Harold Berjamin

Harold Berjamin
University of Galway | NUI Galway · School of Mathematical and Statistical Sciences

PhD
Looking for opportunities (Assistant Professor, Lecturer, Researcher, Scientist)

About

24
Publications
5,249
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
126
Citations
Citations since 2017
22 Research Items
123 Citations
20172018201920202021202220230510152025
20172018201920202021202220230510152025
20172018201920202021202220230510152025
20172018201920202021202220230510152025
Introduction
Postdoctoral Researcher in Applied Mathematics at the University of Galway, Ireland. I work on the propagation of mechanical waves in nonlinear materials. In particular, I study the nonlinear dynamic behavior of viscoelastic and poroelastic solids (theoretical and numerical aspects). This research has various applications in engineering, e.g. in geophysics, biomechanics, nondestructive testing and materials science.
Additional affiliations
October 2019 - present
University of Galway
Position
  • PostDoc Position
October 2018 - September 2019
Ecole Centrale de Marseille
Position
  • Research Assistant
Description
  • Applied Mathematics: Numerical Analysis, Probability Theory, Mathematical Statistics (tutorials, practicals).
September 2016 - September 2018
Ecole Centrale de Marseille
Position
  • Graduate Teaching Assistant
Description
  • Applied Mathematics: Probability Theory, Mathematical Statistics (tutorials, practicals).
Education
October 2015 - October 2018
Aix-Marseille Université
Field of study
  • Engineering Sciences (Acoustics)
September 2012 - September 2015
Ecole Centrale de Marseille
Field of study
  • Mechanics (Acoustics)

Publications

Publications (24)
Article
Full-text available
A time-domain numerical modeling of brass instruments is proposed. On one hand, outgoing and incoming waves inside the resonator are described by the Menguy-Gilbert model, which incorporates three key features: nonlinear wave propagation, viscothermal losses, and a variable section. The nonlinear propagation is simulated by a finite volume scheme w...
Article
Full-text available
In heterogeneous solids such as rocks and concrete, the speed of sound diminishes with the strain amplitude of a dynamic loading (softening). This decrease known as " slow dynamics " occurs at time scales larger than the period of the forcing. Also, hysteresis is observed in the steady-state response. The phenomenological model by Vakhnenko et al....
Article
Full-text available
The effective dynamic properties of specific periodic structures involving rubber-like materials can be adjusted by pre-strain, thus facilitating the design of custom acoustic filters. While nonlinear viscoelastic behaviour is one of the main features of soft solids, it has been rarely incorporated in the study of such phononic media. Here, we stud...
Preprint
Full-text available
Simple strain-rate viscoelasticity models of isotropic soft solid are introduced. The constitutive equations account for finite strain, incompressibility, material frame-indifference, nonlinear elasticity, and viscous dissipation. A nonlinear viscous wave equation for the shear strain is obtained exactly, and corresponding one-way Burgers-type equa...
Article
Full-text available
Experiments have shown that shear waves induced in brain tissue can develop into shock waves, thus providing a possible explanation of deep traumatic brain injuries. Here, we study the formation of shock waves in soft viscoelastic solids subject to an imposed velocity at their boundary. We consider the plane shearing motion of a semi-infinite half-...
Article
Simple strain-rate viscoelasticity models of isotropic soft solid are introduced. The constitutive equations account for finite strain, incompressibility, material frame-indifference, nonlinear elasticity, and viscous dissipation. A nonlinear viscous wave equation for the shear strain is obtained exactly and corresponding one-way Burgers-type equat...
Preprint
Full-text available
Experiments have shown that shear waves induced in brain tissue can develop into shock waves, thus providing a possible explanation of deep traumatic brain injuries. Here, we study the formation of shock waves in soft viscoelastic solids subject to an imposed velocity at their boundary. We consider the plane shearing motion of a semi-infinite half-...
Preprint
Full-text available
The effective dynamic properties of specific periodic structures involving rubber-like materials can be adjusted by pre-strain, thus facilitating the design of custom acoustic filters. While nonlinear viscoelastic behaviour is one of the main features of soft solids, it has been rarely incorporated in the study of such phononic media. Here, we stud...
Article
Full-text available
In soft elastic solids, directional shear waves are in general governed by coupled nonlinear KZK-type equations for the two transverse velocity components, when both quadratic nonlinearity and cubic nonlinearity are taken into account. Here we consider spatially two-dimensional wave fields. We propose a change of variables to transform the equation...
Article
Full-text available
We consider the propagation of nonlinear plane waves in porous media within the framework of the Biot-Coussy biphasic mixture theory. The tortuosity effect is included in the model, and both constituents are assumed incompressible (Yeoh-type elastic skeleton, and saturating fluid). In this case, the linear dispersive waves governed by Biot's theory...
Preprint
Full-text available
We consider the propagation of nonlinear plane waves in porous media within the framework of the Biot–Coussy biphasic mixture theory. The tortuosity effect is included in the model, and both constituents are assumed incompressible (Yeoh-type elastic skeleton, and saturating fluid). In this case, the linear dispersive waves governed by Biot’s theory...
Article
Full-text available
Originating in the field of biomechanics, Fung’s model of quasi-linear viscoelasticity (QLV) is one of the most popular constitutive theories employed to compute the time-dependent relationship between stress and deformation in soft solids. It is one of the simplest models of nonlinear viscoelasticity, based on a time-domain integral formulation. I...
Preprint
Full-text available
In soft elastic solids, directional shear waves are in general governed by coupled nonlinear KZK-type equations for the two transverse velocity components, when both quadratic nonlinearity and cubic nonlinearity are taken into account. Here we consider spatially two-dimensional wave fields. We propose a change of variables to transform the equation...
Preprint
Full-text available
Originating in the field of biomechanics, Fung's model of quasi-linear viscoelasticity (QLV) is one of the most popular constitutive theories employed to compute the time-dependent relationship between stress and deformation in soft solids. It is one of the simplest models of nonlinear viscoelasticity, based on a time-domain integral formulation. I...
Article
Full-text available
Propagation of elastic waves in damaged media (concrete, rocks) is studied theoretically and numerically. Such materials exhibit a nonlinear behavior, with long-time softening and recovery processes (slow dynamics). A constitutive model combining Murnaghan hyperelasticity with the slow dynamics is considered, where the softening is represented by t...
Preprint
Full-text available
Propagation of elastic waves in damaged media (concrete, rocks) is studied theoretically and numerically. Such materials exhibit a nonlinear behavior, with long-time softening and recovery processes (slow dynamics). A constitutive model combining Murnaghan hyperelasticity with the slow dynamics is considered, where the softening is represented by t...
Chapter
Full-text available
This chapter introduces bases of nonlinear mesoscopic elasticity and presents a novel approach to model and numerically simulate the dynamical behavior of this class of material. Under dynamical solicitation, these so-called nonclassical materials exhibit two different time-dependent nonlinear mechanisms termed “fast” (nonlinear elasticity) and “sl...
Thesis
Full-text available
Geomaterials such as rocks and concrete are known to soften under a dynamic loading, i.e., the speed of sound diminishes with forcing amplitudes. To reproduce this behavior, an internal-variable model of continuum is proposed. It is composed of a constitutive law for the stress and an evolution equation for the internal variable. Nonlinear viscoela...
Conference Paper
Full-text available
Rocks and concrete are known to soften under a dynamic loading, i.e. the speed of sound diminishes with forcing amplitudes. To reproduce this behavior, an internal-variable model of continuum is proposed. It is composed of a constitutive law for the stress and an evolution equation for the internal variable. Nonlinear viscoelasticity of Zener type...
Article
Full-text available
A numerical method for longitudinal wave propagation in nonlinear elastic solids is presented. Here, we consider polynomial stress-strain relationships, which are widely used in nondestructive evaluation. The large-strain and infinitesimal-strain constitutive laws deduced from Murnaghan's law are detailed, and polynomial expressions are obtained. T...
Article
Full-text available
A model for longitudinal wave propagation in rocks and concrete is presented. Such materials are known to soften under a dynamic loading, i.e. the speed of sound diminishes with forcing amplitudes. Also known as slow dynamics, the softening of the material is not instantaneous. Based on continuum mechanics with internal variables of state, a new fo...
Article
The equations of 1D elastodynamics write as a 2×2 hyperbolic system of conservation laws. The solution to the Riemann problem (i.e. piecewise constant initial data) is addressed, both in the case of convex and nonconvex constitutive laws. In the convex case, the solution can include shock waves or rarefaction waves. In the nonconvex case, compound...
Preprint
Full-text available
A time-domain numerical modeling of brass instruments is proposed. On one hand, outgoing and incoming waves in the resonator are described by the Menguy-Gilbert model, which incorporates three key issues: nonlinear wave propagation, viscothermal losses, and a variable section. The non-linear propagation is simulated by a TVD scheme well-suited to n...

Network

Cited By