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Abstract—Visible images contain rich texture information,
while infrared images have significant contrast. It is advantageous
to combine these two kinds of information into a single image so
that it not only has good contrast, but also contains rich texture
details. In general, previous fusion methods cannot achieve this
goal well, where the fused results are inclined to either a
visible or an infrared image. To address this challenge, a new
fusion framework called generative adversarial network with
multi-classification constraints (GANMcC) is proposed, which
transforms image fusion into a multi-distribution simultaneous
estimation problem to fuse infrared and visible images in a more
reasonable way. We adopt a generative adversarial network with
multi-classification to estimate the distributions of visible light
and infrared domains at the same time, in which the game of
multi-classification discrimination will make the fused result have
these two distributions in a more balanced manner, so as to have
significant contrast and rich texture details. In addition, we design
a specific content loss to constrain the generator, which introduces
the idea of main and auxiliary into the extraction of gradient
and intensity information, which will enable the generator to
extract more sufficient information from source images in a
complementary manner. Extensive experiments demonstrate the
advantages of our GANMcC over the state-of-the-art methods
in terms of both qualitative effect and quantitative metric.
Moreover, our method can achieve good fused results even the
visible image is overexposed. Our code is publicly available at
https://github.com/jiayi-ma/GANMcC.

Index Terms—Image fusion, generative adversarial network,
infrared, multi-classification, deep learning.

I. INTRODUCTION

IMAGE fusion is to extract meaningful information from
images captured by different sensors and then combine it

to generate a single image, which contains richer information
or more favorable for subsequent applications. Among them,
infrared and visible image fusion is probably the most widely
used [1]. Visible image is generated by the visible sensor
capturing reflected light. It is characterized by rich texture
detail information and conforms to the human eye observation
law. Infrared sensors can perceive infrared band and convert

This work was supported by the Natural Science Fund of Hubei Province
under Grant no. 2019CFA037, and the National Natural Science Foundation
of China under Grant nos. 61773295 and 41890820. (Corresponding author:
Zhenfeng Shao.)

J. Ma, H. Zhang, P. Liang and H. Xu are with the Elec-
tronic Information School, Wuhan University, Wuhan, 430072, China (e-
mail: jyma2010@gmail.com, zhpersonalbox@gmail.com, erfect@whu.edu.cn,
xu han@whu.edu.cn).

Z. Shao is with the State Key Laboratory of Information Engineering in
Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079,
China (e-mail: shaozhenfeng@whu.edu.cn).

Infrared Image Visible Image Fused Image

Fig. 1: An application example of infrared and visible image fusion
in vehicle navigation.

the thermal radiation information to generate a gray-scale
image. Infrared image is characterized by strong contrast and
can effectively distinguish between background and target,
even at night and in inclement weather. Infrared and visible
image fusion combines these two characteristics together to
generate images with significant contrast and rich texture
details, which has good application prospects in the fields
of military surveillance, object detection and vehicles night
navigation [2], [3], [4]. Figure 1 shows an example to illustrate
this point. The infrared image at night can effectively highlight
vehicles and pedestrians on highways, while visible light
images can retain traffic signs. The fused image can integrate
these two advantages to be more conducive to the robot or
vehicle understanding of the current scene.

The key to image fusion is the extraction and reconstruction
of the most meaningful information [5], [6]. For infrared and
visible image fusion, the most meaningful information is the
significant contrast and rich texture, which is desirable to be
preserved in the ideal result. In order to achieve this goal,
researchers have proposed many image fusion methods, which
can be divided into traditional methods and deep learning-
based methods. Traditional methods measure the activity level
of pixels or regions in the spatial domain or the transform
domain, and realize image fusion according to specific fusion
rules. Typical traditional methods are sparse representation-
based methods [7], [8], multi-scale transform-based meth-
ods [9], [10], subspace-based methods [11], saliency-based
method [12], [13] and hybrid methods [14], [15]. The deep
learning-based methods [16], [17], [18], [19], [20] utilize the
powerful nonlinear fitting ability of neural network to make the
fused image have the desired distribution, and such methods
can often produce more promising results.

Although the existing methods have achieved positive re-
sults under most conditions, there are several negativeness that
should not be ignored. Firstly, the activity level measurement
and fusion rules in traditional methods often require manual
design, which become very complex because of the diversity
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of source images. In general, the rules of manual design
are partial, limiting the fusion performance. Secondly, due
to the lack of ground truth, the deep learning-based methods
only realize image fusion by designing content loss function.
The distribution learned in this way is not comprehensive
enough. Third, even though the main information contained
in different types of source images is different, there is still
some secondary information contained in each other, which is
desirable to be preserved in the final fused image. However,
it has not been considered in previous methods. Fourth, it is
difficult for most existing methods to achieve a good balance
in maintaining infrared and visible inherent information. For
example, the fused results of some methods tend to be visible
images; although they contain rich texture details, they have no
significant contrast and cannot clearly distinguish the targets
from the background, such as [21], [22], [23]. Conversely, the
results of some methods are closer to infrared images; they
have better contrast information, but the texture is not rich
enough, e.g., more like sharp infrared images, such as [16],
[24]. The unbalanced information in the fused result is harmful
to subsequent upper-level tasks, such as the accuracy reduction
in target detection.

The motivation of our method is mainly composed of two
aspects. First of all, sufficient and effective information extrac-
tion is a prerequisite for good fusion. The previous methods
believe that the expected contrast information only comes
from the infrared image, and the desired texture information
is only contained in the visible image. However, we find
that infrared images also have some texture details, which in
some cases are even very rich. Similarly, visible images also
contain contrast information. We give two typical examples
in Fig. 2. In the first example, the texture of some objects
in the infrared image is even clearer than that in the visible
image, such as the tree and grass highlighted in red boxes.
In the second example, the visible image also contains some
contrast information, such as the pavilion. This information
should not be ignored. Second, aiming at the unbalanced
fusion problem of existing methods, we think the key to
ensuring that the fused image has both significant contrast
and rich texture details is to ensure that the contrast and
gradient information from source images is balanced, rather
than biased. This is essentially a simultaneous estimation
of the distribution of two different domains. Some specific
network architectures can learn the distribution of observation
data, such as SQAE [25], DBN [26], and LSTM [27], but
they often need labels. Fortunately, the generative adversarial
network (GAN) can better estimate the probability distribution
of the target without supervision , while GAN with multi-
classifier can further fit multiple distribution characteristics
simultaneously. Therefore, it is suitable to solve this problem.

On the basis of the above observations, we design a gener-
ative adversarial network with multi-classification constraints
(GANMcC), which can maintain contrast and texture details
simultaneously. In particular, a specific content loss is designed
to constrain the generator’s extraction and processing of source
image features, which addresses under-utilization of informa-
tion. We not only construct the main infrared intensity loss
between the fused image and infrared image, but also construct

Fig. 2: Illustration of the existence of auxiliary information. The left
column is visible images and the right column is infrared images.
Clearly, infrared image may contain rich texture details (top row)
while visible image may have high contrast (bottom row).

the auxiliary gradient loss, because the infrared image also
contains texture details, and in some cases, they are even
very rich. Similarly, we construct the main gradient loss and
auxiliary intensity information loss between the fused image
and visible image. This complementary loss also allows our
method to generate good fused results when the visible images
are overexposed (e.g., the gradient changes greatly). In ad-
dition, we design a multi-classification generative adversarial
network to address the challenge of unbalanced information
fusion. In our model, the multi-modal image fusion is trans-
formed into simultaneous estimation of multiple distributions.
Concretely, we use a multi-classifier as discriminator, which
can determine the probabilities that the input is an infrared
image and is a visible image. For fused images, under the
multi-classification constraints, the generator expects that the
two probabilities are both high, that is, the discriminator
considers it both an infrared image and a visible image; while
the discriminator expects the two probabilities to be small at
the same time, that is, the discriminator determines that the
fused image is neither an infrared image nor a visible image.
During this process, we constrain these two probabilities
simultaneously to ensure the fused image to be true/false to the
same degree in both categories. After continuous confrontation
learning, the generator can simultaneously fit the probability
distribution of the infrared image and the visible image, thus
producing the result with both significant contrast and rich
texture details. Through the cooperation of these two designs,
our method can generate fused images with good visual
effects.

The contributions of our work include the following two
aspects. First, we propose a new end-to-end GAN model
with multi-classification constraints for infrared and visible
image fusion, which can address the challenge of unbalanced
fusion in existing methods. Our fused results not only retain
the high contrast between thermal targets and background,
but also contain rich texture details. Second, we propose
a specific content loss for the generator. We construct two
kinds of losses between the fused image and the two source
images, namely intensity loss and gradient loss, and classify
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them as main loss and auxiliary loss. They are able to force
the generator to get more information from the two source
images (complementary to each other), so that the fused
image contains more comprehensive and rich information. In
addition, due to such a complementary loss function, when the
visible image is overexposed, the corresponding information
from the infrared image can make up for it, which makes our
method be able to remove the highlight while maintaining the
significant contrast.

The remainder of this paper is organized as follows. Section
II introduces some work and techniques related to the proposed
method. In Section III, we describe our GANMcC in detail,
including the overall framework, loss functions and network
architecture. In Section IV, our method is evaluated compre-
hensively, including qualitative and quantitative comparisons,
complexity evaluation, ablation experiment and generalization
verification. Discussion and conclusion are given in Section
V.

II. RELATED WORK

In this section, we review some of the work and techniques
most relevant to our method, including deep learning-based
image fusion methods and generative adversarial network
(GAN).

A. Deep Learning-based Image Fusion

Deep learning has promoted tremendous progress in many
fusion tasks,which relies on the powerful nonlinear fitting
ability of neural network to estimate the expected distribu-
tion from the massive data. In contrast, the fusion rules of
traditional algorithms typically require manual design, which
cannot achieve robustness in various types of fusion tasks.
Therefore, in recent years, deep learning-based fusion methods
have become research hotspots.

In multi-focus image fusion, convolutional neural network
(CNN) is used for the first time in [28] to learn the mapping
from source images to decision maps, in which the network
is trained to learn the detection of clear or fuzzy areas by
artificially designing false labels. After realizing the difficulty
of acquiring reference images, an unsupervised network [29]
is proposed for generation of decision map, in which the post-
processing is still required. The MFF-GAN proposed by Zhang
et al. [30] realizes multi-focus image fusion with high detail
preservation through a well-designed loss function, which can
avoid the information loss near the boundary line that appears
in the previous decision map-based method. In multi-exposure
image fusion, a no-reference quality metric is used as the loss
function to train an unsupervised network, which fuses a set
of common low-level features extracted from each image to
generate promising results [31]. In contrast, Xu et al. [32]
used GAN to realize this goal, in which the self-attention
mechanism is adopted to solve the negativeness caused by
large luminance changes. In addition, deep learning has been
applied to the remote sensing image fusion. PSGAN [33] uses
GAN to fit the probability distribution of the high-resolution
multi-spectral image, but it still needs to construct artificial
ground truth for training. Analogously, Ma et al. [34] adopted

GAN with dual discriminators to transform pansharpening into
a multi-task learning problem, saying spectrum preservation
and spatial preservation. The NDVI-Net designed by Zhang
et al. [34] can generate the high-precision high-resolution
normalized difference vegetation index (NDVI) by fusing low-
resolution NDVI with the newly proposed high-resolution
vegetation index. In medical image fusion, Liu et al. [35]
introduced the neural network to implement measurement
of activity information, then used the image pyramids to
complete the fusion process. Similarly, Yin et al. [36] designed
an interesting neural network named PA-PCNN to fuse the
high-frequency bands of medical images, which performs
well in four medical image fusion tasks, including computed
tomography (CT) and magnetic resonance (MR), MR-T1 and
MR-T2, MR and positron emission tomography, and MR and
single-photon emission CT. Great progress also has been made
in the field of infrared and visible image fusion. In particular,
Liu et al. [37] proposed a method based on CNN for infrared
and visible image fusion. This method can learn the weight
map and solve the problem of activity level measurement
and weight distribution. Li et al. [17] cleverly used the auto-
encoder structure with dense blocks, in which two traditional
fusion strategies are adopted to fuse features in the fusion
layer. At present, there are also some deep learning-based
methods that can uniformly realize the above-mentioned mul-
tiple image fusion tasks, and can produce promising results,
such as U2Fusion [38] and PMGI [39].

These methods above either need to design artificial false
ground truth to train the networks, or just use some metrics to
construct content loss function. On the one hand, the ground
truth does not exist in image fusion, and the so-called ground
truth artificially constructed will set an upper limit for network
learning. On the other hand, the loss defined only according
to metrics will affect the fusion performance because of the
rationality of metrics definition. To address this limitation, Ma
et al. [16] innovatively introduced GAN into image fusion,
which better guides the network to preserve the significant
contrast and texture details without supervision through adver-
sarial learning and a specific content loss. Subsequently, they
introduced a detail loss and a target edge-enhancement loss
based on FusionGAN to further enhance the texture details
in the fused results [40]. In addition, they also introduced
the dual-discriminator to better extract and reconstruct the
information contained in source images [41]. However, these
methods did not consider the secondary information contained
in source images, nor the information balance in fused images.
As a results, the fused images generated by them are more like
sharped infrared images. In this work, a new fusion network
is proposed, which uses multi-classification constraints and
a specifically designed content loss to end-to-end achieve
a good balance in maintaining infrared and visible inherent
information.

B. GAN

The proposed method is based on adversarial learning of
GAN, which realizes the infrared and visible image fusion
through the guidance of content loss and the excitation of
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adversarial loss. Therefore, we introduce some GAN models
related to our method, such as the original GAN and least
squares GAN (LSGAN).

1) Original GAN: The original GAN was proposed by
Goodfellow [42] in 2014, which can realize unsupervised
distribution estimation through the mutual game between two
modules.

Here we describe the adversarial process of GAN more
formally. The two modules involved in the game are called
generator G and discriminator D. The generator is dedicated to
producing fake data that can fool the discriminator, while the
discriminator is intended to distinguish the fake data produced
by the generator from real data. Assuming that the training
data input to the network are X = {x1, x2, · · · , xn}, which
obey a specific distribution. The generator G estimates the
distribution of X and tries its best to produce fake data G(X)
that subject to this specific distribution. Then the discriminator
D need learning to distinguish between real training data X
and fake data G(X). In summary, the purpose of GAN is
to gradually approach the distribution of fake data PG to the
distribution of real data Pdata, which can be achieved by the
following objective function:

min
G

max
D

Ex∼Pdata [logD(x)] + Ex∼PG
[log(1−D(G(x)))].

(1)
As the adversarial relationship, the generator and discrim-

inator promote each other in the continuous iterative training
to continuously improve their forgery or discrimination ability.
When the distance between these two distributions is small
enough, the discriminator cannot distinguish between real
data and fake data. Then the generator can be said to have
successfully estimated the distribution of training data.

2) LSGAN: Subsequent research finds that the training
process of original GAN is very unstable and the quality of
generated images is not high. To improve this phenomenon,
Mao et al. [43] proposed to use the least squares loss func-
tion to replace the cross entropy loss function to guide the
optimization of GAN. The loss function is defined as follows:

min
D

VLSGAN(D) =
1

2
Ex∼Pdata [(D(x)− a)2]

+
1

2
Ex∼PG

[(D(G(x))− b)2], (2)

min
G

VLSGAN(G) =
1

2
Ex∼PG

[(D(G(x))− c)2], (3)

in which a and b are probability labels that guide the optimiza-
tion of the discriminator. Specifically, a is the probability label
corresponding to the real data, and b is the probability label
corresponding to the fake data produced by the generator. In
addition, c is the probability label that guides the optimization
of the generator, that is to say, c is the label that the generator
expects the discriminator to determine fake data. Clearly, b
should be as close to 0 as possible. On the contrary, a and c
should be as large as possible, approaching 1.

Compared with the above-mentioned existing methods, the
proposed model mainly has two new technical contributions.
First, a new and effective content loss function is designed.

Different from the state-of-the-art FusionGAN [16], the pro-
posed content loss function uses a concept of main and aux-
iliary information, which can extract more sufficient intensity
and gradient information from source images. Second, we
adopt a multi-classifier as the discriminator to simultaneously
estimate distributions of two different domains, namely, visible
light and infrared. Because the consistency of the probability
distribution will make the fused result have the most signif-
icant characteristics of the target distribution, the generator
can produce the fused result that has characteristics of both
infrared and visible light, that is, significant contrast and rich
texture details.

III. METHOD

This section introduces our proposed GANMcC in detail.
First, we describe the overall framework of the proposed
model. Second, the design of loss function is introduced.
Finally, we give the detailed structure of the network.

A. Overall Framework

The image fusion can be described as the extraction and
combination of the most meaningful information. Then the
key to the problem is how to define the most meaningful
information and how to combine them. The aim of infrared
and visible image fusion is to produce the result that not only
has significant contrast but also contains rich texture details.
Therefore, the most meaningful information in infrared and
visible image fusion can be defined as the contrast and texture
details. For combining this information, a balanced way is
needed to ensure that it is both prominent in the fused image.
Our method is designed based on these two aspects. The
overall framework is demonstrated in Fig. 3, which is an end-
to-end model.

First, we observed that the texture structure mainly exists
in visible images, while the contrast information mainly exists
in infrared images. However, some structure information is
also contained in the infrared image (even very rich in some
cases). Similarly, the visible image also has a significant
contrast, which can distinguish the target from the background.
An intuitive example of this phenomenon can be seen in
Fig. 2. In response to this phenomenon, we propose the
idea of main and auxiliary information. On the one hand,
we design a corresponding content loss to sufficiently extract
such valuable information, in which the contrast information
is represented by the intensity and the texture information is
indicated by the gradient. On the other hand, we also design
the structure of generator, in which we divide the input into
a gradient path and a contrast path. For the gradient path, we
concatenate two visible images and one infrared image along
the channel dimension as input. Similarly, for the contrast
path, we concatenate two infrared images and one visible
image along the channel dimension as input. The detailed
input and output of the generator can be found in Fig. 4. The
input constructed in the form of difference ratio concatenation
can drive the network to extract the contrast and gradient
information unequally. Under this specific content loss and
network design, the generator can obtain the main gradient
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Fig. 3: Overall fusion framework of our GANMcC.
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Fig. 4: Input and output of generator and discriminator.

and secondary contrast information from visible images, as
well as the main contrast and secondary gradient information
from infrared images. The above information can complement
each other.

Second, balance of information fusion can be naturally
achieved through the game idea of GAN. As the fusion
task requires a game between two characteristics such as
infrared and visible, we propose to use a multi-classifier in the
discriminator. The overall framework of GANMcC is shown
in Fig. 3. The output of discriminator is a 1 × 2 probability
vector indicating the probability Pvis of the input image being
a visible image, and the probability Pir of the input being an
infrared image. When the discriminator determines the fused
image, the generator wants both probabilities to be large, that
is to say, let the discriminator consider that the fusion image
is both visible image and infrared image. In contrast, the
discriminator is dedicated to precisely determine the fused
image as pseudo data, that is, to make both probabilities
small at the same time. In this way, an adversarial game is
established between the generator and discriminator. When the
discriminator determines that Pvis and Pir of the fused image
are both large, the fused image with balanced information is
obtained. In more detail, we provide the input and output of
the discriminator in Fig. 4.

Through the above designs, our method can generate good
fused results, which not only have significant contrast but also
contain rich texture details.

B. Loss Function

Loss LG and loss LD are used to guide the optimization
of the generator and discriminator respectively, which are
introduced below.

1) Loss Function of Generator: The loss function for
guiding generator optimization consists of two parts, i.e., the
content loss LGcon of the constraint information extraction, and
the adversarial loss LGadv of the constraint information balance.
We formalize it as:

LG = γLGcon + LGadv , (4)

where γ is the regularization parameter responsible for main-
taining balance between two terms.

Our content loss follows the idea of main and auxiliary
information. It depends on what information we want to extract
from different types of source images and preserve in the
fused image. For infrared image, its main feature is that it has
significant contrast reflecting the thermal radiation information
of the scene, and can highlight the target from the background.
Therefore, the main information is its intensity distribution,
and the main intensity loss is defined as:

Lintmain = ‖Ifused − Iir‖2F , (5)

where Ifused is the fused image, which can be formalized as
G(Ivis, Iir), Iir is the infrared source image. As for the visible
image, it contains rich texture details and conforms to the ob-
servation habit of human eyes. Therefore, the main information
obtained from visible image is its gradient information, and
the main gradient loss is defined as:

Lgradmain
= ‖∇Ifused −∇Ivis‖2F , (6)

where ∇ is the second-order gradient operator, and Ivis is the
visible image.

As mentioned above, infrared images also have some texture
details, and visible images also contain contrast information.
Consequently, we propose the concept of auxiliary loss. That
is, we construct an auxiliary gradient loss Lgradaux

between the
fused and infrared images, and an auxiliary intensity loss Lintaux

between the fused and visible images as:

Lgradaux
= ‖∇Ifused −∇Iir‖2F , (7)

Lintaux = ‖Ifused − Ivis‖2F . (8)

In summary, the content loss consists of four parts, namely
the main intensity loss, main gradient loss, auxiliary gradient
loss and auxiliary intensity loss. It can be formulated as:

LGcon = Lintmain + Lgradmain
+ Lgradaux

+ Lintaux

= β1‖Ifused − Iir‖2F + β2‖∇Ifused −∇Ivis‖2F
+ β3‖∇Ifused −∇Iir‖2F + β4‖Ifused − Ivis‖2F , (9)

where β(·) is a constant, which should be adjusted to real-
ize primary and secondary relationships among these items.
Besides, the gradient loss term is generally smaller than the
intensity loss term, so β(·) needs to be adjusted to make them
equally important in the optimization process. Therefore, the
setting rules of β(·) can be summarized as:

β1>β4, β2>β3, {β2, β3} > {β1, β4}. (10)
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In order to achieve a balance between various kinds of in-
formation, we introduce the adversarial loss with discriminator
into the loss function of generator, which can be defined as:

LGadv =
(
D(Infused)[1]− d)2+ (D(Infused)[2]− d)2

)
, (11)

in which d is the probability label of the discriminator to
determine the fused image. In our work, the discriminator
is a multi-classifier that outputs a 1 × 2 probability vector.
Therefore, D(·)[1] represents the first term of the vector, that
is, the probability of the fused image being a visible image.
Similarly, D(·)[2] represents the second term of the vector,
that is, the probability of the fused image being an infrared
image. It is worth noting that we use the same label d for
both probabilities, and hence the discriminator has the same
probability of determining that the fused image is an infrared
image or a visible image. Here, because the generator expects
that the discriminator cannot distinguish between the fused
image and the real data, d is set to 1.

2) Loss Function of Discriminator: The discriminator is a
multi-classifier whose loss function must constantly improve
its discriminating ability, and can effectively identify what is
an infrared image or a visible image. The discriminator’s loss
function LD is composed of three parts, i.e., the decision losses
of visible image, infrared image and fused image. We denote
these three losses as LDvis , LDir , and LDfused . That is:

LD = LDvis + LDir + LDfused . (12)

Considering the 1 × 2 vectors output by the discriminator,
we have Pvis = D(x)[1] and Pir = D(x)[2]. When the input
is a visible image, it is expected that Pvis should be close to
1 and Pir close to 0. The corresponding loss is defined as:

LDvis =
1

2N

N∑
i=1

((Pvis(I
n
vis)− a1)2 + (Pir(I

n
vis)− a2)2), (13)

where a1 and a2 are probability labels, a1 is set as 1, and a2
is set as 0. That is to say, when the visible image is input,
the probability that the discriminator wants to judge that it is
a visible image is large, and the probability of the infrared
image is small.

Similarly, infrared loss term is defined as:

LDir =
1

2N

N∑
i=1

((Pvis(I
n
ir )− b1)2 + (Pir(I

n
ir )− b2)2), (14)

where b1 is set as 0, and b2 is set as 1.
Finally, when the input image is a fused image, the loss

function is formulated as:

LDfused =
1

2N

N∑
i=1

((Pvis(I
n
fused)−c)2+(Pir(I

n
fused)−c)2), (15)

where c is the probability label of the discriminator to deter-
mine the fused image, which should be set as 0.

Again, we also use the same label c for both probabilities
to achieve a balance. That is to say, in the view of the
discriminator, the fused image is a pseudo-visible image and
a pseudo-infrared image to the same degree.
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Fig. 5: Network architecture of the generator.
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Fig. 6: Network architecture of the discriminator.

C. Network Architecture

1) Generator Architecture: As mentioned in Sec. III-A, we
divide the generator into gradient path and contrast path for
information extraction. Its structure is shown in Fig. 5.

For the gradient path, we hope that it is responsible for
extracting texture information, that is, high-frequency features.
In our view, texture information is mainly contained in visible
images, and secondly in infrared images. Therefore, the pri-
mary and secondary concatenating strategy is used to construct
the input. We use two visible images and one infrared image
to concat along the channel as input. Similarly, for the contrast
path, we expect it to be responsible for extraction of contrast
information, which is mainly contained in infrared images, and
secondary in visible images. So we use two infrared images
and one visible image to concat along the channel.

In each path of information extraction, four convolutional
layers are adopted for feature extraction. The 5×5 convolution
kernel is used in the first two layers, and the 3× 3 is adopted
in the latter two layers, all with batch normalization and leaky
ReLU activation function. Then, we fuse the features extracted
from the two paths, and use the strategies of concating and
convolution to achieve this purpose. In order to fully merge
the information, we cross-concate the two feature maps along
the channel. In the last layer, we use the kernel with size of
1× 1, and tanh activation function. It is worth noting that we
set the stride of all layers to 1, so the sizes of all feature maps
do not changed.

2) Discriminator Architecture: The structure of the dis-
criminator is demonstrated in Fig. 6. Our discriminator is es-
sentially a multi-classifier, which can estimate the probability
of each category of the input image. Its output is a probability
vector of size 1× 2. The proposed discriminator is composed
of four convolution layers and one linear layer. The four
convolutional layers use 3 × 3 convolution kernels and leaky
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ReLU activation functions, and the latter three also use the
batch normalization. We set the stride as 2 in all convolution
layers. The last linear layer discriminates the input based on
the features extracted by the first four convolutional layers,
which outputs the classification probability.

IV. EXPERIMENTS

In this section, we evaluate our proposed GANMcC on
publicly available datasets. Seven popular methods are selected
to compare with our method, including LPP [44], LP [45],
CVT [46], DTCWT [47], GTF [24], CNN [37], and Fu-
sionGAN [16]. First, we provide the detailed experimental
configuration. Second, we compare the proposed method with
other popular methods qualitatively and quantitatively. In
addition, we provide additional the ablation experiment and
generalization experiment. Finally, we conduct experiments
when visible images are overexposed.

A. Experimental Configurations

1) Datasets: We select the TNO and RoadScene datasets
to evaluate our GANMcC and other comparative methods.

The image pairs in the TNO dataset mainly describe various
military related scenes. In the TNO dataset, there are 60
infrared and visible image pairs, and 3 sequences involving
19, 32 and 23 image pairs, respectively.

The RoadScene dataset is a new image fusion dataset
established in [38], in which 221 pairs are accurately aligned.
The major scenes in the dataset is the road, including vehicles,
pedestrians, traffic signs and other targets. It is worth noting
that some images in this dataset are taken over exposure, and
hence brings a new challenge for image fusion.

For testing, we use 16 and 30 image pairs on the TNO and
RoadScene datasets, respectively. For training, we adopt over-
lapping cropping strategies to expand the dataset. Concretely,
we crop the remaining images in the TNO and RoadScene
datasets to 35, 845 and 69, 029 image patch pairs to train
our network, respectively. In particular, we crop each image
into multiple 120 × 120 image patches, and then fill it up to
132× 132. Note that the input of the generator is 132× 132
image patches, and the size of output is reduced to 120× 120
after a series of operations. The 120×120 visible and infrared
image patches, that are originally cropped and used as labels,
are put into the discriminator along with the generated images.

2) Training Details: The generator and discriminator are
trained iteratively, in which the ratio of training number is p.
The batchsize is b, it takes m steps to traverse all the training
data once, and the total number of training epoch is M . In
practice, we empirically set b = 32, p = 1/2, M = 10, and m
is set as the ratio between the whole number of patches and
b. The initial learning rate is set as 0.0001, and we adopt the
Adam as the optimizer to train the network. We summarize
the entire training process in Algorithm 1. In addition, β(·) of
Eq. (9) in this work are set as follows according to the rules
in Eq. (10): β1 = 1, β2 = 5, β3 = 4 and β4 = 0.3. The
γ in Eq. (4) is adjusted until the generator and discriminator
can form an effective confrontation. In our work, γ is set as
100. In order to make the training of GAN more stable, we

Algorithm 1 Training procedure of GANMcC.

1: for M epochs do
2: for m steps do
3: for p times do
4: Select b visible patches

{
I1vis, I

2
vis · · · Ibvis

}
;

5: Select b infrared patches
{
I1ir , I

2
ir · · · Ibir

}
;

6: Select b fused patches
{
I1fused, I

2
fused · · · Ibfused

}
;

7: Update the parameters of the discriminator by
AdamOptimizer: ∇D(LD);

8: end for
9: Select b visible patches

{
I1vis, I

2
vis · · · Ibvis

}
;

10: Select b infrared patches
{
I1ir , I

2
ir · · · Ibir

}
;

11: Update the parameters of the generator by AdamOp-
timizer: ∇G(LG);

12: end for
13: end for

adopt the soft label strategy. More specifically, we relax the
labels a1, b2 and d that should be set to 1 to random numbers
ranging from 0.7 to 1.2. In contrast, the labels a2, b1 and
c that should be set to 0 are set to random numbers ranging
from 0 to 0.3. All experimental work is carried out using GPU
NVIDIA-RTX 2080Ti and CPU Intel i7-8750H.

3) Metrics: The quality evaluation of image fusion is a
complex problem, so we not only carry out the qualitative
assessment but also the quantitative evaluation.

Qualitative assessment starts from the human visual per-
ception and judges the quality of results according to the
goal of the task. For infrared and visible image fusion, the
goal is to preserve significant contrast and rich texture at
the same time. Conversely, quantitative evaluation relies on
some existing statistical metrics to evaluate the quality of
fused results from different aspects. In this work, six metrics
are used to achieve this goal, which are structural similarity
index measure (SSIM) [48], correlation coefficient (CC) [49],
sum of the correlations of differences (SCD) [50], entropy
(EN) [51], standard deviation (SD) [52], and mutual informa-
tion (MI) [53].

SSIM can measure the structural similarity between the
fused image and the source images. We calculate the sum of
SSIM between the fused image and the two types of source
images as the final result. The larger the value of SSIM, the
better the structure is maintained. CC measures the degree
of linear correlation between the fused image and the source
images, and the larger the value is, the more relevant the fused
image is to the source images. SCD metric focuses on the
difference between the fused image and the source image,
and then measures the correlation between the difference and
another source image. To a certain extent, SCD can also assess
the pseudo-information, and the larger SCD value, the less
pseudo information. EN is the most commonly used metric to
represent the amount of information, and a large EN value
indicates that the fused result contains a large amount of
information. SD reflects the distribution of pixel values in the
image. In general, a large SD value indicates high contrast and
good visual perception. MI is a metric to assess the amount of
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Fig. 7: Qualitative results on the TNO dataset. From top to bottom: infrared images, visible images, fused results of LPP [44], LP [45],
CVT [46], DTCWT [47], GTF [24], CNN [37], FusionGAN [16], and our GANMcC.

information transmitted from the source images to the fused
image. The larger the MI, the more information the fused
image acquires from source images.

B. Results on The TNO Dataset
1) Qualitative Comparison: We provide seven typical qual-

itative results to demonstrate the characteristics of our GAN-
McC in Fig. 7. From the perspective of visual effect, our GAN-

McC has obvious advantages over the comparative methods.
First, the proposed method maintains the major thermal radi-
ation information of the infrared image, which can effectively
distinguish the target from the background. This is important
since most existing algorithms only have good texture details,
but lose most of the thermal radiation information, which is
harmful for target detection. In addition, while maintaining
sufficient thermal radiation information, the results of our

Authorized licensed use limited to: Wuhan University. Downloaded on December 19,2020 at 11:11:32 UTC from IEEE Xplore.  Restrictions apply. 



0018-9456 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIM.2020.3038013, IEEE
Transactions on Instrumentation and Measurement

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 9

0 5 10 15
Image pairs

0.5

0.6

0.7

0.8

0.9

V
al

u
es

 o
f 

th
e 

m
et

ri
c

SSIM

LPP:0.6228 LP:0.6814
CVT:0.6737 DTCWT:0.6826
GTF:0.6544 CNN:0.6672
FusionGAN:0.65 Ours:0.6976

0 5 10 15
Image pairs

1

1.5

2

2.5

V
al

u
es

 o
f 

th
e 

m
et

ri
c

SCD

LPP:1.6371 LP:1.7088
CVT:1.6622 DTCWT:1.667
GTF:1.0486 CNN:1.7331
FusionGAN:1.5244 Ours:1.8007

0 5 10 15
Image pairs

0.2

0.4

0.6

0.8

1

V
al

u
es

 o
f 

th
e 

m
et

ri
c

CC

LPP:0.4505 LP:0.4708
CVT:0.4703 DTCWT:0.4766
GTF:0.3027 CNN:0.4348
FusionGAN:0.4075 Ours:0.4941

0 5 10 15
Image pairs

6

6.5

7

7.5

8
V

al
u

es
 o

f 
th

e 
m

et
ri

c

EN

LPP:6.8401 LP:6.8522
CVT:6.7409 DTCWT:6.6954
GTF:6.9753 CNN:7.2984
FusionGAN:6.737 Ours:7.0008

0 5 10 15
Image pairs

0.1

0.2

0.3

0.4

V
al

u
es

 o
f 

th
e 

m
et

ri
c

SD

LPP:0.1241 LP:0.1271
CVT:0.1157 DTCWT:0.1131
GTF:0.1849 CNN:0.1872
FusionGAN:0.1359 Ours:0.146

0 5 10 15
Image pairs

1

2

3

4

5

6

V
al

u
es

 o
f 

th
e 

m
et

ri
c

MI

LPP:1.7052 LP:1.757
CVT:1.5967 DTCWT:1.7189
GTF:2.8109 CNN:2.4265
FusionGAN:2.405 Ours:2.363

Fig. 8: Quantitative results of different methods on the TNO dataset.
We select six metrics including SSIM, CC, SCD, EN, SD and MI.

method still have a lot of texture details.
According to the characteristics of the fused results, the

comparative methods can be divided into two categories. The
first is more inclined to visible image, such as LPP, LP, CVT
and DTCWT. Their results have rich texture details, but the
contrast between target and background is not that signifi-
cant. On the contrary, the second category has good thermal
radiation information, but the texture details are insufficient,
such as GTF and FusionGAN. In addition, the fused results
of CNN are more like an improvement on the first category
of methods, which enhance the contrast while maintaining
texture details. However, this contrast enhancement is limited.
By contrast, our approach is more like an extension of GTF
and FusionGAN. The fused results not only have significant
contrast, but also rich texture details. For example, in the
first column of Fig. 7, in our result the contrast between the
building (i.e., target) and the trees (i.e., background) is strong,
while the texture details of the trees are also rich.

2) Quantitative Comparison: Further quantitative compar-
ison is performed on 16 image pairs of the TNO dataset,
which is shown in Fig. 8. It can be seen that our GANMcC
achieves the best values on SSIM, SCD and CC. In addition,
our GANMcC achieves the second largest average on EN. As
for SD, our method ranks second to GTF and CNN in average
value, and follows behind GTF, CNN and FusionGAN on MI.
From these results, we can conclude that our GANMcC is
able to maintain the best structural information, has strong
correlation with the source images, and contains minimal

pseudo information. The results of our method also contain
a large amount of information, second only to CNN, but in
combination with SCD, CNN contains more fake information
than our method. In addition, our method also maintains a
significant contrast, which is only worse than GTF and CNN.
However, the contrast of our results is more reasonable, which
is more similar to the infrared image. Last but not least,
although GTF, CNN and FusionGAN have larger metric values
of MI, our method achieves a better balance between the
information of two source images. Overall, our GANMcC
performs best among all methods in objective evaluation.

C. Results on The RoadScene Dataset

1) Qualitative Comparison: We also conduct a qualitative
comparison on the RoadScene dataset, and provide 6 typical
results in Fig. 9. From subjective perception, only GTF,
FusionGAN and our GANMcC have relatively significant
contrast information. For example, the intensity distribution
of the sky, sea water and trees is much closer to the infrared
image. Nevertheless, compared with GTF and FusionGAN,
our method has the advantage of retaining the light information
that appears in visible images, such as the traffic signal
light, the street lamp, and so on. In addition, our fused
results also contain richer texture details. The fused results
of the other five methods have good texture details but weak
contrast. In general, infrared thermal radiation information is
more important in some applications of road scenes, such as
assisted driving at night and pedestrian and vehicle detection
in automatic driving.

2) Quantitative Comparison: We further carry out quantita-
tive experiments on 30 image pairs in the RoadScene dataset,
and the results are shown in Fig. 10. Our GANMcC still
achieves the best performance on SSIM, SCD and CC. As
for EN and SD, our method ranks the second. For the metric
MI, our method follows behind GTF and FusionGAN.

D. Complexity Evaluation

A complexity evaluation is performed to assess the cost of
our GANMcC. We count the number of network parameters,
which can describe the space complexity of the proposed
method to a certain extent. During the training phase, the
generator and discriminator are iteratively trained. At this
time, the total number of parameters is the sum of parameters
in the generator and discriminator, which is about 2.276 M.
These parameters need about 125 minutes to be optimized.
During the testing phase, only the generator is reserved to
produce fused images, and the number of parameters used
for testing is 1.867 M. Because the generator is the target
network for image fusion, we compare the average running
time of different methods in the test phase, which can indicate
the time complexity of methods. The results are reported in
Table I. Obviously, our GANMcC is competitive in running
efficiency.

E. Ablation Experiment

In this work, we adopt two types of loss functions to
guide the optimization of the network, saying content loss and
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Fig. 9: Qualitative results on the RoadScene dataset. From top to bottom: infrared images, visible images, fused results of LPP [44], LP [45],
CVT [46], DTCWT [47], GTF [24], CNN [37], FusionGAN [16], and our GANMcC.

adversarial loss. The content loss determines the type of infor-
mation to be extracted, while the adversarial loss controls the
balance of information in the fused result. More specifically,
content loss divides the information extracted from the source
images into intensity and gradient information, and the former
corresponds to the contrast while the latter reflects the texture
structure. Not only that, the main and auxiliary ideas in content
loss make the information of source images complementary,
which makes the extracted information more sufficient and
reasonable. The role of adversarial loss is to simultaneously
fit the two distributions in the form of the game, so that the
extracted information can be fused in a more balanced manner.
To verify the validity of the proposed loss functions, the related
ablation experiments are conducted, including the content loss
item and the adversarial loss item. Concretely, we first remove
the discriminator and only use the content loss to guide the

optimization of the generator. Then we remove the content
loss and train the network only through the adversarial loss.
Finally, we combine the adversarial loss and the content loss
to jointly constrain the optimization of the network.

We show the results of ablation experiments in Fig. 11. It
can be seen that when there is only the content loss, the texture
details of the generated fused image are not rich enough. In
particular, there is no light-dark transition in the fused result,
so the texture structure is not vivid. More intuitively, it is
undeniable that both contrast and texture information exists,
but it is not balanced, and the texture information is clearly at a
disadvantage. When only the adversarial loss exists, the fused
result shows the game between two distributions of infrared
and visible images. In other words, although the fused result
has a certain of contrast and texture details, they do not match
source images and are far from what we would expect. The
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TABLE I: The mean and standard deviation of running time of different methods on two datasets (unit: second).

Dataset LPP [44] LP [45] CVT [46] DTCWT [47] GTF [24] CNN [37] FusionGAN [16] Ours

TNO 0.096±0.042 0.009±0.004 1.224±0.443 0.274±0.130 4.369±2.309 68.788±27.538 0.159±0.173 0.274±0.331
RoadScene 0.055±0.019 0.005±0.002 0.746±0.095 0.157±0.056 2.419±1.027 26.888±3.787 0.361±0.329 0.085±0.024
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Fig. 10: Quantitative results on the RoadScene dataset. We select six
metrics including SSIM, CC, SCD, EN, SD and MI.
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Fig. 11: Ablation experiment.

reason for this phenomenon is that in an unsupervised GAN,
the generator cannot extract the desired information without
the guidance of content loss. When combining the content loss
and adversarial loss, the generated result not only has obvious
contrast and rich texture details, but also fits the characteristics
of source image very well. For instance, the change of light-

Infrared Image Visible Image Fused Image

Fig. 12: Visualization of generalization experiment.

dark between textures is very similar to visible light, so it
has a better visual experience. Therefore, it can be concluded
that the designed content loss and the adversarial loss are
complementary, and they work together to enable the generator
to produce the desired fused result.

F. Generalization Verification

In order to verify the generalization performance of our
GANMcC, we implement the generalization experiment of
the network. Specifically, we train the GANMcC on the
TNO dataset and then test it on the RoadScene dataset.
Fig. 12 shows the performance of the transferred model on
the RoadScene dataset. From the results, we can see that our
GANMcC has good generalization, and the transferred model
still performs well on the RoadScene dataset. On the one hand,
the fused results can maintain the significant contrast similar
to the infrared image, such as pedestrians and street lights. On
the other hand, the fused images contain rich texture details,
which make the results have good visual experience.

G. Fused Results on Overexposed Images

Sometimes, the visible image is overexposed, and some de-
tails are blurred or even invisible, which is a new challenge for
infrared and visible image fusion. This is more like a mixture
of two fusion tasks, namely multi-exposure image fusion and
infrared and visible image fusion. Among the comparative
methods, only GTF, FusionGAN and our GANMcC can better
maintain the thermal radiation information. These methods
obtain gradient information from visible images to enhance
texture details. However, if the visible image is overexposed,
its local gradient changes greatly, which is a great challenge to
achieve satisfactory results. Next, we compare the performance
of these three methods when the visible image is overexposed.

We select six typical image pairs for evaluation, and their
visible images all have a certain degree of overexposure. The
fused results are shown in Fig. 13. First of all, the fused
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Fig. 13: Qualitative results on overexposed images. The first two rows are the infrared and visible images to be fused, and the rest three
rows are the results of GTF, FusionGAN and our GANMcC.

results of three methods all have significant contrast, which
is the prerequisite of comparison. In addition, our method
demonstrates better fusion effects in the overexposed regions,
such as the rear car, traffic lights and pedestrians. In contrast,
GTF and FusionGAN perform poorly in these regions. In
particular, the results of FusionGAN in these regions are
blurred, while the results of GTF are not even visible.

The invisible phenomenon of the fused results of GTF is
because the objective function constructs the gradient consis-
tency between the fused image and the visible image, where
the local gradient value of the overexposed in the visible
image is large, which affects the normal fusion. Compared
with GTF, FusionGAN uses the adversarial learning of GAN,
so that the effect of overexposure can be reduced to some
extent. However, the content loss of FusionGAN determines
that it cannot further eliminate the effect of overexposure. Our
method uses the main and auxiliary ideas to define a new
content loss, and uses multiple classifiers as the discriminator
to deal with the fusion challenge caused by overexposure.

H. Discussion of Limitation
The limitation of our method is that it is greatly affected

by the shadows in some scenarios, which leads to unnatural
shadow transitions of the fused result. We provide a typi-
cal example to illustrate this issue intuitively, as shown in
Fig. 14. On closer inspection, there is a certain correspon-
dence between these unnatural shadow transitions and the
insignificant brightness changes in the visible image. When
the discriminator determines that it is an important feature of
the visible light image distribution, it will force the generator

Infrared Image Visible Image Fused Image

Fig. 14: A failure case. Unnatural shadow transitions appear in the
fused image.

to strengthen such features, which leads to this phenomenon. A
possible solution is to use PatchGAN [54] instead of LSGAN
to estimate the visible image distribution from the probabilities
of multiple patches, reducing the influence of certain specific
areas on the discrimination process.

V. DISCUSSION AND CONCLUSION

In this paper, we propose a new end-to-end infrared and
visible image fusion network, called GANMcC. Based on
the requirement that image fusion should not only extract
meaningful information, but also achieve a balance among
various information, we design a generator with two paths
and a discriminator that can realize multi-classification. In
addition, we also design a new content loss function, involving
the concepts of major loss and auxiliary loss, and use the same
label to balance constraints in the judgment of fused images.
Both qualitative and quantitative experiments show that our
GANMcC has advantages over the state-of-the-art methods.
In addition, our method can achieve good fused results when
the visible image is overexposed.
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In the future, we will focus on the research of variational
auto-encoders (VAE) technology for infrared and visible image
fusion. VAE can sample different values from the distribution
of hidden layers, thus reconstructing diverse fused results.
In other words, the distribution of various attributes can be
obtained through hidden layer encoding, and then the fused
images with different contrast and texture richness can be
reconstructed based on the different values sampled. Further,
we will apply infrared and visible image fusion to a wider
range of tasks, such as object detection, scene understanding
and so on.
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