1
receptor CD47 (81), and the death receptor CD95/Fas (82).
Moreover, phosphatidylserine exposure or eryptosis is
triggered by a wide variety of chemicals and drugs (83-87).
Cell membrane scrambling is further stimulated by sepsis
(88), iron deficiency (72), phosphate depletion (89),
Hemolytic Uremic Syndrome (90), malaria (91, 92), Wilson's
disease (93), glucose-phosphate dehydrogenase deficiency
(94) and hemoglobinopathies (95). Future studies shall reveal,
to which extent leukotrienes participate in the respective
signalling of eryptosis.

Leukotrienes may similarly affect survival of nucleated
cells. Apoptotic cells may release leukotrienes (96). Leukotriene
D4 has been shown to induce apoptosis, an effect thought to be
mediated by CysLT2 (97). Overexpression of CysLT1 rather
attenuated apoptosis of PC12 cells (97), and CysLT1 inhibition
enhanced apoptosis of intestinal cells (98). On the other hand,
the CysLT1 inhibitor montelukast reversed leukocyte apotosis in
chronic renal failure (99). The antiapoptotic effect of leukotriene
D4 has been attributed to gene transcription (100), which cannot
apply in erythrocytes. In nucleated cells, Ca?* signaling may
indeed play a dual role. While Ca?" oscillations stimulate cell
proliferation and confer cell survival (101), sustained increases
in cytosolic Ca?" could trigger suicidal cell death (102). The
stimulation of Ca?" entry in erythrocytes has uniformly been
shown to stimulate suicidal erythrocyte death (2).

In conclusion, erythrocytes express the leukotriene receptor
CysLT1. Energy depletion of erythrocytes triggers the formation
of leukotrienes, which in turn stimulates caspases and activates
cation channels, leading to Ca?* entry with subsequent cell
membrane scrambling and cell shrinkage. The present
observations unravel a novel element in the complex machinery
regulating suicidal erythrocyte death.
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