Harald LückInstitut für Gravitationsphysik, Leibniz Universität Hannover and Max Planck Institute for Gravitational Physics (Albert-Einstein-Institute) · Laser Interferometry and Gravitational Wave Astronomy
Harald Lück
Dr. rer. nat.
About
652
Publications
340,335
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
113,815
Citations
Introduction
I am supporting the coordination of the research groups at the GEO600 gravitational wave detector and the 10m Prototype interferometer at the Institute for gravitational physics of the Leibniz University Hannover and the Max-Planck Institute for gravitational physics in Hannover
and I am the deputy spokesman of the Einstein Telescope Collaboration.
My research foci are on instrument science of gravitational wave detectors.
Skills and Expertise
Additional affiliations
January 2003 - December 2013
Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck Institut for Gravitational Physics (Albert-Einstein Institu) , Hannover, Germany
Position
- GEO600 site (Co-)manager
Description
- Building, commissioning and running the GEO600 gravitational wave detector
October 1997 - September 2003
Universität Hannover, Germany
Position
- staff member
October 1993 - September 1997
Education
July 1989 - July 1993
Institut für Plasmaphysik, Universität Hannover
Field of study
- Plasma Physics
February 1989 - July 1989
Clarendon Laboratory, Oxford University
Field of study
- Plasma Physics
February 1988 - February 1989
Institut für Plasmaphysik, Universität Hannover
Field of study
- Plasma Physics
Publications
Publications (652)
Gravitational waves have revolutionised the field of astronomy by providing scientists with a new way to observe the universe and gain a better understanding of exotic objects like black holes. Several large-scale laser interferometric gravitational wave detectors (GWDs) have been constructed worldwide, with a focus on achieving the best sensitivit...
Gravitational waves have revolutionised the field of astronomy by providing scientists with a new way to observe the universe and gain a better understanding of exotic objects like black holes. Several large-scale laser interferometric gravitational wave detectors (GWDs) have been constructed worldwide, with a focus on achieving the best sensitivit...
Suspended optics in gravitational-wave (GW) observatories are susceptible to alignment perturbations, particularly slow drifts over time, due to variations in temperature and seismic levels. Such misalignments affect the coupling of the incident laser beam into the optical cavities, degrade both the circulating power and optomechanical photon squee...
Squeezed light is injected into the dark port of gravitational wave interferometers, in order to reduce the quantum noise. A fraction of the interferometer output light can reach the OPO due to sub-optimal isolation of the squeezing injection path. This backscattered light interacts with squeezed light generation process, introducing additional mea...
We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). Triggers from 22 FRBs were analyzed...
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availabil...
In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent...
Squeezed light is injected into the dark port of gravitational wave interferometers, in order to reduce the quantum noise. A fraction of the interferometer output light can reach the OPO due to sub-optimal isolation of the squeezing injection path. This backscattered light interacts with squeezed light generation process, introducing additional mea...
Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run...
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron st...
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five mo...
Suspended optics in gravitational wave (GW) observatories are susceptible to alignment perturbations and, in particular, to slow drifts over time due to variations in temperature and seismic levels. Such misalignments affect the coupling of the incident laser beam into the optical cavities, degrade both circulating power and optomechanical photon s...
We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coh...
High precision interferometers such as gravitational-wave detectors require complex seismic isolation systems in order to decouple the experiment from unwanted ground motion. Improved inertial sensors for active isolation potentially enhance the sensitivity of existing and future gravitational-wave detectors, especially below 30 Hz, and thereby inc...
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false a...
We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band...
For broadband quantum noise reduction of gravitational-wave detectors, a frequency-dependent squeezed vacuum field realized using a filter cavity is the most promising technique and will be implemented in Advanced LIGO and Advanced Virgo in the fourth observing run. To obtain the benefit of frequency-dependent squeezing, the length and alignment of...
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration ($\sim$ 100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Vi...
The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify t...
Results are presented for a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-Wave Observatory data by including the orbital period in the search t...
We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a speci...
High precision interferometers such as gravitational-wave detectors require complex seismic isolation systems in order to decouple the experiment from unwanted ground motion. Improved inertial sensors for active isolation potentially enhance the sensitivity of existing and future gravitational-wave detectors, especially below 30 Hz, and thereby inc...
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic)...
We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs....
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic)...
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M_{⊙} and 1.0 M_{⊙} in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for...
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M⊙ and 1.0 M⊙ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more u...
The third-generation of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer (CE), aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the third-generation detectors and to develop and qualify t...
We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing r...
We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing r...
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo’s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches ca...
This paper describes the first all-sky search for long-duration, quasimonochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20 to 610 Hz, over a small frequency derivative range around zero, and use...
We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British–German laser interferometer with 600m arms, and located near Hannover, Germa...
We present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO detector data from the first six months of the third Advanced LIGO and Virgo observing run using the WEAVE semicoherent method, which sums matched-filter detection-...
Frequency-dependent squeezing is the main upgrade for achieving broadband quantum noise reduction in upcoming observation runs of gravitational wave detectors. The proper frequency dependence of the squeezed quadrature is obtained by reflecting squeezed vacuum from a Fabry-Perot filter cavity detuned by half of its line width. However, since the sq...
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to...
We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs....
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to...
We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in th...
Frequency dependent squeezing is the main upgrade for achieving broadband quantum noise reduction in upcoming observation runs of gravitational wave detectors. The proper frequency dependence of the squeezed quadrature is obtained by reflecting squeezed vacuum from a Fabry-Perot filter cavity detuned by half of its linewidth. However, since the squ...
We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British--German laser interferometer with 600 m arms, and located near Hannover, Ger...
jats:p>Intermediate-mass black holes (IMBHs) span the approximate mass range 100−10 5 M ⊙ , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first tw...
Results are presented for a semi-coherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-wave Observatory (LIGO) data by including the orbital period in the...
Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilit...
We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band...
We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band...
This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24–4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal...
The workshop Dawn VI: Next Generation Observatories}took place online over three days, 5-7 October, 2021. More than 200 physicists and astronomers attended to contribute to, and learn from, a discussion of next-generation ground-based gravitational-wave detectors. The program was centered on the next generation of ground-based gravitational-wave ob...
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully-coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches ca...
The nature of dark matter remains unknown to date, although several candidate particles are being considered in a dynamically changing research landscape¹. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities2–8. Here we describe a direct search for scalar field...
The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed durin...
The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed durin...
We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity an...
This paper describes the first all-sky search for long-duration, quasi-monochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20~Hz to 610~Hz, over a small frequency derivative range around zero, and...
This paper describes the first all-sky search for long-duration, quasi-monochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20 Hz to 610 Hz, over a small frequency derivative range around zero, and...
We present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO data from the first six months of the third Advanced LIGO and Virgo observing run, using the Weave semi-coherent method, which sums matched-filter detection-statist...
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the $l=m=2$ mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) a...
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l=m=2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and...
Planning for the development of a 3rd generation global gravitational-wave detector array is a multifaceted and complex effort that will necessarily need a high level of community input. Interfacing to extant and new stakeholders in the broader scientific constituencies is necessary to keep them aware of the activities taking place in the ground-ba...
The first direct detection of gravitational waves emitted from a pair of merging black holes in 2015 has been heralded as one of most significant scientific breakthroughs in physics and astronomy of the 21st century. Motivated by the tremendous scientific opportunities now opened by gravitational-wave observatories and recognizing that to fully exp...
To deliver on the promise of next generation gravitational-wave observatories, a sustained and coordinated detector research and development program is required. This report examines in detail the wide range of nearer- and longer-term detector R&D programs needed for next generation GW detectors commensurate with the key science targets presented i...
The construction of a global network of detectors is the cornerstone to scientific success for 3rd generation gravitational wave astronomy. If carried out with a vision to the future, the third generation implementation, in its infrastructure, technology base and governance can provide the point of departure for subsequent developments beyond the t...