Harvey Arellano-Garcia

Harvey Arellano-Garcia
  • Prof. Dr.-Ing.
  • Professor (Full) at University of Surrey

About

349
Publications
47,160
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,505
Citations
Current institution
University of Surrey
Current position
  • Professor (Full)

Publications

Publications (349)
Article
Full-text available
Industry 4.0 aims to transform chemical and biochemical processes into intelligent systems via the integration of digital components with the actual physical units involved. This process can be thought of as the addition of a central nervous system with a sensing and control monitoring of components and regulating the performance of the individual...
Article
The development of robust nickel catalysts on porous substrates offers great potential for converting carbon dioxide (CO2) into methane, thereby helping to address the global warming and sustainability challenges. This study investigates the dispersion and stability of Ni nanolayers by grafting bifunctional groups over the hierarchical zeolite 13X...
Conference Paper
Dimethyl ether (DME, methoxymethane) is a clean-burning fuel and a promising alternative to conventional fossil fuels, especially in transportation and power generation. Its production from methanol through dehydration offers a viable pathway toward energy sustainability, not only because of its environmental benefits but also due to the high purit...
Conference Paper
Multiphase systems, particularly trickle bed reactors (TBRs), are critical in various industrial applications and widely employed in catalytic processes such as hydrogenation and oxidation due to their high surface area, low operational and minimal catalyst loss. Despite advancements in modelling techniques, accurately capturing the complex multiph...
Conference Paper
Industrial sectors contribute substantially to global CO2 emissions, emphasizing the need for low-carbon, reliable energy supplies to meet operational demands. Achieving net-zero emissions in industrial processes involves transitioning from fossil fuels to renewable energy sources. However, the intermittent nature of renewables poses challenges to...
Article
This paper explores the optimization of microgrid design and operation for residential distributed energy systems in Brazil, addressing the growing demand for sustainable energy in the context of climate change. A decision-making framework based on Mixed-Integer Nonlinear Programming (MINLP) is proposed to integrate distributed energy resources (DE...
Preprint
Full-text available
This study presents the photocatalytic degradation of the aminophosphonate ethylenediaminetetra(methylenephosphonic acid) (EDTMP) with a range of different doped nanoparticles (NP). The photocatalysts were based on TiO2 benchmark P25 and gold (Au) doped either with sodium (Na), potassium (K) or yttrium (Y). The synthesized photocatalysts were chara...
Article
Fischer-Tropsch synthesis (FTS) offers a promising route for producing sustainable jet fuels from syngas. However, optimizing catalyst design and operating conditions for the ideal C8-C16 jet fuel range is challenging. Thus, this work introduces a machine learning (ML) framework to enhance Co/Fe-supported FTS catalysts and optimize their operating...
Article
Full-text available
This study presents the photocatalytic degradation of the aminophosphonate ethylenediaminetetra(methylenephosphonic acid) (EDTMP) with a range of different doped nanoparticles (NP). The photocatalysts were based on TiO2 benchmark P25 and gold (Au) doped either with sodium (Na), potassium (K) or yttrium (Y). The synthesized photocatalysts were chara...
Conference Paper
Sustainable hydrogen production as a new energy vector is of fundamental importance for the transition to a low-carbon economy. One way to produce sustainable hydrogen is through the dry reforming of biogas, a gas generated by the decomposition of organic matter and composed mainly of methane (CH4) and carbon dioxide (CO2). Dry reforming of biogas...
Conference Paper
Currently, the competitive global landscape and dynamic market requirements have increased the importance of producing value-added chemicals and synthetic fuels. The analysis of such products poses challenges due to the strong and complicated relationships between ingredients, final products, and the processing conditions. Creating models to descri...
Conference Paper
Multiphase reactors, such as trickle bed reactors (TBRs), play a paramount role in industry and are extensively used for chemical and petrochemical applications, due to their large contact surface area, low operational cost and catalyst loss. Despite recent advancements in understanding catalyst bed specifications, flow distribution, transport and...
Conference Paper
The complex and large-scale nature of deep learning networks (DLNs) frequently results in computationally intensive least-squares fitting optimization tasks during training. Furthermore, issues like vanishing or exploding gradients add complexity, underscoring the importance of selecting suitable methods for their effective training 1. Thus, new st...
Conference Paper
Hydrogen, a promising fuel option, is not only known for its relatively high heating value, but also because it does not emit CO2 during combustion. However, current storage methods are energy-intensive and reliant on costly materials. To store useable amounts, compression to 1000 barg in gaseous form or cooling to-253 o C in liquid form at atmosph...
Conference Paper
Palavras-Chave: Catalise; energia renovável; gás de síntese. Introdução A produção sustentável de hidrogênio como um novo vetor energético é de fundamental importância para a transição para uma economia de baixo carbono. Uma maneira de produzir hidrogênio sustentável é por meio da reforma a seco do biogás, um gás gerado pela decomposição da matéria...
Article
Progress in the modeling of structured catalysts is crucial for enhancing efficiency and scalability in industrial applications. Extensive research has investigated reactive flows over catalyst surfaces, covering chemical kinetics analysis and (direct) numerical simulations of the complete fluid flow in fixed-bed or structured catalysts. Nonetheles...
Conference Paper
Catalytic conversion of carbon dioxide into methane using hierarchical zeolite 13X supported Ni catalysts
Conference Paper
Sensitivity and gradient evaluations are essential for understanding the variability of a system subject to changes in input parameters, aiding in applications such as optimization, control, or decision-making processes (Castillo et al., 2008; Logsdon and Biegler, 1989, Horn and Tsai, 1967). Various approaches are available for the gradient evaluat...
Conference Paper
In recent years, the industrial revolution has led to a notable enhancement in the efficiency and sustainability of heterogeneous catalytic processes designed for the production of green fuel sources, a concept widely recognized as "process intensification". Through the integration of catalysis and additive manufacturing, novel avenues have emerged...
Article
Established as a sub-discipline of Chemical Engineering in the 1960s by the late Professor R.W.H. Sargent at Imperial College London, Process Systems Engineering (PSE) has played a significant role in advancing the field, positioning it as a leading engineering discipline in the contemporary technological landscape. Rooted in Applied Mathematics an...
Article
Full-text available
The necessity for high operational temperatures presents a considerable obstacle to the commercial viability of solid oxide fuel cells (SOFCs). The introduction of active co-dopant ions to polycrystalline solid structures can directly impact the physiochemical and electrical properties of the resulting composites including crystallite size, lattice...
Conference Paper
mmary Machine learning (ML) brings new opportunities in the field of heterogenous catalysis and reaction engineering. Here, the advancements brought by ML in the field of kinetic studies are reviewed.
Conference Paper
The development and utilization of core-shell structures have prompted a fresh round of innovation in the field of catalysis 1 . This work sheds light on the synergy between advanced catalyst architectures and process intensification in the realm of sustainable fuel synthesis. The main focus is to propose a new catalyst structure that consists of a...
Conference Paper
Considering the increasing demand for clean and sustainable aviation fuel, in this study, cobalt bifunctional catalysts are used to convert syngas from biomass to aviation fuel. Thus, Cobalt (Co) is used as the active metal to catalyze the formation of long chain hydrocarbons, mostly paraffins. An acidic support is needed to break these long chain...
Conference Paper
Perovskite-type oxides (PTOs) ABO3, are promissory candidates in the field of heterogeneous catalysis to serve as intelligent catalysts or supports. The flexible structure of perovskite materials is capable of accepting a wide range of substitutions with the formation of lattice oxygen vacancies. The oxygen vacancies played vital role to develop th...
Article
Full-text available
Engineering the interfacial interaction between the active metal element and support material is a promising strategy for improving the performance of catalysts toward CO2 methanation. Herein, the Ni-doped rare-earth metal-based A-site substituted perovskite-type oxide catalysts (Ni/AMnO3; A = Sm, La, Nd, Ce, Pr) were synthesized by auto-combustion...
Conference Paper
Carbon dioxide (CO2) methanation using renewable hydrogen (H2) is a viable route for CO2 valorization, which contributes to the development of a sustainable energy society. The direct conversion of CO2 (Equation 1) to useful products offers an effective solution to mitigate its impact on the eco-system. Moreover, it facilitates the integration of s...
Conference Paper
Recent years have seen growing concerns over greenhouse gas emissions from fossil fuels and the depletion of this finite energy source, prompting the exploration of alternative solutions. A notable approach gaining considerable attention involves the integration of bio-refineries into traditional oil refineries. This strategy aims to address enviro...
Poster
Full-text available
We discuss the fluid mechanics modeling of structured catalysts for use on carbon dioxide (CO2) methanation. Various zero-dimensional (0-D) and three-dimensional (3-D) homogeneous models are evaluated in order to allow better informed modeling decisions.
Article
Using biomass as a renewable resource to produce biofuels and high-value chemicals through fast pyrolysis offers significant application value and wide market possibilities, especially in light of the current energy and environmental constraints. Bio-oil from fast-pyrolysis has various conveniences over raw biomass, including simpler transportation...
Article
Using biomass as a renewable resource to produce biofuels and high-value chemicals through fast pyrolysis offers significant application value and wide market possibilities, especially in light of the current energy and environmental constraints. Bio-oil from fast-pyrolysis has various conveniences over raw biomass, including simpler transportation...
Article
In this work, the influence of uncertain parameters on the maintenance scheduling of Reverse Osmosis Networks (RONs) is explored. Based on a foundation of successful applications in various maintenance optimization domains, this paper extends the methodology to the domain of RON regeneration actions planning, highlighting its adaptability to divers...
Article
Deep neural networks (DNNs) are frequently employed for information extraction in big data applications across various domains; however, their application in real-time industrial systems is hindered by constraints such as limited computational, storage capacity, energy availability, and time constraints. This contribution introduces the development...
Conference Paper
Control loop design, as well as controller tuning, constitute the pillars of process control to achieve design specifications and smooth process operation, and to meet predefined performance criteria. Currently, state-of-the-art approaches have focused on methods that yield only the pairings between input and output methods, and are not able to inc...
Article
Full-text available
In this work, cosolvent-stabilized superhydrophobic, highly hydrostable ZIF-67 was synthesized at room temperature using a facile, one-pot hydrothermal synthesis route, and the effect of cosolvent concentration on ZIF-67 crystal structure properties and hydrostability was studied systematically. The underlying mechanism for the cosolvent-supported...
Article
Traditional food supply chains are often centralised and global in nature, entailing substantial resource consumption. However, in the face of growing demand for sustainability, this strategy faces significant challenges. Adoption of localised supply chains is deemed a more sustainable option, yet its efficacy requires verification. Supply chain an...
Conference Paper
This work proposes Ni metal supported over rare earth-based emerging perovskite-type oxides as potential catalysts for the CO2 methanation. Presence of oxygen vacancies in perovskite-like materials enable them to exhibit higher catalytic activity. Furthermore, to tune the surface basicity, metal-support interaction and to enhance the activation of...
Conference Paper
A sustainable way to generate hydrogen is through dry biogas reforming, which uses methane gas and carbon dioxide to produce hydrogen. This study reveals partial results of the dry reforming of biogas in NiO-MxOy-Al2O3 catalysts (M=Na, K, Ca and Mg). The CO2 conversion varied between 79% and 94%, the CH4 conversion between 58% and 75%, the H2/CO ra...
Article
Full-text available
Mithilfe einer templatgestützten Synthese wurden poröse Kohlenstoffgerüste unter Verwendung von Silicagel als Templat hergestellt. Die chemische Gasphaseninfiltration (CVI) wurde hierbei als Synthese verwendet. Unter Variation verschiedener Reaktionsparameter zur Optimierung der Kohlenstoffabscheidung wurde dieser Prozess mathematisch modelliert an...
Conference Paper
Different perovskite-type supports considering ABO3 (such as A= Al, La with B=Ce and A=Mg, Mn with B=Zr) were prepared via the sol-gel method. Ni metal loading of 10 wt.% was deposited on prepared perovskite supports via the impregnation method. The catalysts were characterized using XRD and FTIR techniques. The DRM activity was carried out in a tu...
Article
Full-text available
Traditionally, sensitivity analysis has been utilized to determine the importance of input variables to a deep neural network (DNN). However, the quantification of sensitivity for each neuron in a network presents a significant challenge. In this article, a selective method for calculating neuron sensitivity in layers of neurons concerning network...
Article
Distributed energy systems (DES) are promising alternative to conventional centralized generation, with multiple financial incentives in many parts of the world. Current approaches focus on the design optimization of a DES through economic and environmental cost minimization. However, these two criteria alone do not satisfy long-term sustainability...
Article
In this contribution, the model-based development of a novel process concept for the storage and release of ammonia in solids is proposed. The concept is validated by means of the Aspen Plus® process simulator. As a promising prospect, Hexaaminenickel(II) chloride is selected. After a preparative stage, the process can cycle between the storage and...
Article
The Distributed Energy Systems (DES) or microgrid arose from the need to reduce greenhouse gases (GHG) emitted into the atmosphere by burning fossil fuels to generate energy. Reduction of energy losses, reconfiguration of the protection system and reduction of costs, and optimizing the configuration of these systems is recommended. Despite new rese...
Article
In this work, a novel approach based on the multistage optimal control formulation of the control loop selection problem is introduced. Currently, state-of-the-art approaches for controller loop design have been focused on data that yield only the pairings between input-output variables, and are not able to incorporate path and end-point constraint...
Article
Full-text available
The membrane bioreactor (MBR) is an efficient technology for the treatment of municipal and industrial wastewater for the last two decades. It is a single stage process with smaller footprints and a higher removal efficiency of organic compounds compared with the conventional activated sludge process. However, the major drawback of the MBR is membr...
Article
Distributed Energy Systems (DES) can play a vital role as the energy sector faces unprecedented changes to reduce carbon emissions by increasing renewable and low-carbon energy generation. However, current operational DES models do not adequately reflect the influence of uncertain inputs on operational outputs, resulting in poor planning and perfor...
Article
State-of-the-art approaches for membrane cleaning scheduling have focused on the Mixed-Integer Nonlinear Programming (MINLP) formulation so far, a strategy leading to a combinatorial problem that does not capture accurately the dynamic behaviour of the system. In this work, the Reverse Osmosis (RO) cleaning scheduling problem is solved using a nove...
Article
Various pests which diminish the quality of the fruit have a big influence on the organic banana production in the Piura region of Peru (and not only) and prevent it from being sold on the international market. In this study, a framework for facilitating the prediction of the pest incidence in organic banana crops is developed. To achieve this, a d...
Article
Full-text available
This work presents an overview of issues for the modeling of laminar flows in monolith catalysts. Both 0-D and 3-D models are evaluated for a parallel channel structured honeycomb catalyst (PC-HC), and a gyroid 3-D printed structured catalyst (G-3D). At the 0-D homogeneous reactor modeling level, the analysis is focused on the effect of the bulk po...
Article
Full-text available
Biomass gasification streams typically contain a mixture of CO, H2, CH4, and CO2 as the majority components and frequently require conditioning for downstream processes. Herein, we investigate the catalytic upgrading of surrogate biomass gasifiers through the generation of syngas. Seeking a bifunctional system capable of converting CO2 and CH4 to C...
Conference Paper
This work presents an overview of issues for the modeling of laminar flows in monolith catalysts. Both 0-D and 3-D models are evaluated for a parallel channel structured honeycomb catalyst (PC-HC), and a gyroid 3-D printed structured catalyst (G-3D). At the 0-D homogeneous reactor modeling level, the analysis is focused on the effect of the bulk po...
Article
A series of Cu-based catalysts promoted with Fe, Ce and Al supported on cellulose derived carbon (CDC) was prepared by biomorphic mineralization technique for the RWGS reaction. The excellent Cu dispersions (7 nm at ca. 30 wt% Cu) along with the resilience toward metal sintering attained in the entire catalysts series highlight one-pot decompositio...
Article
Seeking for advanced catalytic systems for the CO 2 methanation reaction, the use of Ni supported catalysts over redox materials is often proposed. Profiting the superior redox properties described for layered perovskite systems , this work has investigated a series Ni supported YMn 1-x Al x O 3 (x = 0, 0.2, 0.5, 0.8, 1) perovskite catalysts. The o...
Conference Paper
A first contribution of this paper is an overview of the research efforts and contributions over several decades in the area of scheduling maintenance optimization for decaying performance dynamic processes. Following breakthrough ideas and implementation in the area of heat exchanger networks for optimal scheduling of cleaning actions subject to e...
Conference Paper
In this contribution, a dynamic first principles model of an existing 3.01 MW natural gas fired water bath heater (WBH) in operation at the Takoradi Distribution Station (TDS) in Ghana is developed primarily to predict the outlet temperature of the natural gas stream being heated. The model is intended to be applied during operations to provide use...
Conference Paper
This paper introduces the development of an intelligent monitoring and control framework for chemical processes, integrating the advantages of technologies such as Industry 4.0, cooperative control or fault detection via wireless sensor networks. The system described is able to detect faults using information on the process’ structure and behaviour...
Article
In this work, a custom dynamic mathematical model of an industrial vertical-cylindrical type natural gas fired natural draft heater is developed using gPROMS® ProcessBuilder®. The integrated model comprises sub-models for each of the distinct sections of the fired heater which are connected by mass and energy flows. The temperature profiles of the...
Article
In this work the economic performance of valorizing the gaseous stream coming from hydrothermal carbon-ization (HTC) of olive tree pruning is presented as a novel strategy to improve the competitiveness of HTC. The valorization of the commonly disregarded gaseous stream produced in this thermochemical treatment was proposed via the Reverse Water-Ga...
Article
This work investigates the CO 2 methanation rate of structured catalysts by tuning the geometry of 3D-printed metal Fluid Guiding Elements (FGEs) structures based on periodically variable pseudo-gyroid geometries. The enhanced performance showed by the structured catalytic systems is mostly associated with the capability of the FGEs substrate geome...
Article
Full-text available
This work presents the development of a decision-making strategy for fulfilling the power and heat demands of small residential neighborhoods. The decision on the optimal operation of a microgrid is based on the model predictive control (MPC) rolling horizon. In the design of the residential microgrid, the new approach different technologies, such...
Article
This study delivers useful understanding towards the design of effective catalytic systems for upgrading real CO2–rich residual streams derived from biomass valorization. Within this perspective, a catalysts' series based on (5 wt%) Cu - (X wt%) Mn/Al2O3 with X = 0, 3, 8 and 10 is employed. The improved catalyst performance achieved through Mn inco...
Article
Full-text available
This paper investigates the challenging fault prediction problem in process industries that adopt autonomous and intelligent cyber-physical systems (CPS), which is in line with the emerging developments of industrial internet of things (IIoT) and Industry 4.0. Particularly, we developed an end-to-end deep learning approach based on a large volume o...
Chapter
This contribution introduces a data acquisition and modelling framework for the prediction of banana pests’ incidence. An IoT sensors-based system collects weather and micro-climate variables, such as temperature, relative humidity, and wind speed, which are uploaded in real time to a cloud storage space. The incidence of the red rust thrips (Chaet...
Chapter
In this contribution, the development of a toolbox for the simulation of trickle bed reactors based on a model able to account for the local properties of the liquid and gas flow in a packed bed at particle scale is introduced. The implementation uses a modular and flexible setup, with local liquid distribution considered as a function of the opera...
Article
Using the Umicore process, a current state-of-the-art recycling in the metal recovery industry for lithium battery waste, as a baseline, this contribution examines economic and environmentally friendly solutions for effective metal recovery from spent LIBs. At the same time, possible synergies between existing resource use from other manufacturing...
Article
This work focuses on the development of a mathematical model for the population growth of banana red rust thrips (Chaetanaphothrips signipennis) based on a modified temperature-based growth rate with the addition of climatic variables, such as relative humidity, wind speed and rainfall rate. The aim is to enable better prediction of the pest incide...
Article
This contribution introduces a combined liquid chromatography purification designed for a continuous and resource-efficient process, integrating the rotating columns and the simulated bed principles. The approach is demonstrated and validated based on bisabolol oxides A and B, which are effective ingredients with anti-inflammatory and spasmolytic e...
Article
Employing a series of Cu-MnOx supported catalysts, this work investigates for the first time the impact on the RWGS reaction rate obtained under simulated residual CO2-rich feed streams, i.e., when CO and CH4 species are added to the reaction atmosphere. For this purpose, a simulated gaseous stream was prepared based on real biomass processing resu...
Article
Profitability studies are needed to establish the potential pathways required for viable biomethane production in the Brandenburg region of Germany. This work study the profitability of a potential biomethane production plant in the eastern German region of Brandenburg, through a specific practical scenario with data collected from a regional bioga...
Article
In heterogeneous catalysis, the benefits of employing adequate textural properties on the catalytic performances are usually stated. Nevertheless, the quantification of the extent of improvement is not an easy task since variations on the catalysts' specific areas and pore structures might involve modifications on a number of other surface catalyti...
Article
Different designs of distributed energy resources (DER) systems could lead to different performance in reducing cost, environmental impact or use of primary energy in residential networks. Hence, optimal design and management are important tasks to promote diffusion against the centralised grid. However, current operational models for such systems...
Article
Full-text available
This paper presents a framework for the use of variable pricing to control electricity imported/exported to/from both fixed and unfixed residential distributed energy resource (DER) network designs. The framework shows that networks utilizing much of their own energy, and importing little from the national grid, are barely affected by dynamic impor...
Article
This paper presents a mixed integer linear programming model for the optimal design of a distributed energy resource (DER) system that meets electricity, heating, cooling and domestic hot water demands of a neighbourhood. The objective is the optimal selection of the system components among different technologies, as well as the optimal design of t...
Article
Herein a novel path is analysed for its economic viability to synergize the production of biomethane and dimethyl ether from biogas. We conduct a profitability analysis based on the discounted cash flow method. The results revealed an unprofitable process with high cost/revenues ratios. Profitable scenarios would be reached by setting prohibitive D...
Article
This work proposes an innovative Ni catalyst supported over YMnO 3 perovskite as a promising catalytic system for CO 2 methanation reaction. Under reductive conditions, the attendance of Mn redox couples within the layered perovskite structure promotes the constitution of sub-stoichiometric YMnO 3-x units which, by means of the flexible YMnO 3-x re...
Chapter
This chapter discusses the state of the art of the numerical modeling for carbon capture, storage and utilization (CCSU) technologies, covering the entire chain. The chapter opens with a note on the different modeling techniques available depending on the length and time scale and focuses thereafter on the application of computational fluid dynamic...
Article
Among challenges implicit in the transition to the post-fossil fuel energetic model, the finite amount of resources available for the technological implementation of CO2 revalorizing processes arises as a central issue. The development of fully renewable catalytic systems with easier metal recovery strategies would promote the viability and sustain...
Article
This work analyses the catalytic activity displayed by Cu/SiO2, Cu-Fe/SiO2 and Cu/FSN (Fe-SiO2 nanocomposite) catalysts for the Reverse Water Gas Shift reaction. Compared to Cu/SiO2 catalyst, the presence of Fe resulted on higher CO’s selectivity and boosted resistances against the constitution of the deactivation carbonaceous species. Regarding th...
Article
Full-text available
The aim of this study was to optimize lactic acid production by a native strain (Huil) of Lactobacillus plantarum isolated from a Peruvian Amazon fruit (Genipa americana) in a medium supplemented with an agroindustrial by-product such as sugar cane molasses. Optimization was performed though one-factor-at-a-time studies followed by the Placket-Burm...
Article
Full-text available
This work establishes the primordial role played by the support’s nature when aimed at the constitution of Ni2P active phases for supported catalysts. Thus, carbon dioxide reforming of methane was studied over three novel Ni2P catalysts supported on Al2O3, CeO2 and SiO2-Al2O3 oxides. The catalytic performance, shown by the catalysts’ series, decrea...
Article
The catalytic reduction of CO2 into value-added products has been considered a compelling solution for alleviating global warming and energy crises. The Reverse Water Gas Shift (RWGS) reaction plays a pivotal role among the various CO2 utilization approaches, due to the fact that it produces syngas, the building block of numerous conversion process...
Article
The catalytic reduction of CO2 into value-added products has been considered a compelling solution for alleviating global warming and energy crises. The Reverse Water Gas Shift (RWGS) reaction plays a pivotal role among the various CO2 utilization approaches, due to the fact that it produces syngas, the building block of numerous conversion process...
Article
By evaluating the functional modifications induced by Zr and Fe as dopants in Pt/CeO2‐MOx/Al2O3 catalysts (M = Fe and Zr), the key features for improving water gas shift (WGS) performance for these systems have been addressed. Pt/ceria intrinsic WGS activity is often related to improved H2 surface dynamics, H2O absorption, retentions and dissociati...
Article
This paper demonstrates the benefits of incorporating CO2 utilisation through methanation in the steel industry. This approach allows to produce synthetic methane, which can be recycled back into the steel manufacturing process as fuel and hence saving the consumption of natural gas. To this end, we propose a combined steel-making and CO2 utilisati...
Book
A comprehensive guide that offers a review of the current technologies that tackle CO2 emissions. The race to reduce CO2 emissions continues to be an urgent global challenge. "Engineering Solutions for CO2 Conversion" offers a thorough guide to the most current technologies designed to mitigate CO2 emissions ranging from CO2 capture to CO2 utilizat...

Network

Cited By