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Abstract—The number of electric car users has grown in recent
years, increasing the demand for reliable electric vehicle charging
stations (EVCS). The safety of EVCSs is very important as
compromised charging stations can disrupt the grid, injure the
end-users, and damage the vehicle. In this paper, we will focus on
the physical security of EVCS, because physical attacks tend to be
more harmful to the end user. Two anomaly detection approaches
were presented for detecting physical anomalies: physics-based
anomaly detection and deep learning-based anomaly detection
(ResNet Autoencoder). The presented approaches were trained
and tested using data collected from the EV Charging Station
System testbed of the Idaho National Laboratory. Anomaly
detection performance was evaluated on three different attack
scenarios, targeting various parts of the system including power
transfer subsystems and the cooling subsystem of the charger.
The presented approaches were compared against two widely
used unsupervised anomaly detection algorithms: OCSVM and
LOF. Moreover, we evaluated the advantages and limitations of
the physics-based vs ResNet Autoencoder approaches for each of
the three attack scenarios. The ResNet Autoencoder approach
showed the highest performance in terms of accuracy, F1,
recall, and precision. Furthermore, this approach demonstrated
a number of advantages including automated non-linear feature
extraction and unsupervised learning.

Index Terms—Deep Neural Networks, Autoencoders, Physics-
based models, Unsupervised Learning, Anomaly Detection, Elec-
tric Vehicle Charging Systems

I. INTRODUCTION

Electrified transportation is seen as a key driver for increas-
ing energy efficiency and sustainable energy infrastructure.
Electric vehicle (EV) offers from automakers are growing,
and the infrastructure for car charging is quickly following.
The United States experienced a 9.2% quarterly growth rate
in public chargers in 2020 Q4 [1] and recently passed the
100,000 public charger mark in March 2021. It is expected
that about 125 million EVs will be in operation on the road
by 2030 [1]. The EV industry needs to facilitate adequate
charging infrastructure for EV users to achieve this ambitious
figure.

These charging ports, alternatively known as smart EV
charging stations (EVCS), serve as the EVs’ access points to
the energy infrastructure (i.e., smart grid). Conventionally, the
energy infrastructure and the smart EVs exchange information

and energy through these EVCS [2]. Hence, appropriate man-
agement of EVCS (in terms of privacy protection) is inevitable
as it may cause havoc on power grid infrastructure if any
of these EVCS is compromised (by the adversary) or even
remains unmanaged. Attackers who obtain control of an EVCS
gain backdoor access to the grid. Because of the possibility of
transferring a significant amount of energy, these attacks may
cause network instability and cascade breakdowns [3]. The
attackers can damage the charging vehicle by overcharging
the battery and manipulating the charging profile. Moreover,
a charging station is a cyber-physical system (CPS) whose
operation is governed by the interactions between physical and
cyber components. As a result, these systems are exposed to
tampering with measurements and cyber-attacks. The charging
station’s cyber layer is vulnerable to many attacks such as DoS
attacks, false data injections, spoofing, repudiation, and MITM
attacks that can directly affect the physical layer of the system.
[4].

In this study, we will present a physical anomaly detection
system trained in an unsupervised manner for electric vehicle
charging stations. We will provide a comparison of the two
paradigms of the system modeling for anomaly detection:
the physics-based system identification model and the data-
driven deep learning model (ResNet Autoencoder). We imple-
mented and compared the performance of the models based
on evaluation metrics (F1, Precision, Recall, Accuracy) of test
scenarios. We also provided a detailed analysis of each model’s
advantages, disadvantages, and limitations in relation to each
test scenario and the overall physical security of EVCS.

The rest of the paper is organized as follows: Section
II provides the Background and Related Work; Section III
describes the experimental testbed; Section IV presents the
Physics-based and ResNet AE based Methodology; Section V
discusses the experimental setup, results, and discussion, and
finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

As the scale of EVs (electric vehicles) continues to expand,
the proper operation of EVs is essential. The normal operation
of EVs is closely related to the daily operation of charging
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stations and charging ports. Whether the EVs charging station,
as the connection point between EVs users and the power
grid, can work properly or not is the key to the normal
operation of EVs, and the normal operation of the charging
station is related to the normal operation and daily profit of
the charging station. So ensuring the proper operation of the
triad of EVs, charging stations, and charging ports is crucial
to support EVs development, promote efficient EVs use, and
ensure the operational efficiency and safety of the grid [5].
Currently, researchers are working towards megawatt charging
systems and the increasing complexities in the infrastructure
will increase vulnerabilities as well [6].

Fig. 1: EV Charging Station System testbed of the Idaho
National Laboratory

Finding patterns in data that do not match expected be-
havior is known as anomaly detection. A decline in system
performance, which might result in instability and failure,
is strongly indicated by anomalies [7]. The use of data-
driven machine learning algorithms is one of the promising
approaches to detecting anomalies [8]. There are two main ap-
proaches for building data-driven anomaly detection systems,
namely supervised and unsupervised. Supervised approaches
require labeled data to train the algorithms. However, data
labeling is time-consuming, and one cannot label all the
anomalous behaviors of the system due to practical difficulties.
Therefore, unsupervised techniques such as One-Class SVM,
Local Outlier Factor, and Autoencoders have gained popularity
over recent years.

Apart from machine learning models, physics-based system
identification models have gained popularity over the past
years. They analyze the physics-based dynamics of the system
to monitor abnormal behaviors of the system. Two popular
physics-based methods used for detection are safety limits and
anomaly-based. Safety limits are a straightforward approach
where constraints, or a bound, on values, are placed on
measurements such as temperature, pressure, or flow rates.
If the operation falls outside of the limits an alarm is raised.
Anomaly-based detection is done with the use of a mathemat-
ical model which represents the dynamics of the system [9].

Recent literature shows exciting efforts that have been
implemented to ensure the security of EVCSs. In [10], authors

developed an isolation forest-based model with an anomaly
score calculation method for detecting internal and external
abnormalities in EVs and EVCSs. In [11], authors proposed a
novel network traffic anomaly detection model based on Multi-
Head Attentions (MHA) that takes into account the inherent
correlations of traffic generated by ICSs. The MHA model
is employed to substitute the traditional feature extraction and
rule-making process with an acceptable computational cost for
classifying traffic data. In [12], To identify DoS attacks in
the EVCS, authors suggest new deep learning-based intrusion
detection systems (IDS). To recognize and categorize DoS
attacks in the EVCS, the deep neural network (DNN) and
long-short-term memory (LSTM) algorithms are implemented.
For both binary and multiclass classification, the proposed
LSTM-based IDS outperformed a competing DNN-based IDS
in terms of accuracy, precision, recall, and F1 score.

III. TESTBED DESCRIPTION

This section illustrates the INL’s EV charging station system
testbed system which is presented in Figure 1. INL’s Electric
Vehicle Infrastructure Lab (EVIL) facility consists of 350kW
Extreme Fast Charging (XFC), 50kW Direct Current Fast
Charging (DCFC), the Safety Instrumented System (SIS) core
module integrated into each charger, several electric vehicle
models (Nissan LEAF, BMW i3), and the CCS EV emulator.
Numerous physical measurements are obtained from the XFC
input, output, and internal components during operations.
These measurements are acquired from an AC power meter,
several DC hall-effect current sensors, and several thermistor
temperature sensors. The AC power measures the real and
apparent power for the entire XFC as well as the individual
power cabinets. Hall-effect current sensors are used to measure
the DC current output from the XFC power cabinets and the
CCS liquid-cooled chiller electrical draw. Thermistor temper-
ature sensors, installed with the CCS cable assembled by the
manufacturer, are used to measure the operating temperature
of the CCS cable and connector assembly.

Fig. 2: Framework for Physical Anomaly Detection in EV
Charging Station Systems



IV. PHYSICS-BASED AND RESNET AE-BASED ADS
METHODOLOGY

This section describes the presented approach for data-
driven and physics-based anomaly detection approach for
physical health monitoring of the EVCS.

The presented approach analyzes physical data in order
to identify internal anomalies through the use of anomaly
detection algorithms. The overall architecture of the system is
presented in Figure 2. The approach consists of a) Data pre-
processing, b) Autoencoder based anomaly detection, and c)
Physics-based anomaly detection. The following subsections
describe the three main components mentioned above.

A. Data pre-processing

This section describes the data pre-processing techniques
we used in this work. We used a window-based pre-processing
approach [13] for eliminating the noise from the sensor data.
The approach is averaging the sensor outputs within a defined-
size window. The optimal window size (winSize) was chosen
by experimenting with different sizes and the presented results
in the paper are obtained using the best-found winSize=500
ms. The best performance was obtained by using overlapping
windows because it increases the temporal resolution and
the collected data points are analyzed multiple times with a
temporal offset. Overlaps between two windows are kept at
half of the window size.

Instead of using all the available sensor data (features) in
the dataset, we performed feature selection in order to find the
best feature combination which provides the most accurate AD
results. Best feature selection is performed through a combined
approach of Pearson correlation and grid search. Pearson
correlation is used because it indicates the presence or absence
of correlation between any two variables and determines the
exact extent or degree to which they are correlated. Feature
selection has advantages such as reduced training time as the
dimensionality of the dataset decreases, removal of redundant
features, and improved accuracy because of the removal of
redundant data. Table II illustrates some of the important
features extracted from the total collection of the sensors.

B. ResNet Autoencoder based anomaly detection

In this work, we used an Autoencoder (AE) Neural Network
model to identify the abnormal behaviors of the system. We
implemented a deep ResNet AE (RAE) architecture to detect
any potential performance degradation and to improve feature
learning capability [14]. Based on the traditional AE network,
the ResNet-AE network replaces the linear structure in the
AE network with the ResNet structure. There are multiple
hidden levels in both the encoder and the decoder in AE.
The two phases of the model’s training are the encoding
stage and the decoding stage. During the encoding step, the
input data is transformed into an embedded representation,
and during the decoding stage, the embedded representation
is reconstructed to the original input record (reconstruction).
The loss function (Jθ) of the AE model is computed using the

Fig. 3: Physics-based detection where both safety limits and
anomaly-based detection are used for alarms. Image taken
from [9].

difference between the input (x) and the reconstruction (x′).
Thus reconstruction error of the AE is calculated as follows,

Jθ =
1

T

T∑
i=1

∥xi − x′
i∥2 (1)

where xi is the i th input sample, x′
i is the reconstruction for

ith input sample, θ denotes the set of parameters of the AE
(weights and biases).

The AE model is trained using only data from normal
behaviors. Therefore, it only learns the possible normal be-
haviors of the system. When unseen records are presented to
the trained AE, the amount of reconstruction error indicates
how much the presented data differs from the learned normal
behavior. A threshold value is defined to identify possible
anomalies. The data records were detected as anomalies if
the reconstruction error was higher than the defined threshold
value. Thus, given data record xi is detected as anomaly (
y = 1) or normal (y = 0) as follows,

Jθ,i = ∥xi − x′
i∥2 (2)

y =

{
1 : Jθ,i ≥ th
0 : Jθ,i < th

(3)

where Jθ,i is the reconstruction error of ith data record, th
denotes the threshold value, and y represents predicted label:
anomaly or not. The threshold value is optimized based on the
training baseline data, i.e., the threshold value should capture
the baseline data boundary, capturing the normal behavior
fluctuations.

The mean squared error was used as the loss function. A
different number of hidden layer sizes were tested, and the
paper presents the best results.

C. Physics-based anomaly detection

The main idea behind a physics-based anomaly detection
method is that physical systems must follow the imitable laws
of nature. For example, the heat generation of a gas turbine
generator follows thermodynamic properties, the flow rate of
a hydropower generator follows fluid dynamic principles, and
an electrical system follows electrodynamics.

Figure 3 illustrates the two approaches for physics-based
anomaly detection. In this work, we utilized the anomaly-
based detection method. Anomaly-based detection is done



TABLE I: ResNet-ADS anomaly detection comparison

Method Accuracy Precision F1 Recall
LOF 87.50 100.00 80.00 66.67
OCSVM 93.86 86.36 92.68 100.00
Physics-based 87.61 88.00 93.61 100.00
ResNet AE 96.82 92.43 96.07 100.00

with the use of a mathematical model which represents the
dynamics of the system. It is used to predict an expected
measurement, ŷk, using the current control commands, uk,
and the previous sensor measurements, yk−1.

The mathematical model of the system is derived through a
data-driven process called system identification. In this work,
the mathematical model is represented as a time-series ARX
(Autoregressive-exogenous) model given as

yk =

na∑
i=1

aiyk−i +

nb∑
i=1

biuk−i (4)

Here, unknown constants ai and bi are solved using the Python
package GEKKO [15] and the function sysid(). The number
of previous outputs (na) and inputs (nb) used are 1 and inputs
of primaryDCA and chiller24A are used to predict the output
of the cable temperature.

The anomaly detection test itself uses a time series of
residual values, rk. The residual is the difference between the
real-time measured value and the predicted value from the
mathematical model, given as

rk = |yk − ŷk| (5)

The residuals can be used in either a stateless or stateful
anomaly detection test. A stateless test raises an alarm every
time a residual value reaches a set threshold, rk ≥ τ . In this
work, a stateful test was used. Here, the historical changes of
the residual are kept as an additional statistic, denoted as Sk,
and used to generate an alert if Sk ≥ τ . There are many ways
to keep track of the residual for a stateful test, such as an
exponential weighted moving average, using change detection
statistics such as the non-parametric cumulative sum statistic,
or tracking an average over a time window. The time window
approach was selected for this work, using the previous 100
data points.

V. EXPERIMENTS

This section presents the experimental results and analysis
of the anomaly detection algorithms. We evaluate the perfor-
mance of the ResNet Autoencoder and Physics-based model
by comparing them with two benchmark algorithms: 1) One-
Class Support Vector Machines (OCSVM), 2) Local Outlier
Factor (LOF).

Data Collection: For experimental evaluation, data from
normal and physical attack scenarios were collected. Physical
sensor measurements collected from the testbed enable the
direct detection of anomalous operating conditions as well
as redundant calculations of various parameters to provide
additional means to quickly determine anomalous operating

TABLE II: Physical Feature List

Feature Name Description
XFC Input Voltage Voltage at the service panel feeding

the XFC
XFC Input Current Current at the service panel feeding

the XFC
Primary Power Cabinet Voltage Voltage at the input to the Primary

Power Cabinet
Secondary Power Cabinet Volt-
age

Voltage at the input to the Sec-
ondary Power Cabinet

Primary Power Cabinet Power
Factor

Calculated Power Factor of the Pri-
mary Power Cabinet

Secondary Power Cabinet Power
Factor

Calculated Power Factor of the
Secondary Power Cabinet

CCS Cable Temperature Temperature Measurement within
the CCS Liquid-Cooled Cable

CCS Connector Temperature Temperature Measurement within
the CCS Liquid-Cooled Connector

Primary Real Power Cabinet
Current (Pri Real Power i)

Current at the input to the Primary
Power Cabinet

Secondary Real Power Cabinet
Current (Sec Real Power i)

Current at the input to the Sec-
ondary Power Cabinet

Primary Power Cabinet DC Out-
put Current (Primary DCA)

DC Current Output from the Pri-
mary Power Cabinet

Secondary Power Cabinet DC
Output Current (Secondary
DCA)

DC Current Output from the Sec-
ondary Power Cabinet

CCS Cable Liquid Chiller Cur-
rent (Chiller24A)

Current Draw of the CCS Chiller
from the 24VDC Auxiliary System

conditions. The SIS system saves the attack timestamps in a
log file, indicating when each attack starts and stops. These
timestamps are used to label the dataset, indicating which data
correspond to a normal state and which data correspond to
physical anomalies. we run each scenario separately and keep
the collected data in separate files.

In this work, we divided the initial dataset into two: 0.7 of
the data for training and 0.3 for validation. The best models
were evaluated using test data which included three attack
scenarios. Before applying the algorithms the data were scaled
to the 0-1 range.

We selected three scenarios for this paper to present the
ADS output results. The selected scenarios are described
below.

Scenario 1 - Power transfer system manipulation: This
situation could be the consequence of an attack, as in this
experiment, or it could be the result of power electronics
failure. The power module controller is interrupted while
charging, compromising the AC power quality at the grid
connection. If the system controller is not sufficiently robust,
this manipulation can harm equipment, start electrical fires, or
disturb the stability of the power grid.

Scenario 2 - Liquid cooling system manipulation: This
situation could be the consequence of an attack, as in this
experiment, or it could be the result of a chiller pump failure.
In the case of our scenario, the chiller was disabled and the
temperature feedback from the thermal sensors was spoofed
to appear normal. This scenario can be dangerous for the
charging station equipment and present a burn hazard to the
equipment user, causing injury to the user and damage to the
charging equipment.



Scenario 3 - External manipulation of the charging
profile: During vehicle charging, a malicious payload was
injected to change the maximum power profile point. By
manipulating the operating point, the attacker can harm the
charger, and the vehicle, and endanger the user. It can cause
the distribution to the grid by surging high amounts of power.

(a) Physics-based ADS output for scenario 1

(b) Physics-based ADS output for scenario 2

(c) Physics-based ADS output for scenario 3

Fig. 4: Physics-based anomaly detection results for the three
scenarios.

We initialized our experiments with a physics-based sys-
tem identification model. The following section describes the
results of the physics-based model.

A. Physics-based Anomaly Detection

Results for the physics-based anomaly detection in each of
the scenarios are shown in Figure 4. As shown in the figure the
green line indicates the outcome of the ADS and the exploit
duration is shown by the red area. Further, we have shown how
different features change during the attack scenarios in order
to explain the behavior of the system. All the features shown
in the figure are scaled between 0-1. The accuracy, precision,
F1, and recall are shown in Table I. Here it can be seen that
physics-based anomaly detection performs similarly to LOF
and OCSVM methods but not as well as the ResNet AE.

• Scenario 1: Figure 4a illustrates that the physics-based
approach cannot detect the power module manipulation
as the model input and output are still as expected. i.e.
the heating of the cable is still as expected based on the
measured primaryDCA (blue line) and chiller24A during
the exploit period between time steps 187 - 215.

• Scenario 2: Figure 4b illustrates that the physics-based
method detects the rapid heating of the cable during the
chiller exploit from time steps 349 - 440. As shown in the
Figure, CCS cable temperature feature values (blue line
and yellow line) increased during the attack. Here, the

attack manipulates the chiller operation and the model
would not expect such rapid heating, and the alarm is
triggered.

• Scenario 3: Figure 4c illustrates that the physics-based
method detects false data attacks. Here, it can be seen
that the increased heating of the cable remains similar
during the attacks from time steps 187 - 215 and 275 -
335. In this figure, the heating of the cable is represented
using the CCS cable temperature feature (yellow line).
Based on the inputs to the physics-based model, this is
unexpected; the residual window breaks the threshold and
an alarm is raised.

(a) ResNetAE-ADS output for scenario 1

(b) ResNetAE-ADS output for scenario 2

(c) ResNetAE-ADS output for scenario 3

Fig. 5: ResNet Autoencoder-based anomaly detection results
for the three scenarios.

Results of the physics-based anomaly detection model con-
firm that it fails to detect scenarios where the physics match
what is expected although there is an exploit. Due to the
limitations of the physics-based system identification model,
we experimented with our data with the ResNet Autoencoder
model. The following section describes the results of the
ResNet Autoencoder-based anomaly detection results.

B. ResNet AE Anomaly Detection

In this experiment, we evaluated the performance of the
unsupervised ResNet AE to detect anomalies. Normal behavior
corresponds to sections where no attack was being executed
whereas an anomaly corresponds to any of the physical attacks
executed during the experiment.

Results for the ResNet AE-based anomaly detection in each
of the scenarios are shown in Figure 5. Table I shows the
accuracy, precision, recall, and f1 scores of the ResNet AE
method. The table shows that ResNet AE performs more ac-
curately w.r.t. OCSVM, Physics-based, and LOF approaches.
OCSVM and ResNet AE have the same recall while ResNet



AE has higher accuracy, precision, and F1 scores. The ResNet
AE model shows higher accuracy, recall, F1, and precision
than the physics-based model which confirms that the ResNet
model performs better than the physics-based model in the
current data setting. However, the results suggest room for
improving the precision and F1 scores.

Figure 5a, 5b, and 5c show that the presented ResNet AE
method is able to correctly identify abnormal scenarios.

• Scenario 1: Figure 5a illustrates the results of the
ResNet AE for scenario 1. During the exploit period
(time steps 187 - 215), the primaryDCA (blue line) and
SecondaryDCA (red line) current decreased compared to
the normal charging session. As shown in the Figure, our
ADS detects the system’s abnormal behavior when these
drastic changes happen in the features mentioned above.

• Scenario 2: Figure 5b illustrates the results of the ResNet
AE for scenario 2. During the exploit period (time steps
349 - 440), the ccs cable temperature values (yellow
line and blue line) are observed to be increased since
the attack manipulates the chiller operation. ResNet AE
is able to detect the system’s abnormal behavior when
the temperatures start to show a drastic change and it
correctly overlaps with the time that the attack launched.

• Scenario 3: Figure 5c illustrates the results of the ResNet
AE for scenario 3. During the exploit period (time steps
187 - 215 and 275 - 335), the primaryDCA, Secondary-
DCA, Primary Real power, and Secondary Real Power
current features show a sudden drop due to the false
data attack which set the ”chargePointMaxProfile” to
100w while the correct value is 100kw. As shown in
the Figure, our ResNet AE could detect the system’s
abnormal behavior when these drastic changes happen in
the features mentioned above. As explained above, Figure
5c shows a sudden drop in the primaryDCA feature (blue
line) during the exploit.

Pros/Cons of Physics-based model: As mentioned earlier,
the physics-based system identification model fails to identify
some anomalous scenarios accurately. Physics-based models
are based on assumptions made by humans about the physical
dynamics of the system. However, system complexity scales
the number of physical variables exponentially. Therefore,
most of the models will only cover a subset of scenarios
of a system while it will fail in others. Moreover, as the
system changes or with new scenarios the physics-based
modeling requires to be calibrated and updated with new
assumptions. However, deep learning model will fail in cases
there is not enough data for learning normal behavior, but the
physics-based model has a restricted optimization space that
is conditioned by the imitable laws of nature.

Pros/Cons of ResNet AE model: In this study, we used
a ResNet Autoencoder model which is a pure data-driven
unsupervised algorithm it learns not only temperature-related
features as done by the physics-based model but also overall
feature deviations that happen during attack scenarios. There-
fore, the ResNet Autoencoder model performs better than the

physics-based model which is confirmed by the experimental
results. Moreover, the Resnet AE algorithm is unsupervised
meaning does not require labeled data. Data labeling is time-
consuming, and one cannot label all the anomalous behaviors
of the system due to practical difficulties Further effort is
required in identifying the root causes when using a deep
learning model to detect anomalies as opposed to a physics-
based model.

VI. CONCLUSION AND FUTURE WORK

The objective of this paper is to develop a physical anomaly
detection approach without using labeled data to improve
the resiliency of electric vehicle charging stations. First, we
explored a physics-based system identification model for the
anomaly detection task. However, we demonstrate that there
are limitations to this approach. Specifically, with attacks that
alter the system but result in input and output data that follow
the physics of the system. Therefore, we explored ResNet AE-
based approach for unsupervised physical anomaly detection
and our outcomes show that the ResNet AE approach has
improved detection performance. More precisely, we show
that by using a ResNet AE it is possible to detect the attacks
with a High Accuracy (96.82), Recall(1.00), Precision (92.43),
and F1 score (96.07). In the future, we intend to improve
our anomaly detection system by incorporating cybersecurity-
related scenarios of EV charging systems.
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