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Abstract. The main goal of the present paper is to solve structural engineer-
ing design optimization problems with nonlinear resource constraints. Real
world problems in engineering domain are generally large scale or nonlinear or
constrained optimization problems. Since heuristic methods are powerful than
the traditional numerical methods, as they don’t requires the derivatives of the
functions and provides near to the global solution. Hence, in this article, a
penalty guided artificial bee colony (ABC) algorithm is presented to search the
optimal solution of the problem in the feasible region of the entire search space.
Numerical results of the structural design optimization problems are reported
and compared. As shown, the solutions by the proposed approach are all supe-
rior to those best solutions by typical approaches in the literature. Also we can
say, our results indicate that the proposed approach may yield better solutions
to engineering problems than those obtained using current algorithms.

1. Introduction. Design optimization can be defined as the process of finding
the optimal parameters, which yield maximum or minimum value of an objective
function, subject to certain set of specified requirements called constraints. Such
problem of optimization is known as constrained optimization problems or nonlinear
programming problems. Most design optimization problems in structural engineer-
ing are highly nonlinear, involving mixed (discrete and continuous) design variables
under complex constraints, which cannot be solved by traditional calculus - based
methods and enumerative strategies [35].

In order to solve these type of problems, several heuristic, global optimization
as well as meta-heuristic methods exist in the literature. For instance, Rags-
dell and Phillips [39] compared optimal results of different optimization methods
that are mainly based on mathematical optimization algorithms. These methods
are APPROX (Griffith and Stewart’s successive linear approximation), DAVID
(Davidon-Fletcher-Powell with a penalty function), SIMPLEX (Simplex method
with a penalty function), and RANDOM (Richardson’s random method) algo-
rithms. Kannan and Kramer [25] combine the augmented Lagrange multiplier
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method with Powell’s and Fletcher and Reeves Conjugate Gradient method for solv-
ing the optimization problems. Sandgren [44] proposed nonlinear branch and bound
algorithms based on integer programming to solve the mixed-integer optimization
problems. Arora [2] solved the problems by using a numerical optimization tech-
nique called a constraint correction at the constraint cost. Although these numerical
optimization methods provide a useful strategy to obtain the global optimum (or
near to it) for simple and ideal models but they have some disadvantages to handle
engineering problems (i.e. complex derivatives, sensitivity to initial values, and the
large amount of enumeration memory required). Many real-world engineering op-
timization problems are highly complex in nature and quite difficult to solve using
these methods.

The computational drawbacks of existing numerical methods have forced re-
searchers to rely on heuristic algorithms [32]. Heuristic methods are quite suitable
and powerful for obtaining the solution of optimization problems. Although these
are approximate methods (i.e. their solution are good, but not provably optimal),
they do not require the derivatives of the objective function and constraints. Also,
they use probabilistic transition rules instead of deterministic rules. The heuris-
tics technique includes genetic algorithms (GA), simulated annealing (SA), tabu
search (TS), particle swarm optimization (PSO), Harmony search (HS), ant colony
optimization (ACO) etc. Deb and Goyal [12] presented a combined genetic search
technique (GeneAS) which combined binary and real-coded GAs to handle mixed
variables. Coello [7], Deb [9], Dimopoulos [13], Hwang and He [24] applied genetic
algorithms to solve these mixed-integer engineering design optimization problems.
Coelho and Montes [8] proposed a dominance-based selection scheme to incorporate
constraints into the fitness function of a genetic algorithm used for global optimiza-
tion. Tsai [46] proposed a novel method to solve nonlinear fractional programming
problems occurring in engineering design and management. Hsu and Liu [22] de-
veloped an optimization engine for engineering design optimization problems with
monotonicity and implicit constraints. In this, monotonicity of the design variables
and activities of the constraints determined by the theory of monotonicity analy-
sis are modeled in the fuzzy proportional-derivative controller optimization engine
using generic fuzzy rules.

Montes et al. [37] presented a modified version of the differential evolution algo-
rithm to solve engineering design problems in which a criteria based on feasibility
and a diversity mechanism are used to maintain infeasible solution. Zhang et al.
[48] proposed an algorithm for constrained optimization problem using differential
evolution with dynamic stochastic selection. Omran and Salman [38] presented a
new parameter-free meta-heuristic algorithm, named as CODEQ, that is a hybrid of
concepts from chaotic search, opposition-based learning, differential evolution and
quantum mechanics. Raj et al. [40] presented an efficient real coded evolutionary
computational technique which incorporates SA in the selection process of GA for
solving mechanical engineering design optimization problems.

He and Whang [17], He et al. [18], Shi and Eberhart[45] applied particle swarm
optimization to solve these mixed-integer design optimization problems. Moreover,
Coelho [5] presented a quantum-behaved PSO (QPSO) approaches using mutation
operator with Gaussian probability distribution while Cagnina et al. [4] introduced
a simple constraints particle swarm optimization (SiC-PSO) algorithm to solve con-
strained engineering optimization problems. Fesanghary et al. [14], Lee and Geem
[32] applied harmony search algorithm for these types of problems. Kaveh and
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Talatahari [30] developed a hybridized algorithm based on the particle swarm opti-
mization with passive congregation(PSOPC), the ant colony algorithm(ACO), and
the harmony search(HS) approach, so-called HPSACO. HPSACO utilizes a PSOPC
algorithm as a global search, and the idea of the ACO functions as a local search,
and updating the positions of the particles is performed by a pheromone-guided
mechanism. The HS-based approach is utilized to handle the boundary constraints.
Recently, Gandomi et al. [15, 16] used a cuckoo search and Firefly algorithm for
solving mixed continuous/discrete structural optimization problems.

Artificial bee colony (ABC) is one of the meta-heuristic approach proposed by
Karaboga in 2005. Because ABCs have the advantages of memory, multi-character,
local search and solution improvement mechanism, it is able to discover an excellent
optimal solution. Recent studies show that ABC is potentially far more efficient
than PSO and GA [26, 27, 28, 29]. In the light of this, the presented paper solve the
structural engineering design optimization problems using artificial bee colony and
shown that the results are superior to those best solutions by typical approaches
in the literature. The rest of the paper is organized as follow: Section 2 deals
with the general formulation of optimization problem and method for handling the
constraints. In section 3, the artificial bee colony methodology is described along
with the local search procedure to improve the solution. The structural design
problem are discussed and implemented in Section 4 while conclusions drawn are
discussed in Section 5.

2. Engineering optimization problem.

2.1. Structural design optimization problem. Mechanical design optimization
problems can be formulated as a nonlinear programming (NLP) problem. Unlike
generic NLP problems which only contain continuous or integer variables, mechan-
ical design optimizations usually involve continuous, binary, discrete and integer
variables. The binary variables are usually involved in the formulation of the design
problem to select alternative options. The discrete variables are used to represent
standardization constraints such as the diameters of standard sized bolts. Integer
variables usually occur when the numbers of objects are design variables, such as
the number of gear teeth. Considering the mixed variables, the formulation can be
expressed as follows:

Minimize f(x)

subject to hk(x) = 0 ; k = 1, 2, . . . , p (1)

gj(x) ≤ 0 ; j = 1, 2, . . . , q

li ≤ xi ≤ ui ; i = 1, 2, . . . , n

where x = [x1, x2, . . . , xn]
T denotes the decision solution vectors; f is the objective

function; li and ui are the minimum and maximum permissible values for the ith

variable respectively; p is the number of equality constraints and q is the number of
inequality constraints. Let S = {x | gz(x) ≤ or = 0, z = 1, 2, . . . , p+q, li ≤ xi ≤ ui}
be the set of feasible solutions and gz be the set of constraints in the form of
equalities and inequalities.

2.2. Constraint handling approach. The main task while solving the constraint
optimization problem is to handle the constraints. In the constrained optimization
problem, it is not easy to find the feasible solution of the problem due to the
presence of both types of constraints in the form of the equalities and inequalities.
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To handle these constraints, many different approaches have been proposed. The
most common approach in the EA community is to make use of penalty functions.
Despite the popularity of penalty functions, they have several drawbacks out of
which the main one is that of having too many parameters to be adjusted and finding
the right combination of the same, in order to balance the objective and penalty
functions, may not be easy. Also during that the search is very slow and there is
no guarantee that the optima will be attained. To overcome this limitation, Deb
[10] modified these algorithms using concept of parameter free penalty functions i.e.
one attempt to solve an unconstrained problem in a search space S using a modified
objective function F such as

F (x) =







f(x) if x ∈ S

fw +
p+q
∑

z=1
gz(x) if x /∈ S

(2)

where x are solutions obtained by approaches and fw is the worst feasible solution
in the population.

3. Artificial bee colony optimization. The Artificial Bee Colony (ABC) algo-
rithm is a swarm based meta-heuristic algorithm that was introduced by Karaboga
in 2005 and its co-authors for optimizing numerical problems [26, 27, 28, 29]. It was
inspired by the intelligent foraging behavior of honey bees. In the ABC algorithm,
the bees in a colony are divided into three groups: employed bees (forager bees),
onlooker bees (observer bees) and scouts. For each food source, there is only one
employed bee. That is to say, the number of employed bees is equal to number of
food sources. The employed bee of a discarded food site is forced to become a scout
for searching new food source randomly. Employed bees share information with the
onlooker bees in a hive so that onlooker bee can choose a food source to forager
whereas “scouts” are those bees which are currently searching for new food sources
in the vicinity of the hive. At the entrance of the hive in an area called the dance
floor, the duration of the dance is proportional to the nectar content of the food
source currently being exploited by the dancing bee. Onlooker bees which watch
numerous dances before choosing a food source tend to choose a food source accord-
ing to the probability proportional to the quality of that food source. Therefore, the
good food sources attract more bees than the bad ones. Whenever a bee, whether
it is scout or onlooker, finds a food source it becomes employed. Whenever a food
source is exploited fully, all the employed bees associated with it abandon it, and
may again become scouts or onlookers. Scout bees can be visualized as performing
the job of exploration, whereas employed and onlooker bees can be visualized as
performing the job of exploitation.

In this algorithm first stage is the initialization stage in which food source po-
sitions are randomly selected by the bees and their nectar amounts (i.e. fitness
function) are determined. Then, these bees come into the hive and share the nec-
tar information of the sources with the bees waiting on the dance area within the
hive. At the second stage, after sharing the information, every employed bee goes
to the food source area visited by her at the previous cycle. Thus the probability
ph of an onlooker bee choose to go the preferred food source at xh can be defined

by ph = fh/
N
∑

h=1

fh where N is the number of food sources and fh = f(xh) is the

amount of nectar evaluated by its employed bee using eq. (2). After all onlookers
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have selected their food sources, each of them determines a food source in the neigh-
borhood of his chosen food source and compute its fitness. The best food source
among all the neighboring food sources determined by the onlookers associated with
a particular food source h itself, will be the new location of the food source h.

After a solution is generated, that solution is improved by using a local search
process called greedy selection process carried out by onlooker and employed bees
and is given by Eq.(3).

vhj = xhj + φhj(xhj − xkj) (3)

where k ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , D} are randomly chosen index and D
is the number of solutions parameters. Although k is determined randomly, it
has to be different from h. φhj is a random number between [-1, 1] and vh is
the solution in the neighborhood of xh = (xh1, xh2, . . . , xhD). Except for selected
parameter j, all other parametric value of vh are same as that of xh i.e. vh =
(xh1, xh2, . . . , xh(j−1), vhj , xh(j+1), ..., xhD). It controls the production of neighbour
food sources around xhj and represents the comparison of two food positions visually
by a bee. As can be seen from eq. (3), as the difference between the parameters
of the xhj and xkj decreases, the perturbation on the position xhj gets decreased,
too. Thus, as the search approaches the optimum solution in the search space, the
step length is adaptively reduced. If the resulting value falls outside the acceptable
range for parameter j, it is set to the corresponding extreme value in that range.

If a food source is tried/foraged at a given number of explorations without im-
provement then a new food source will be searched out by its associated bee and it
becomes a scout i.e. if position of food source cannot be improved further through
a predetermined number of cycles, called “limits”, then it is abandoned. Assume
that abandonment source is xh and j ∈ {1, 2, . . . , D} then the scout discovers a
new food source to be replaced with randomly generated food source xh within its
domain [xmin, xmax] as follow:

xhj = xmin j + rand(0, 1)(xmax,j − xmin,j) (4)

So this randomly generated food source is equally assigned to this scout and
changing its status from scout to employed and hence other iteration of ABC algo-
rithm begins until the termination condition is not satisfied. The pseudo code of
the ABC algorithm is given in Algorithm 1 and the details are given hereafter.

4. Numerical examples. In order to validate the proposed algorithm, several
examples taken from the optimization literature will be used to show the way in
which the proposed approach works. These examples have linear and nonlinear
constraints, and have been previously solved using a variety of other techniques,
which is useful to determine the quality of the solutions produced by the proposed
approach. The presented algorithm is implemented in Matlab (MathWorks) and the
program has been run on a T6400 @ 2GHz Intel Core(TM) 2 Duo processor with
2GB of Random Access Memory(RAM). In order to eliminate stochastic discrep-
ancy, in each example, 30 independent runs are made which involves 30 different
initial trial solutions with randomly generated a population/colony size(CS) is set
to 20 × D, and the maximum iteration or cycle number is 500 in the algorithm
for solving the problems. The other parameters for the ABC algorithm is limit =
(CS×D)/2 and ABC adopts 5000×D function evaluations in each run, where D is
dimension of the problem. The termination criterion has been set either limited to
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Algorithm 1 Pseudo code of the ABC algorithm

1: Objective function: f(x), x = (x1, x2, . . . , xD); as given in eq. (2)
2: Generate an initial bee populations (solutions) xh, h = 1, 2, . . . , N where xh =

(xh1, xh2, . . . , xhD) where N is the number of employed bees which are equal to
onlooker bees;

3: Evaluate fitness value at each xh using equation (2) i.e. fh = f(xh)
4: Initialize cycle=1
5: For each employed bee

1. Produce new food source position vhj in the neighborhood of xhj using
eq. (3).

2. Evaluate the fitness value at new source vhj
3. If new position is better than previous position then memorizes the new

position.

6: End For.
7: Calculate the probability values ph = fh

N∑

h=1

fh

of the solution xh by means of their

fitness values using eq. (2).
8: For each onlooker bee

1. Produce the new populations vh of the onlookers from the populations
xh, selected by depending on ph by applying the roulette wheel selection
process and evaluate them;

2. Apply the greedy selection process for the onlookers between xh and vh
using eq. (3).

3. If new position is better than previous position, then memorizes the new
position.

9: End For
10: If there is any abandoned solution i.e. if employed bee becomes scout then

replace its position with a new random source positions
11: Memorize the best solution achieved so far
12: cycle = cycle + 1
13: If termination criterion is satisfied then stop otherwise go to step 5

a maximum number of generations or to the order of relative error equal to 10−6,
whichever is achieved first.

4.1. Constrained optimization problem.

4.1.1. Himmelblau’s nonlinear optimization problem. Before solving the structural
engineering problems, the ABC was benchmarked using a well-known problem,
namely, Himmelblau’s problem. This problem has originally been proposed by
Himmelblau [20] and it has been widely used as a benchmark nonlinear constrained
optimization problem. In this problem, there are five positive design variables X =
[x1, x2, x3, x4, x5], six nonlinear inequality constraints, and ten boundary conditions.
The problem can be stated as follow:

Minimize f(X) =5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141
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subject to 0 ≤ g1(X) ≤ 92

90 ≤ g2(X) ≤ 110

20 ≤ g3(X) ≤ 25

where g1(X) =85.334407+ 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5

g2(X) =80.51249+ 0.0071317x2x5 + 0.0029955x1x2 − 0.0021813x2
3

g3(X) =9.300961+ 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4

78 ≤ x1 ≤102 ; 33 ≤ x2 ≤ 45 ; 27 ≤ x3, x4, x5 ≤ 45

This problem was originally proposed by Himmelblau [20], and it has been used
before as a benchmark by using several other methods such as GA [10, 21], harmony
search algorithm [32], and PSO [18], Cuckoo search [16], simplex search [34] etc.
Also, some of the authors [7, 14, 23, 38, 45] have tested their algorithm in another
variation of this problem (named as version II), where a parameter 0.0006262 (type-
set bold in the constraint g1) has been taken as 0.00026. The presented algorithm
has been tested on both the versions and compares the best solution of the problem
with previous best solution reported by them in Table 1. It has been observed from
the Table 1 that the solutions gave by [7, 14, 18, 32, 38, 45] are infeasible as they
violates the g1 constraints. The ABC method could obtain the better solution in
the variable version I is

X = [78.00, 33.00, 29.99516951, 45.00, 36.77574688]

with the objective function value -30665.56680546 while in version II, the optimal
solution is

X = [78.00, 33.00, 27.07097927, 45, 44.96902388]

with corresponding function value is -31025.57569195.

Table 1. Optimal results for Himmelblau’s nonlinear optimization
problem (NA means not available)

Version Method
Design variables Constraints

x1 x2 x3 x4 x5 f(X) 0≤ g1 ≤92 90≤ g2 ≤110 20≤ g3 ≤25

I

Himmelblau [20] NA NA NA NA NA -30373.9490 NA NA NA
Homaifar et al. [21] 80.39 35.07 32.05 40.33 33.34 -30005.700 91.65619 99.53690 20.02553
Deb [10] NA NA NA NA NA -30665.539 NA NA NA
Lee and Geem [32] 78.00 33.00 29.995 45.00 36.776 -30665.500 92.00004a 98.84051 19.99994a

He et al. [18] 78.00 33.00 29.995256 45.00 36.7758129 -30665.539 93.28536a 100.40478 20.00000
Dimopoulos [13] 78.00 33.00 29.995256 45.00 36.775813 -30665.54 92.00000 98.84050 20.00000
Gandomi et al. [16] 78.00 33.00 29.99616 45.00 36.77605 -30665.233 91.99996 98.84067 20.0003
Mehta and Dasgupta [34] 78.00 33.00 29.995256 45.00 36.775813 -30665.538741 NA NA NA
Present study 78.00 33.00 29.99516951 45.00 36.77574688 -30665.566806 91.999998 98.840473 20.000000

II

Shi and Eberhart [45] 78.00 33.00 27.07099 45.00 44.969 -31025.561 93.28533a 100.40473 19.99997a

Coello [6] 78.5958 33.01 27.6460 45.00 45.0000 -30810.359 91.956402 100.54511 20.251919
Coello [7] 78.0495 33.007 27.081 45.00 44.94 -31020.859 93.28381a 100.40786 20.00191
Hu et al. [23] 78.00 33.00 27.070997 45.00 44.9692425 -31025.5614 92 100.404784 20
Fesanghary et al. [14] 78.00 33.00 27.085149 45.00 44.925329 -31024.3166 93.27834a 100.39612 20.00000
Omran and Salman [38] 78.00 33.00 27.0709971 45.00 44.9692425 -31025.55626 93.28536a 100.40478 20.00000
Present study 78.00 33.00 27.07097927 45.00 44.96902388 -31025.575692 91.999974 100.404731 20.000002

a violate constraints

The best, the average, the worst and the standard deviation of objective function
values obtained by 30 runs are reported in Table 2. Based on the above simulation
results and comparisons, it can be concluded that ABC is of superior searching
quality and robustness for this problem. Moreover, the worst solution obtained by
the ABC method is still better than the best one obtained by the other methods.
The time elapsed for one execution of the program are 0.958 s and 0.409 s under
version I and version II respectively.
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Table 2. Statistical results for the Himmelblau’s problem (NA
means not available)

Version Method Best Median Mean Worst Std

I

Deb [10] -30665.537 -30665.535 NA -29846.654 NA
Lee and Geem [32] -30665.500 NA NA NA NA
He et al. [18] -30665.539 NA -30643.989 NA 70.043
Dimopoulos [13] -30665.54 NA NA NA NA
Gandomi et al. [16] -30665.2327 NA NA NA 11.6231
Mehta and Dasgupta [34] -30665.538741 NA NA NA NA
Present study -30665.56680546 -30665.49388961 -30665.40461198 -30664.62469625 0.2383866

II

Coello [7] -31020.859 -31017.21369099 -30984.24070309 -30792.40773775 73.633536
Hu et al. [23] -31025.56142 NA -31025.56142 NA 0
Fesanghary et al. [14] -31024.3166 NA NA NA NA
Omran and Salman [38] -31025.55626 NA -31025.5562644829 NA NA
Present study -31025.57569195 -31025.5612911 -31025.55841263 -31025.49205458 0.0153528

4.2. Structural optimization problems.

4.2.1. Design of pressure vessel. A compressed air storage tank with a working
pressure of 2000psi and a maximum volume of 750ft3. A cylindrical vessel is capped
at both ends by hemispherical heads as shown in Fig. 1. Using rolled steel plate,
the shell is made in two halves that are joined by two longitudinal welds to forms a
cylinder. The objective is to minimize the total cost, including the cost of material,
forming and welding [25]. There are four design variable associated with it namely
as thickness of the pressure vessel, Ts = x1, thickness of the head, Th = x2, inner
radius of the vessel, R = x3, and length of the vessel without heads, L = x4 i.e.
the variables vectors are given (in inches) by X = (Ts, Th, R, L) = (x1, x2, x3, x4).
Then, the mathematical model of the problem is summarized as

Minimize f(X) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

s.t. g1(X) = −x1 + 0.0193x3 ≤ 0

g2(X) = −x2 + 0.00954x3 ≤ 0

g3(X) = −πx2
3x4 −

4

3
πx3

3 + 1296000 ≤ 0

g4(X) = x4 − 240 ≤ 0

L

R R

T
s

T
h

Figure 1. Design of pressure vessel problem
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This structural optimization problem has been solved by many researchers within
the following variable region:

Region I: 1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625 ; 10 ≤ x3, x4 ≤ 200
For instance, the approaches applied to this problem includes genetic adaptive

search [11], an augmented Lagrangian multiplier approach [25], a branch and bound
technique [44], a GA-based co-evolution model [7], a feasibility-based tournament
selection scheme [8], a co-evolutionary particle swarm optimization [17], an evolu-
tion strategy [36], improved ant colony optimization [31], hybrid algorithm based
on particle swarm optimization with passive congregation [30], cuckoo search [16],
quantum behaved PSO [5] etc. The optimal solution obtained by ABC approach in
the variable region I is

X = (0.778197751897, 0.384665697936, 40.321054550108, 199.980236777701)

with corresponding function value equal to

f(X) = 5885.403282809389

and constraints

[g1, g2, g3, g4] = [−0.0000013991,−0.0000028375,−1.1418297244,−40.0197632223].

Table 3. Comparison of the best solution for pressure vessel de-
sign problem found by different methods

Region
Method Design variables Cost

x1 x2 x3 x4 f(X)

I

Sandgren [44] 1.125000 0.625000 47.700000 117.701000 8129.1036
Kannan and Kramer [25] 1.125000 0.625000 58.291000 43.690000 7198.0428
Deb and Gene [11] 0.937500 0.500000 48.329000 112.67900 6410.3811
Coello [7] 0.812500 0.437500 40.323900 200.000000 6288.7445
Coello and Montes [8] 0.812500 0.437500 42.097398 176.654050 6059.946
He and Wang [17] 0.812500 0.437500 42.091266 176.746500 6061.0777
Montes and Coello [36] 0.812500 0.437500 42.098087 176.640518 6059.7456
Kaveh and Talatahari [30] 0.812500 0.437500 42.103566 176.573220 6059.0925
Kaveh and Talatahari [31] 0.812500 0.437500 42.098353 176.637751 6059.7258
Zhang and Wang [47] 1.125000 0.625000 58.290000 43.6930000 7197.7000
Cagnina et al. [4] 0.812500 0.437500 42.098445 176.6365950 6059.714335
Coelho [5] 0.812500 0.437500 42.098400 176.6372000 6059.7208
He et al. [18] 0.812500 0.437500 42.098445 176.6365950 6059.7143
Lee and Geem [32] 1.125000 0.625000 58.278900 43.75490000 7198.433
Montes et al. [37] 0.812500 0.437500 42.098446 176.6360470 6059.701660
Hu et al. [23] 0.812500 0.437500 42.098450 176.6366000 6059.131296
Gandomi et al. [16] 0.812500 0.437500 42.0984456 176.6365958 6059.7143348
Akay and Karaboga [1] 0.812500 0.437500 42.098446 176.636596 6059.714339
Present study 0.778197751897 0.384665697936 40.321054550108 199.980236777701 5885.403282809389

II

Dimopoulos [13] 0.75 0.375 38.86010 221.36549 5850.38306
Mahdavi et al. [33] 0.75 0.375 38.86010 221.36553 5849.76169
Hedar and Fukushima [19] 0.7683257 0.3797837 39.8096222 207.2255595 5868.764836
Gandomi et al. [15] 0.75 0.375 38.86010 221.36547 5850.38306
Present study 0.727595830354 0.359655288904 37.699135991646 239.999805551413 5804.448670820886

The comparison of results are shown in Table 3 under the Region I while their
corresponding statistical simulation results are summarized in Table 4. The result
obtained by using ABC algorithm are better optimized than any other earlier so-
lutions reported in the literature. It has been notified from the Table 4 that the
worst solution found by ABC algorithm is better than any of the solution produced
by any of the other techniques.

In the Region I, the bound variable x4 with an upper bound of 200 has been
used to obtain the best solution. By using this domain, the fourth constraints is
automatically satisfied. So in order to investigate the whole of the constrained
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problem domain the upper limit of the variable x4 have extended to 240 i.e. 10≤
x4 ≤ 240 [13] i.e. range of decision variables becomes

1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625 ; 10 ≤ x3 ≤ 200 ; 10 ≤ x4 ≤ 240
In this region i.e. region II, the researchers Dimopoulos [13], Gandomi et al.

[15], Hedar and Fukushima [19], Mahdavi et al. [33] have previously solved the
problem by various approaches. Table 3 shows their corresponding best solution
vectors along with the best solution obtained from ABC algorithm under Region
II. The ABC algorithm again shows better result than other methods. From the
statistical simulation results, summarized in Table 4, it can be seen that the average
searching quality of ABC is better than those of other methods, and even the worst
solution found by ABC is better than the best solutions found by [13, 15, 19, 33].
In addition, the standard deviation of the results by ABC in 30 independent runs
is very small. The time elapsed for one execution of the program are 0.575 s and
0.584 s corresponding to a region I and region II.

Table 4. Statistical results of different methods for pressure vessel
(NA means not available)

Region Method Best Mean Worst Std Dev Median

I

Sandgren [44] 8129.1036 N/A N/A N/A NA
Kannan and Kramer [25] 7198.0428 N/A N/A N/A NA
Deb and Gene [11] 6410.3811 N/A N/A N/A NA
Coello [7] 6288.7445 6293.8432 6308.1497 7.4133 NA
Coello and Montes [8] 6059.9463 6177.2533 6469.3220 130.9297 NA
He and Wang [17] 6061.0777 6147.1332 6363.8041 86.4545 NA
Montes and Coello [36] 6059.7456 6850.0049 7332.8798 426.0000 NA
Kaveh and Talatahari [31] 6059.7258 6081.7812 6150.1289 67.2418 NA
Kaveh and Talatahari [30] 6059.0925 6075.2567 6135.3336 41.6825 NA
Gandomi et al. [16] 6059.714 6447.7360 6495.3470 502.693 NA
Cagnina et al. [4] 6059.714335 6092.0498 NA 12.1725 NA
Coelho [5] 6059.7208 6440.3786 7544.4925 448.4711 6257.5943
He at al. [18] 6059.7143 6289.92881 NA 305.78 NA
Akay and Karaboga [1] 6059.714339 6245.308144 NA 205 NA
Present study 5885.403282809389 5887.557024096123 5895.126804460902 2.745290297634486 5886.149289006167

II

Dimopoulos [13] 5850.38306 N/A N/A N/A NA
Mahdavi et al. [33] 5849.7617 N/A N/A N/A NA
Hedar and Fukushima [19] 5868.764836 6164.585867 6804.328100 257.473670 NA
Gandomi et al. [15] 5850.38306 5937.33790 6258.96825 164.54747 NA
Present study 5804.448670820886 5805.473914033477 5811.977127837280 1.411462164114731 5805.073797973411

4.2.2. Welded beam design problem. The welded beam structure, shown in Fig. 2
taken from Rao [41], is a practical design problem that has been often used as
a benchmark problem. The objective is to find the minimum fabricating cost of
the welded beam subject to constraints on shear stress (τ), bending stress in the
beam (θ), buckling load on the bar (Pc), end deflection of the beam (δ), and side
constraints. There are four design variables associated with this problem namely,
thickness of the weld h = x1, length of the welded joint l = x2, width of the beam
t = x3 and thickness of the beam b = x4 i.e. the decision vector is X = (h, l, t, b) =
(x1, x2, x3, x4). For this particular problem, there are several models available in
the literature, all of them are vary with respect to number of constraints and the
way in which constraints are defined. In the present study, the proposed algorithm
has been used on all these versions.

Version I:

The mathematical formulation of the objective function f(X) which is the total
fabricating cost mainly comprised of the set-up, welding labor, and material cost,
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Figure 2. Design of Welded beam problem

is as follows:

Minimize f(X) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2)

s.t. g1(X) = τ(X) − τmax ≤ 0

g2(X) = σ(X)− σmax ≤ 0

g3(X) = x1 − x4 ≤ 0

g4(X) = 0.125− x1 ≤ 0

g5(X) = δ(X)− 0.25 ≤ 0

g6(X) = P − Pc(X) ≤ 0

0.1 ≤ x1 ≤ 2 ; 0.1 ≤ x2 ≤ 10 ; 0.1 ≤ x3 ≤ 10 ; 0.1 ≤ x4 ≤ 2

where τ is the shear stress in the weld, τmax is the allowable shear stress of the
weld (= 13600 psi), σ the normal stress in the beam, σmax is the allowable normal
stress for the beam material (= 30000 psi), Pc the bar buckling load, P the load (=
6000lb), and δ the beam end deflection.

The shear stress τ has two components namely primary stress (τ1) and secondary
stress (τ2) given as

τ(X) =

√

τ21 + 2τ1τ2

(

x2

2R

)

+ τ22 ; τ1 =
P√
2x1x2

; τ2 =
MR

J
,

where

M = P

(

L+
x2

2

)

; J(X) = 2

{

x1x2√
2

[

x2
2

12
+

(

x1 + x3

2

)2]}
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are known as moments and polar moment of inertia respectively while the other
terms associated with the model are as follows

R =

√

x2
2

4
+

(

x1 + x3

2

)2

; σ(X) =
6PL

x4x2
3

δ(X) =
4PL3

Ex3
3x4

; Pc(X) =
4.013

√

EGx2
3x

6
4

36
L2

(

1− x3

2L

√

E

4G

)

G = 12× 106psi, E = 30× 106psi, P = 6000lb, L = 14in

Deb [9], Hwang and He [24] have solved this problem using GA - based meth-
ods. Ragsdell and Phillips [39] compared optimal results of different optimization
methods that are mainly based on mathematical optimization algorithms. These
methods are APPROX (Griffith and Stewart’s successive linear approximation),
DAVID (Davidon - Fletcher - Powell with a penalty function), SIMPLEX (Simplex
method with a penalty function), and RANDOM (Richardson random method) al-
gorithms. Lee and Geem [32] and He et al. [18] applied harmony search and particle
swarm optimization algorithm respectively for solving this problem.

In this version, the best solutions obtained by the ABC approach are listed in Ta-
ble 5, under the version I section, along with the best solutions gave by the other au-
thors [9, 18, 24, 32, 34, 39, 42, 48] while the statistical simulation results are summa-
rized in Table 6. It has been clearly seen from the Table 6, after 30 independent runs,
that values of the best, mean, worst, standard deviation and the median obtained by
ABC are the best when compared with respect to other algorithms. Moreover, the
worst solution found is f(X) = 2.38146999, which is better than any of the solution
produced by any of the other techniques. The time elapsed for one execution of the
program is 0.748 s. The best results obtained by ABC is f(X) = 2.38099617 corre-
sponding to X = [x1, x2, x3, x4] = [0.24436198, 6.21767407, 8.29163558, 0.24436883]
and constraints [g1(X), g2(X), . . . , g6(X)] =[-0.10024432, -1.17019903, -0.00000684,
-0.11936198, -0.23424176, -0.07175578]

Table 5. Comparison of the best solution for Welded beam found
by different methods (NA means not available)

Version Method Design variables
x1 x2 x3 x4 f(X)

I

Ragsdell and Phillips [39] 0.245500 6.196000 8.273000 0.245500 2.385937
Rao [41] 0.245500 6.196000 8.273000 0.245500 2.3860
Deb [9] 0.248900 6.173000 8.178900 0.253300 2.433116
Deb [10] NA NA NA NA 2.38119
Ray and Liew [42] 0.244438276 6.2379672340 8.2885761430 0.2445661820 2.3854347
Lee and Geem [32] 0.2442 6.2231 8.2915 0.2443 2.38
Hwang and He [24] 0.223100 1.5815 12.84680 0.2245 2.25
Mehta and Dasgupta [34] 0.24436895 6.21860635 8.29147256 0.24436895 2.3811341
Present study 0.24436198 6.21767407 8.29163558 0.24436883 2.38099617

II

Coello [7] 0.208800 3.420500 8.997500 0.210000 1.748309
Coello and Montes [8] 0.205986 3.471328 9.020224 0.206480 1.728226
Hu et al. [23] 0.20573 3.47049 9.03662 0.20573 1.72485084
Hedar and Fukushima [19] 0.205644261 3.472578742 9.03662391 0.2057296 1.7250022
He and Wang [17] 0.202369 3.544214 9.048210 0.205723 1.728024
Dimopoulos [13] 0.2015 3.5620 9.041398 0.205706 1.731186
Mahdavi et al. [33] 0.20573 3.47049 9.03662 0.20573 1.7248
Montes et al. [37] 0.205730 3.470489 9.036624 0.205730 1.724852
Montes and Coello [36] 0.199742 3.612060 9.037500 0.206082 1.73730
Cagnina et al. [4] 0.205729 3.470488 9.036624 0.205729 1.724852
Fesanghary et al. [14] 0.20572 3.47060 9.03682 0.20572 1.7248
Kaveh and Talatahari [30] 0.205729 3.469875 9.036805 0.205765 1.724849
Kaveh and Talatahari [31] 0.205700 3.471131 9.036683 0.205731 1.724918
Gandomi et al. [15] 0.2015 3.562 9.0414 0.2057 1.73121
Mehta and Dasgupta [34] 0.20572885 3.47050567 9.03662392 0.20572964 1.724855
Akay and Karaboga [1] 0.205730 3.470489 9.036624 0.205730 1.724852
Present study 0.20572450 3.25325369 9.03664438 0.20572999 1.69526388
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Version II:

In the literature, several authors [4, 7, 8, 13, 14, 15, 17, 19, 23, 30, 31, 33, 36,
37] have tried their algorithm on the another version of the welded beam design
problem. In this version, the constraints namely deflection δ(X), buckling load
Pc(X) and polar moment of inertia J(X) have taken along with another constraint
g7(X) as

g7(X) = 0.10471x2
1 + 0.04811x3x4(14 + x2)− 5 ≤ 0

δ(X) =
6PL3

Ex3
3x4

; Pc(X) =
4.013E

√

x2
3x

6
4

36
L2

(

1− x3

2L

√

E

4G

)

J(X) = 2

{√
2x1x2

[

x2
2

4
+

(

x1 + x3

2

)2]}

A comparison of the present work with the previous studies is presented in Table
5 under Version II section. From the table, it has been seen that the present algo-
rithm based on ABC performs much better in comparison to other algorithms as
optimal function value is lower than the previous studies. The statistically result,
after 30 independent runs, in terms of the best, median, mean, worst and the stan-
dard deviation obtained for the best objective value by ABC approach are given in
Table 6. It shows that mean from the 30 runs performed is f(X) = 1.69530842 with
a standard deviation of 2.836× 10−5. Also the worst solution found in this version
is better than any of the solutions produced by any other techniques. The best solu-
tion reported by ABC algorithm on this version is f(X) = 1.69526388 corresponding
to decision variable X = [0.20572450, 3.25325369, 9.03664438, 0.20572999] and con-
straints g1(X), . . . . . . , g7(X)]=[-0.17975428, -0.18697948, -0.00000549, -3.45240767,
-0.08072450, -0.22831066, -0.03957707]. Thus the ABC algorithm provides the best
results. The time elapsed for one execution of the program is 0.869 s.

Table 6. Statistical results of different methods for welded beam
design problem (NA means not available)

Version Method Best Mean Worst Std-dev Median

I

Ragsdell and Phillips [39] 2.385937 NA NA NA NA
Rao [41] 2.3860 NA NA NA NA
Deb [9] 2.433116 NA NA NA NA
Deb [10] 2.38119 NA NA NA NA
Ray and Liew [42] 2.3854347 3.2551371 6.3996785 0.9590780 3.0025883
Lee and Geem [32] 2.38 NA NA NA NA
Hwang and He [24] 2.25 2.26 2.28 NA NA
Mehta and Dasgupta [34] 2.381134 2.3811786 2.3812614 NA 2.3811641
Present study 2.38099617 2.38108932 2.38146999 1.01227E-4 2.38107233

II

Coello [7] 1.748309 1.771973 1.785835 0.011220 NA
Coello and Montes [8] 1.728226 1.792654 1.993408 0.07471 NA
Dimopoulos [13] 1.731186 NA NA NA NA
He and Wang [17] 1.728024 1.748831 1.782143 0.012926 NA
Hedar and Fukushima [19] 1.7250022 1.7564428 1.8843960 0.0424175 NA
Montes et al. [37] 1.724852 1.725 NA 1E-15 NA
Montes and Coello [36] 1.737300 1.813290 1.994651 0.070500 NA
Cagnina et al. [4] 1.724852 2.0574 NA 0.2154 NA
Kaveh and Talatahari [31] 1.724918 1.729752 1.775961 0.009200 NA
Kaveh and Talatahari [30] 1.724849 1.727564 1.759522 0.008254 NA
Gandomi et al. [15] 1.7312065 1.8786560 2.3455793 0.2677989 NA
Mehta and Dasgupta [34] 1.724855 1.724865 1.72489 NA 1.724861
Akay and Karaboga [1] 1.724852 1.741913 NA 0.031 NA
Present study 1.69526388 1.69530842 1.69537060 2.836238E-5 1.69530879



790 HARISH GARG

4.2.3. Tension/compression string design problem. This problem is described by
Arora [2] and Belegundu [3] and it consists of minimizing the weight of a ten-
sion/compression spring (as shown in Fig. 3) subject to constraints on minimum
deflection, shear stress, surge frequency, limits on outside diameter and on design
variables. The design variables are the mean coil diameter(x1), the wire diameter
(x2) and the number of active coil (x3). The mathematical formulation of this
problem can be described as follow:

Minimize f(X) = (x3 + 2)x2x
2
1

s.t. g1(X) = 1− x3
2x3

71785x4
1

≤ 0

g2(X) =
4x2

2 − x1x2

12566(x2x3
1 − x4

1)
+

1

5108x2
1

− 1 ≤ 0

g3(X) = 1− 140.45x1

x2
2x3

≤ 0

g4(X) =
x1 + x2

1.5
− 1 ≤ 0

0.05 ≤ x1 ≤ 2 ; 0.25 ≤ x2 ≤ 1.3 ; 2 ≤ x3 ≤ 15

x
2

x
1

number of coils
x

3

Figure 3. Design of the Tension/compression string problem

This problem has been solved by Belegundu [3] using eight different mathematical
optimization techniques (only the best results are shown). Arora [2] solved this
problem using a numerical optimization technique called a constraint correction
at the constant cost. Coello [7] and Coello and Montes [8] solved this problem
using GA-based method. Additionally, He and Wang [17] utilized a co-evolutionary
particle swarm optimization (CPSO). Montes and Coello [36] used various evolution
strategies to solve this problem. Table 7 presents the best solution of this problem
obtained using the ABC algorithm and compares with the solutions reported by
other researchers, and their correspondingly statistical simulation results are shown
in Table 8. The best results obtained by ABC is

f(X) = 0.0126652327883

corresponding to

X = [x1, x2, x3] = [0.051689156131, 0.356720026419, 11.288831695483]
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and constraints

[g1(X), . . . , g4(X)] = [−2.5313084961× 10−13,−5.7553961596× 10−13,

−4.0537846722,−0.7277291363]

Table 7. Comparison of the best solution for tension/compression
string design problem by different methods

Method Design variables
x1 x2 x3 f(X)

Belegundu [3] 0.05 0.315900 14.25000 0.0128334
Arora [2] 0.053396 0.399180 9.185400 0.0127303
Coello [7] 0.051480 0.351661 11.632201 0.01270478
Ray and Saini [43] 0.050417 0.321532 13.979915 0.013060
Coello and Montes [8] 0.051989 0.363965 10.890522 0.0126810
Ray and Liew [42] 0.0521602170 0.368158695 10.6484422590 0.01266924934
Hu et al. [23] 0.051466369 0.351383949 11.60865920 0.0126661409a

He et al. [18] 0.05169040 0.35674999 11.28712599 0.0126652812a

Hedar and Fukushima [19] 0.05174250340926 0.35800478345599 11.21390736278739 0.012665285
Raj et al. [40] 0.05386200 0.41128365 8.68437980 0.01274840
Tsai [46] 0.05168906 0.3567178 11.28896 0.01266523
Mahdavi et al. [33] 0.05115438 0.34987116 12.0764321 0.0126706
Montes et al. [37] 0.051688 0.356692 11.290483 0.012665
He and Wang [17] 0.051728 0.357644 11.244543 0.0126747
Cagnina et al. [4] 0.051583 0.354190 11.438675 0.012665
Zhang et al. [48] 0.0516890614 0.3567177469 11.2889653382 0.012665233
Montes and Coello [36] 0.051643 0.355360 11.397926 0.012698
Omran and Salman [38] 0.0516837458 0.3565898352 11.2964717107 0.0126652375
Keveh and Talatahari [31] 0.051865 0.361500 11.00000 0.0126432a

Coelho [5] 0.051515 0.352529 11.538862 0.012665
Akay and Karaboga [1] 0.051749 0.358179 11.203763 0.012665
Present study 0.051689156131 0.356720026419 11.288831695483 0.0126652327883

a infeasible solution as they violate one of the constraint set

From Table 7, it can be seen that the best feasible solution obtained by ABC
is better than the best solutions found by other techniques. It has been observed
through the calculation that the solutions gave by Hu et al. [23], Kaveh and Ta-
latahari [31] and He et al. [18] are infeasible as they violated one of constraint set.
In addition, as shown in Table 8, the average searching quality of ABC is superior
to those of other methods. Moreover, the standard deviation of the results by ABC
in 30 independent runs for this problem is the smallest. The time elapsed for one
execution of the program is 0.463 s.

Table 8. Statistical results of different methods for ten-
sion/compression string (NA means not available)

Method Best Mean Worst Std Dev Median
Belegundu [3] 0.0128334 NA NA NA NA
Arora [2] 0.0127303 NA NA NA NA

Coello [7] 0.01270478 0.01276920 0.01282208 3.9390×10−5 0.01275576
Ray and Saini [43] 0.0130600 0.015526 0.018992 NA NA

Coello and Montes [8] 0.0126810 0.012742 0.012973 5.9000×10−5 NA

Ray and Liew [42] 0.01266924934 0.012922669 0.016717272 5.92×10−4 0.012922669

Hu et al. [23] 0.0126661409 0.012718975 NA 6.446×10−5 NA

He et al. [18] 0.0126652812 0.01270233 NA 4.12439×10−5 NA

He and Wang [17] 0.0126747 0.012730 0.012924 5.1985×10−5 NA

Zhang et al. [48] 0.012665233 0.012669366 0.012738262 1.25×10−5 NA

Hedar and Fukushima [19] 0.012665285 0.012665299 0.012665338 2.2×10−8 NA

Montes et al. [37] 0.012665 0.012666 NA 2.0×10−6 NA

Montes and Coello [36] 0.012698 0.013461 0.164850 9.6600×10−4 NA

Cagnina et al. [4] 0.012665 0.0131 NA 4.1×10−4 NA

Kaveh and Talatahari [31] 0.0126432 0.012720 0.012884 3.4888×10−5 NA
Omran and Salman [38] 0.0126652375 0.0126652642 NA NA NA
Coelho [5] 0.012665 0.013524 0.017759 0.001268 0.012957
Akay and Karaboga [1] 0.012665 0.012709 NA 0.012813 NA

Present study 0.0126652327883 0.0126689724845 0.012710407729 9.429426×10−6 0.012665314728
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5. Conclusion. This paper presents the penalty guided artificial bee colony to
solve various structural engineering design optimization problems which include
pressure vessel design, welded beam design, compression string design. In these
optimization problems, the objective is to minimize the cost of the design subject
to various nonlinear constraints. To evaluate the performance of ABC algorithm,
numerical experiments are conducted and compared to other optimization methods,
especially meta-heuristic algorithm-based optimization methods. As demonstrated
in the tables, the best solutions found by our ABCs are all better than the well-
known best solutions found by other heuristic methods in each problem, i.e. the
proposed method achieves the global solution or finds a near-global solution in each
problem tested. To demonstrate the effectiveness and robustness of the algorithm
compared to other optimization methods, simulations results are also conducted for
each problems in terms of mean, median, worst, best and standard deviation. The
corresponding results show that the ABC algorithm may yield better solutions than
those obtained using other meta-heuristic algorithms. Moreover, the standard de-
viations of design cost by proposed approach are pretty low, and it further implies
that the approach seems reliable to solve the engineering design optimization prob-
lems. Thus it is concluded from the analysis the ABC algorithm is a global search
algorithm that can be easily applied to various engineering optimization problems.
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