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Abstract—Algebraic topology has been successfully applied to
detect and localize sensor network coverage holes with minimal
assumptions on sensor locations. These methods all use a com-
putation of topological invariants called homology spaces. We
develop a distributed algorithm for collapsing a sensor network,
hence simplifying its analysis. We prove that the collapse is
equivalent to a previously developed strong collapse in that
it preserves coverage hole locations. In this way, the collapse
simplifies the network without losing crucial information about
the coverage region. We show that the algorithm requires only
one-hop information in a communication network, making it
faster than clique-finding algorithms that increase the number
of computations necessary for hole localization. This makes it an
effective pre-processing step to finding network coverage holes.

Index Terms—Hole Localization, Simplicial Complex, Simpli-
cial Collapse, Sensor Network Coverage, Homology

I. INTRODUCTION

The tools of simplicial complexes and homology have seen
increased applications in recent years in the modeling and
analysis of sensor networks [9], [8]. The advantage of using
algebraic topology for discovering holes in a coverage region
is that it doesn’t take into account specific sensor locations.
In practice, acquiring precise sensor locations is resource-
intensive. Many applications, ranging from cell phone cover-
age areas to tracking in security and defense involve battery-
powered remote devices, so energy conservation is paramount.
Unfortunately, the topological tools used for hole-localization
can be expensive, so minimizing the number of simplices in
the complex is desirable [2], [15]. We define the relevance of
a node, and use this notion to propose a distributed algorithm
that reduces the sensor field to the minimal set needed to
accurately count and find the coverage holes in a network,
which can also be applied to general flag complexes of graphs.
Distributed algorithms are particularly desirable in sensor
network applications, as they allow the nodes to aggregate
local data into global information without having to spend
time and energy broadcasting that information to a central
hub for computation. Furthermore, the algorithms will only
use one-hop information to execute the collapse.

The paper is organized as follows: in Section II, we intro-
duce the algebraic topology needed for network analysis. In
Section III, we review the strong collapse [15], introduce the
distributed version, and prove their equivalence. In Section IV,
we precisely define the application of the collapse to sensor

networks, and include simulation results and complexity anal-
ysis. Finally, we provide concluding remarks in Section V.

II. FLAG COMPLEXES AND HOMOLOGY

There is a well-developed toolbox from algebraic topol-
ogy that is useful for analyzing a network using simplicial
complexes and homology. Homology reveals high-dimensional
structure in a network, and provides a precise definition of
coverage holes.

A. Simplicial Complexes and Homology

A simplicial complex is a mathematical structure that can
be seen as a generalization of a graph: it contains vertices
and edges, and in addition may contain higher-dimensional
structures like triangles, tetraheda, etc. More formally, a sim-
plicial complex is any collection of sets which is closed under
the subset operation. A set with k + 1 elements (vertices) in
this collection is referred to as a k-simplex. Geometrically, a
k-simplex is the convex hull of k + 1 points in an ambient
space, and is said to have dimension k. Any subset of a k-
simplex is called a face of that simplex. It is easy to see that
0- and 1-simplices of any complex form a graph.

Simplicial homology, often simply referred to as homology,
is an algebraic tool for studying simplicial complexes: given
a simplicial complex X , its homology spaces are a sequence
of real vector spaces {H0(X), H1(X), H2(X), . . . }, whose
ranks respectively count equivalence classes of connected
components, loops, 3-D voids, and their generalizations, the
higher dimensional cycles that don’t bound a subcomplex in
the complex. We define the ith Betti number, βi(X) as the rank
of Hi(X), and when no confusion may arise, we denote it as
βi. We shall not go into the details of computing homology,
which can be found in most introductory algebraic topology
texts, such as [10].

B. Constructing the Flag Complex of a Graph

Corresponding to a graph G = (V,E) is a natural simplicial
complex structure called the flag complex of the graph, denoted
F(G). F(G) has 0-simplices V and 1-simplices E. Then, the
2-simplices are the 3-cliques in G, and the k-simplices are the
(k + 1)-cliques in G.
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III. STRONG COLLAPSES

The strong collapse for general simplicial complexes was
developed [2], [15] using the notions of eccentricity from
Q-analysis [1], [11] and a duality construction called the
conjugate complex [7].

We define a labelled simplicial complex (X,L, V ) as a
simplicial complex X with a vertex set V , equipped with
labels L on some of the simplices in X . The only caveat
on L is that every locally maximal simplex (one which is
not the face of another simplex) must be labelled. For any
label l ∈ L, we denote the simplex bearing it ∆l. Given a
labelled simplicial complex (X,L, V ) we can construct the
conjugate complex, denoted (XT , V, L): XT is a simplicial
complex with vertices corresponding to the elements of L, and
a labelled simplex corresponding to each v ∈ V , denoted ∆T

v .
The vertices li ∈ L of ∆T

v in (XT , V, L) correspond to the
faces ∆li that v belongs to in (X,L, V ). It should be noted
that not every labelled simplex in (XT , V, L) is necessarily
locally maximal.

Given a simplex ∆ ∈ X , we define its eccentricity [13] as

ecc(∆) :=
q̂(∆)− q̌(∆)

q̂(∆) + 1
,

where q̂(∆) is the dimension of ∆, and q̌(∆) is given by

q̌(∆l) := max
j∈L
{dim(∆l ∩∆j)}.

That is, q̌(∆l) is the dimension of a maximal face of ∆l

shared with any other labelled simplex ∆j ∈ X . In the event
that ∆l intersects no labelled simplices ∆j , we define q̌(∆l) =
−1, so that ecc(∆l) ∈ [0, 1]). It immediately follows that a
simplex ∆l has eccentricity 0 if and only if q̂(∆l) = q̌(∆l).
In other words, ∆l ⊂ ∆j . Since ∆l is not locally maximal
or is a repeated label in this case, removing its label from L
changes nothing about the underlying complex X , including
the homology of X . The reduced labelled complex obtained
from removing all eccentricity 0 labels is denoted (X̃, L̃, Ṽ ).

The strong collapse of a labelled simplicial complex
(X,L, V ) is as follows: (XT , V, L) is constructed and has
all of its 0-eccentricity simplex labels removed, giving(
X̃T , L̃, Ṽ

)
. Then, the conjugate of the resulting complex

is constructed again. Finally all the eccentricity 0 simplices

are removed there, resulting in
((̃
X̃T
)T
, ˜̃L, ˜̃V ) ⊂ (X,L, V ).

That is,

(X,L, V )
Conjugate // (XT , V, L)

0−ecc
Removal

// (X̃T , Ṽ , L̃)

Conjugatexx((̃
X̃T
)T
, ˜̃L, ˜̃V )

⋃
((
X̃T
)T
, L̃, Ṽ

)
0−ecc

Removal
oo

Two theorems proven in [15] show the value of this collapse:

Theorem 1. The strong collapse produces a subcomplex of X
with isomorphic homology to X .

Theorem 2. The strong collapse preserves at least one of the
shortest paths around each hole and void in X .

(a) Average Degree = 5

(b) Average Degree = 15

(c) Average Degree = 25

Fig. 1. Examples of the collapse of the Rips complex of sensor networks at
various average degrees

Combining the first theorem with the facts that nodes may
only be deleted by an iteration of the collapse, and that every
bounded monotonic sequence converges, yields the result that
the collapse must converge in a finite number of iterations to
a core complex. The second theorem allows us to collapse a
sensor network without fear of losing track of coverage hole
locations.

A. The Distributed Algorithm

The general strong collapse requires full a priori knowledge
of the entire simplicial complex. In the sensor network case,
this means that a preprocessing step is needed to find all
the cliques in the network, which causes an expensive [12]
bottleneck in computing homology. We exploit the fact that
every clique in the graph G yields a simplex in the flag
complex F(G) (and will assume maximal cliques to be the
only labelled simplices) to create an algorithm to execute a
collapse that is not only equivalent to the strong collapse,
but is also implemented distributively and only requires one-
hop information at each node. More importantly, the collapse
takes place before any clique-finding algorithm needs to be
run. The value of this property is that the remaining network
will be sparser than what we started with, thus tremendously
simplifying clique-finding.

Before continuing with the construction of the distributed
algorithm, we need one more important definition: the rele-
vance of a node v in a simplicial complex X:

rel(v) := ecc
(
∆T

v

)
=
q̂
(
∆T

v

)
− q̌
(
∆T

v

)
q̂
(
∆T

v

)
+ 1

.

It is useful to find a direct geometric interpretation of
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q̂
(
∆T

v

)
and q̌

(
∆T

v

)
: q̂
(
∆T

v

)
is the number of locally maximal

simplices incident to v, while q̌
(
∆T

v

)
is the maximal number

of locally maximal simplices shared by v with some other
vertex w. Therefore, rel(v) = 0 only when every maximal
simplex incident to v is also incident to some other vertex w.
This property is equivalent to the notion of v being dominated
by w, as described in [2]. While the original algorithm works
through conjugate complexes to eliminate all those vertices
with relevance 0, the distributed algorithm will exploit this
updated definition to avoid such intricate, expensive calcula-
tions. It follows that any vertex w sharing any faces with v
must be adjacent to v in the underlying graph. We assume
that each sensor v knows the identity of each neighbor in its
neighbor set Nv , and that v ∈ Nv .

Theorem 3. Given adjacent vertices v and w, Nv ⊂ Nw if
and only if every maximal simplex incident to v is also incident
to w, that is, rel(v) = 0.

Proof: (⇐) If every maximal simplex incident to v is
also incident to w, then the edge spanning v and w must be
in the complex, meaning that w ∈ Nv . Thus, the 1-simplex
spanning w and v, denoted 〈w, v〉, is in the complex. For a
vertex x ∈ Nv , let ∆ be a maximal simplex with 〈x, v〉 ⊂ ∆.
∆ is incident to v, and so it’s incident to w by assumption.
Hence, by the subset closure property of simplicial complexes,
〈x,w〉 is a 1-simplex in the complex, and so x ∈ Nw.

(⇒) Given a maximal n-simplex ∆ incident to v, without
loss of generality, let ∆ = 〈x1, x2, · · · , xn, v〉. Hence, xi ∈
Nv for every i ∈ {1, · · · , n}. Thus, xi ∈ Nw for every i ∈
{1, · · · , n} by assumption. Therefore, ∆ ∪ {w} is a simplex
in the complex. Thus, by the maximality of ∆, ∆∪{w} ⊂ ∆.
Hence, there is some j ∈ {1, · · · , n} for which w = xj . ∆ is
therefore incident to w, thus concluding the proof.

We exploit this fact to construct the following algorithm,
which is iterated until the graph stabilizes. Given that the
sensors have unique IDs, denoted v1, . . . , vM , and that sensor
vi has mi neighbors, each sensor vi executes the following
steps at each iteration:

Broadcast Nvi = {vij}
mi
j=1 to neighbors.

for j = 1→ mi do
vi receives Nvij
Compare Nvij

with Nvi

if Nvij
⊂ Nvi then

Broadcast TURN OFF command to vij
if TURN OFF command received from vij then

Handshake to determine which sensor turns off
end if

end if
end for
if TURN OFF received OR Handshake decides vi turns OFF
then

vi stops broadcasting
else

Update neighbor set Nvi , omitting OFF neighbors
end if

IV. APPLICATIONS

Here, we provide simulation results and a precise math-
ematical definition of the sensor network application of the
collapse, along with complexity analysis of the algorithm.

A. Sensor Network Coverage and Rips Complexes

Given a distribution of sensors S in some compact region
of R2, we can define the sensing radius rs as the maximum
distance at which each sensor can detect targets. That is, for
a sensor vi ∈ S, there is a coverage disc Di centered at
vi with radius rs within which vi can detect targets. Then,
the coverage region spanned by S is defined as ∪vi∈SDi.
Given this information, we can construct the Čech complex
of the coverage region, Č(S, rs): this simplicial complex is
constructed iteratively from the 0-simplices, defined to be the
sensors S. Following that, we include an n-simplex in the
complex spanning any set of (n + 1) sensors {vij}nj=0 for
which the coverage discs {Dij}nj=0 share a common intersec-
tion point. A classical result called the nerve theorem [3] states
that Č(S, rs) has the same homology as ∪vi∈SDi, the sensor
coverage region. Moreover, the generators of H1

(
Č(S, rs)

)
bound the coverage holes in the coverage region, thus giving
us a convenient, computable definition of a “hole” in a sensor
network. The problem is that computing the Čech complex
requires specific geometric information, including the coordi-
nates of the nodes, and so a more computable approximation
is required, motivating the Rips complex construction.

Given the same network S, we now define the communi-
cation radius rc as the distance below which any two sensors
si, sj ∈ S with d(si, sj) < rc can communicate. A natural
construction called the communication graph G(S) follows:
we construct the graph (S,E) with vertices S and an edge
eij between every pair of vertices si, sj with d(si, sj) <
rc. We then define the Rips complex of S, R(S, rc), as
the flag complex of the communication graph of S, that
is, R(S, rc) := F

(
G(S)

)
. This complex is distributively

computable. In addition, even though it doesn’t perfectly
model the coverage region of S in general, it can be shown
that for rs = rc

2 , Č(S, rs) ⊂ R(S, rc) ⊂ Č(S, rc) [5].
Furthermore, for rs ≥ rc

2 , the coverage holes undetected by the
first homology space H1

(
R(S, rc)

)
are geometrically small.

They can be contained in triangles making up a very small
percentage of the total area covered by the network.

Even though the homology of the Rips complex R(S) is
distributively computable, doing so is still expensive, as are
distributed hole localization methods [6]. The major advantage
of the distributed strong collapse is that it can be executed
before computing any cliques in the communication graph.
It simply takes one-hop information within the network and
turns off the irrelevant nodes before finding any cliques.

B. Complexity Analysis

Because homology computations are essentially nullity cal-
culations of a matrix, the complexity of computing the homol-
ogy of a simplicial complex with n simplices is on the same
order as computing the rank of a matrix, O(n2.37) [4]. The
benefit of the collapse to hole-localization is therefore reflected
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Fig. 2. Average number of 0-, 1-, and 2-simplices before and after the
collapse in each regime

by the degree to which the number of simplices in the complex
is reduced. Furthermore, we are only interested in finding
the coverage holes in the coverage region C, so we only
need information regarding H1(C). From the construction
of homology [10], the only simplices that contribute to the
construction of H1(C) are the 0-, 1-, and 2-simplices.

Geometric random graphs are effective models of sensor
networks, constructed by randomly scattering nodes in a unit
square, and building the communication graph by connecting
pairs of nodes which are within a certain distance. It is
known that geometric random graphs can be categorized by
node density into 3 regimes [14]. When the points are not
very dense, the network is in the subcritical regime. In the
supercritical regime, the points are very densely packed into
the coverage space, which often results in complete coverage.
Between these two extremes is the critical regime, in which the
radius of the coverage balls centered at the nodes is explicitly
related to the density of the nodes in the region. We studied
the effect of the collapse on simplex counts by generating
geometric random graphs with average degrees ranging from
5 to 35, and the number of nodes ranging from 100 to 500. We
generated 500 examples of each network, examples of which
may be found in Figure 1, and collapsed them; the average
reduction in 0-, 1-, and 2-simplices in each regime is displayed
in Figure 2.

This algorithm runs with a message-passing complexity of
O(|Nv|2) for the sensor v, where |Nv| is its number of neigh-
bors. This is because each node must pass a signal of size |Nv|
to each of its neighbors in Nv . Since each node must update
its neighbor list to delete all nodes which turned off in the
current iteration, the overall message-passing complexity of
the algorithm is O

(∑
v

|Nv|2
)

for the first iteration. Because

nodes can only be turned off in the algorithm, the per-iteration
message-passing complexity is bounded by the complexity of
this first iteration. Furthermore, since each node is quick-
sorting its neighbor list and comparing it to another such

list, the per-node computational complexity of the algorithm
is O(|Nv|2 log |Nv|) per iteration. It should be noted that
after the first iteration, only nodes whose neighbor sets have
changed execute this step. Finally, the number of iterations
before the complex converges to its core is bounded by the
diameter of the communication graph.

V. SUMMARY AND CONCLUSION

We presented a simple distributed algorithm for reducing the
number of sensors needed to accurately detect the topology of
the coverage region of a sensor network. We showed through
the new concept of node relevance that it is equivalent to
the previously developed strong collapse, and that it therefore
inherits the properties of preserving the topology and the
precise locations of holes in a network, while converging
in finite time. These properties guarantee that the resulting
collapsed complex can be used to locate holes in the original
network by way of locating them in the collapsed network.
The algorithm was derived solely from the properties of a
flag complex, and therefore, it can be used to collapse the
flag complex of any graph. We justified the collapse with
simulations demonstrating the degree to which the network
is collapsed in various density regimes, and showed that with
one-hop information, the network can be minimized prior to
the computational bottleneck of finding cliques in the network.
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