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Preface

According to the World Health Organization, overweight and obesity are defined as
the abnormal or excessive accumulation of fat that presents a risk to health in men,
women, and children. There is now unequivocal evidence that obesity is a global
epidemic in both children and adults and is associated with numerous comorbidities
including cardiac and vascular abnormalities as well as reduced quality of life and
lower life expectancy. In fact, obesity is an independent risk factor for cardiovas-
cular disease (CVD) in adults as well as in obese children. The economic burden
and human costs associated with obesity and related diseases have risen dramati-
cally and are expected to continue to rise.

Although body fatness as percent ideal body weight has been used for assess-
ment of overweight/obesity, another assessment and classification tool in use is the
measurement of the Body Mass Index (BMI). BMI (weight in kilograms/height2 in
meters) is frequently used as a surrogate measure of fatness in children and adults.
In adults, overweight is defined as a BMI of 25.0–29.9 kg/m2; obesity is defined as
a BMI � 30.0 kg/m2. While metabolic disturbances are known to occur,
adaptations/alterations in cardiac structure and function also occur with excessive
accumulation of adipose tissue. On the other hand, obesity may affect the heart as a
consequence of other known risk factors including dyslipidemia, hypertension,
glucose intolerance, oxidative stress, and inflammation. Being overweight or obese
increases the risk for the occurrence of a number of different cardiac complications
such as coronary heart disease, heart failure, and sudden death because of their
impact on the cardiovascular system.

This book will provide a description of the impact of obesity on the cardio-
vascular system and increased predisposition to CVD. It will identify the major
biochemical mechanisms that lead to the occurrence of myocardial abnormalities
and vascular alterations in obesity. The book will also address the epidemic of
obesity in both children and adults as well as some consideration of sex differences
in the mechanisms of obesity-induced dysfunction of the cardiovascular system. We
will also have some discussion on the biochemistry of the so- called obesity
paradox, a hypothesis which holds that obesity may, counterintuitively, be pro-
tective and associated with greater survival in certain groups of people. The
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contributors to this book are international experts on obesity and associated car-
diovascular complications. This book is also uniquely positioned as it focuses on
the biochemistry of obesity-induced cardiovascular dysfunction. There are 20
chapters in 2 different parts in this book, comprising of Part I: Pathophysiology of
Cardiovascular Complications in Obesity and Part II: Modification of
Cardiovascular Dysfunction in obesity.

The intent of this volume is to provide current and basic understanding of the
biochemical mechanisms of obesity-induced cardiovascular dysfunction that will be
of value not only to cardiologists and other allied health professionals, but will also
stimulate and motivate biomedical researchers and scientists to find the way to
prevent the epidemic of obesity- associated cardiovascular abnormalities.
Furthermore, this book will serve as a highly useful resource for medical students,
fellows, residents, and graduate students with an interest in the cardiovascular
system.

In summary, this monograph covers a broad range of biochemical mechanisms
of obesity-induced cardiovascular complications. We hope that the reader will
understand that obesity is linked to an increase in the risk and occurrence of fatal
CVD. Furthermore, the underlying message presented in the monograph is that the
cause of obesity-related disorders is complex and that understanding the bio-
chemistry of cardiovascular dysfunction may contribute to the development of
novel interventions for the prevention and treatment of obesity-associated
comorbidities.

Winnipeg, Canada Paramjit S. Tappia
Sukhwinder K. Bhullar

Naranjan S. Dhalla
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Chapter 1
Different Faces of Obesity
in Cardiovascular Diseases: Culprit
or Protector

Negar Salehi, Aisha Siraj, Mojdeh Nasiri, and Jawahar L. Mehta

Abstract The incidence of obesity has tripled since 1975, and now it has become
a world-wide problem. Initially, obesity was observed only in developed countries,
but now it is often seen in less-developed and under-developed countries. Obesity
is associated with cardiovascular disease (CVD) risk factors such as hypertension,
metabolic syndrome, diabetes mellitus, and dyslipidemia. These risk factors lead
through complex pathways lead to evolution and progression of atherosclerosis with
subsequent expression of clinical events such CVD. Obesity is also associated with
the development of heart failure. Obesity is associated with depression and physical
inactivity, both of which lead to worsening of CVD. Fortunately, loss of body weight
result in reduction on vascular disease (VD) risk factors. Here we review in detail
the metabolic and cellular abnormalities in obesity and CVD.

Keywords Obesity · Cardiovascular disease · Cardiovascular risk factors

Introduction and Epidemiology

Obesity has become a widespread problem worldwide. Based on the World Health
Organization (WHO) data in 2016, more than 1.9 billion people age 18 or older have
altered weight, with 39% being overweight, and 13% obese. According to this report
the prevalence of obesity in men and women was 11% and 15%, respectively [1].
Over 340 million children or adolescents aged 5–19 years, and 41 million children
under age 5 years were obese or overweight. Japan is the only exception that has not
faced obesity epidemic until 2017 [2].

The prevalence of obesity has tripled since 1975. In the early years since then,
obesity was a problem in rich and developed countries, but since 2000, the incidence

N. Salehi · A. Siraj · J. L. Mehta (B)
Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences,
Little Rock, AR 72205, USA
e-mail: MehtaJL@uams.edu

M. Nasiri
Department of Epidemiology and Statistic, Michigan State University, East Lansing, MI, USA
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Fig. 1.1 Number of obesity articles in the past four decades. (https://www.ncbi.nlm.nih.gov/pub
med/?term=obesity)

of obesity has increased in developing as well as in under-developed countries. For
example, in Africa, the number of obese children has increased by 50% since 2000
[1]. Between 1975 and 2014, body mass index (BMI) has increased by 2.5 kg/m2 in
men and 2.1 kg/m2 in women worldwide [3] (Fig. 1.2).

As obesity is becoming a leading public health issue, the number of studies that
discuss and evaluate different aspects of obesity has increased exponentially. A quick
search inPubMedwith the keyword “obesity” showsmore than300,000publications,
more than 8,000 of them published in 2019 (until May) alone. As a reference, this
topic had less than five articles each year from 1880–1940 (Fig. 1.1).

Definition

Obesity is defined as an excessive accumulation of body fat that compromises health.
There are various methods to measure the severity of fatness. Weight is a simple
measure. However, it has been replaced by more advanced measures such as BMI
(weight [kg]/height2 [m2]), waist circumference, waist to hip ratio, percent body fat
(BF %), fat mass (FM), and fat-free mass (FFM). Despite its limitations, BMI is still
the most commonly used measure of obesity.

According to the WHO, there are different levels of obesity based on nutrition
status in adults (Table 1.1) [4]. The WHO defined overweight children age 5–19
years as BMI more than one standard deviation above the WHO growth median
reference. Likewise, obesity in this age group is defined when BMI is more than two
standard deviations aboveWHO reference. The definition of obesity and overweight

https://www.ncbi.nlm.nih.gov/pubmed/?term=obesity
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Table 1.1 WHO
classification of overweight
and obesity based on BMI in
adults

BMI (kg/m2) Nutrition status

<18.5 Under weight

18.5–24.9 Normal weight

25–29.9 Pre-obesity

30–34.9 Obesity class I

35–39.9 Obesity class II

≥40 Obesity class III

in children younger than 5 years is based on the weight-height chart. If the weight-
height chart is more than two or three standard deviations higher than the growth
chart, it is called overweight or obesity, respectively. In adults, the state of being
overweight or obesity defined as shown in Table 1.1.

Obesity and Cardiovascular Disease

Cardiovascular diseases, including heart failure (HF), atrial fibrillation (AF), and
coronary artery disease (CAD), are often associated with obesity. The duration of
obesity has a direct impact on the incidence of cardiovascular disease. With that
being said, obesity has specific effects on the cardiac structure and left ventricular
systolic and diastolic function [2].

There is an association between adipose cell size and function when body weight
exceeds 170%of ideal bodyweight.With excess caloric intake, adipocyte hyperplasia
occurs as a result of an excess in adipogenic progenitors and growth factors like tumor

Fig. 1.2 Incidence of obesity worldwide from 1975 to 2014 [3]
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Fig. 1.3 Mechanisms of obesity-induced cardiovascular disease

necrosis factor alpha (TNF-α), angiotensin II, insulin-like growth factor-1, insulin-
like growth factor binding proteins, and macrophage colony stimulating factor [4–6].
As obesity progresses, adipocytes undergo apoptosis that induces an inflammatory
response and adipose tissue dysfunction. Inflammation, comprising a dysfunction of
B-cell, eosinophils, mast cells, macrophages, and neutrophils, plays an essential role
in the development of metabolic syndrome in obesity (Fig. 1.3) [2].

The overall effect of obesity on cardiac function includes an increase in stroke
volumewith reduced peripheral vascular resistance. Duration of obesity has a crucial
role in the evolution of these changes; for example, the progression of obesity ulti-
mately causes an increase in ventricular filling pressure, left ventricular hypertrophy,
and later dilation. Atrial dilation specifically left atrial dilation, is one of the signifi-
cant structural changes. Diastolic dysfunction is a result of increased filling pressure
and volume overload. All these changes eventually lead to heart failure, either heart
failurewith reduced ejection fraction [HFrEF] or heart failurewith preserved ejection
fraction [HEpEF]) [2].

Obesity and CVD Risk Factors

Obesity also influences cardiovascular risk factors, such as hypertension, diabetes,
dyslipidemia, depression, andmetabolic syndrome. The relationship between obesity
and different cardiovascular disease risk factors is shown in Fig. 1.3. Mechanisms by
which obesity can lead to the development of atherosclerosis and its manifestations
are summarized in Fig. 1.4.
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Fig. 1.4 Schematic view of obesity and its effects on pathways leading to cardiovascular disease

Metabolic Syndrome

Several studies have shown that obesity has a direct effect on the incidence of
metabolic syndrome.Metabolic syndrome clinically defined by the National Choles-
terol Education Program’s Adult Treatment Panel III reports, as the presence of at
least 2 out of 6 main components. Main components include abdominal obesity,
atherogenic dyslipidemia, hypertension, insulin resistance with or without glucose
intolerance, proinflammatory, and prothrombotic state [4]. Metabolic syndrome is
associated with cellular and inflammatory changes, which result in atherosclerosis.
Isomaa et al. [5] showed that women and men with metabolic syndrome have a
three times higher risk for CVD and stroke. Some studies indicate that metabolically
healthy obese people have a lower risk of CVD mortality, while others have refuted
this observation [6–8]. When examined in more detail, cardiovascular fitness has
a role in differentiating metabolically healthy obese versus metabolically abnormal
obese people in determining the risk for mortality and morbidity [2].

Diabetes Mellitus

Many patients with metabolic syndrome go on to have clinical type 2 diabetes
mellitus. Although the pathogenesis of diabetes is not well understood, there is a
significant amount of inflammation, excess generation of reactive oxygen species,
and abnormalities in glucose metabolism and renin-angiotensin system which are
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related to the development of diabetes. Diabetes is often associated with an increase
in both systolic and diastolic blood pressure, which may contribute to the evolu-
tion of atherosclerosis. Inflammation, oxidative stress, and abnormalities in glucose
metabolism and renin-angiotensin-aldosterone system are associated with fibrob-
last growth (via FGF-21) and collagen synthesis, resulting in cardiac, renal, and
peripheral arterial fibrosis (Fig. 1.4) [9, 10].

Hypertension

Hypertension is six times more common in obese people [11]. Prevalence of hyper-
tension is about 50% in overweight or obese patients, whereas about 40% in the
general population [12]. Gelber et al. showed a strong association between higher
BMI and hypertension, (1-unit increase in BMI associated with 8% rise in hyperten-
sion prevalence) in a cohort of men followed for 14.5 years [13]. Several mechanisms
have been shown to contribute to high blood pressure in obesity, including sodium
retention, insulin resistance, oxidative stress, adipokines (such as adiponectin and
leptin), renin-angiotensin-aldosterone system, activation of the sympathetic nervous
system and hyperinsulinemia [14]. Additionally, there are multiple cardiac structural
changes like left ventricular dilation, left ventricular hypertrophy, increased stroke
volume, and cardiac output as a result of hypertension. Some investigators suggest
that the type of obesity influences left heart remodeling.Central obesity causesmostly
concentric left ventricular hypertrophy, while peripheral obesity is associated with
eccentric left ventricular dilation with increased left ventricular mass [11, 14].

Studies have demonstrated the effect of weight gain or weight loss on blood
pressure. The weight gain in younger population has a higher impact on the blood
pressure. A 10 kg increase in body weight will cause 3 and 2.3 mmHg increase in
systolic and diastolic blood pressure, respectively [11]. It is of note that long term
weight loss can reduce the risks linked with hypertension [15]. Wing et al. found that
losing 5 to <10% of body weight can cause 5 mmHg reduction in both systolic and
diastolic blood pressure [16].

Dyslipidemia

The unfavorable lipid panel, including high total cholesterol, low-density lipoprotein
cholesterol (LDL-C), low high-density lipoprotein (HDL-C) and high triglyceride
levels, is commonly observed in obese patients [17, 18]. These abnormalities in lipid
profile linked with the development of atherosclerosis and resultant CVD (Fig. 1.3).

Release of proinflammatory cytokines in obesity is involved in reducing lipopro-
tein lipase as a result of increased expression of protein-4 that is lipoprotein lipase
inhibitor. Decreased lipoprotein lipase activity delays the clearance of triglyceride-
rich lipoprotein, which in turn prompts the rise of triglycerides in obese people [18].
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Remarkably,LDL-C levels are generally normal in obese people, but recent studies
have shown the role of other lipid abnormalities in developingCVD.Cui et al. showed
that non-HDL-C had a robust direct correlationwithCVDcompared to LDL-C alone.
Level of HDL-C also has better prediction than LDL-C. In this study, they clarified
that HDL-C and non-HDL-C are better predictors for the CVD mortality [19]. For
example, small dense LDL particles are often observed in obesity [19]. Further,
the size of the LDL particles has a stronger association with risk of CVD than the
level of LDL-C [2]. Some studies showed as much as a 30% decrease in CVD risk
over 5 years by treating lipid abnormalities. The key recommendation is lifestyle
modification to reduce weight and CVD risk.

Obesity and Atrial Fibrillation

Atrial fibrillation (AF) prevalence has increased significantly over the past few
decades and is predicted to rise asmuch as 2.5 times over the next 30 years [8, 9]. One
of the reasons for this increase is the epidemic of obesity. Framingham study showed
that each 1-unit increase in BMI would increase the probability of developing AF by
4%; as a result of atrial remodeling secondary to obesity [20]. A large meta-analysis
of 16 studies found that obesity causes up to 49% increase in the risk of developingAF
among the general population, and the risk is directly related to increase BMI [21].

Asmentioned earlier, obesity causesmany unfavorable hemodynamic and inflam-
matory alterations and provides the perfect substrate for the development of AF.
The alterations triggered by obesity contribute to atrial enlargement and fibrosis.
These changes together can stimulate the development of arrhythmias, especially
AF [6, 8, 22, 23].

There is a correlation of left atrial size with a change in BMI. It is noteworthy
that left atrial size is related to the occurrence of AF, but not BMI, although left
atrial dilation/remodeling has been shown in obesity. Thus, the relationship between
obesity and AF appears to be multi-factorial [24].

Obesity and Heart Failure

Obesity and heart failure (HF) association was first reported in 1956 as a case report
[25]. The term “Obesity Cardiomyopathy” was first used in 1992, when a study
indicated that people with morbid obesity have a higher rate of dilated cardiomy-
opathy based on the biopsy and right heart catheterization [26]. According to the
Framingham study, every 1 kg/m2 increase in BMI will increase the risk of HF by
7% and 5% in women and men, respectively [27].

Obesity causes a series of changes in the hemodynamic status that result in two
different types of HF, HFpEF and HFrEF. Severe systolic dysfunction due to obesity
is rare, and its presence should trigger to look for additional etiologies. On the
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other hand, HFpEF is more common in obesity. As discussed earlier, obesity is
associated with hypertension, eccentric or concentric left ventricular hypertrophy,
and myocardial fibrosis (Fig. 1.4). All these can lead to diastolic HF [28, 29].

HF can also be a consequence of AF through different pathways. Tachycardia-
induced cardiomyopathy can result in HF when AF with a rapid ventricular response
is present and persistent. Atrial fibrillation causes atrioventricular dyssynchrony and
decreases cardiac output due to loss of atrial contractility knowing as “atrial kick.”
Left ventricular diastolic dysfunction is another basis for the development ofAF [30].

Other features of obesity, including insulin resistance, inflammation, leptin abnor-
malities, adiponectin deficiency, and volume changes, are related to the development
and worsening of HF.

Obesity and Depression and Physical Activity

Although depression has not been recognized as a traditional CVD risk factor,
some studies indicated a significant relationship between the evolution of CVD and
psychosocial factors. INTERHEART was a case–control study that showed psycho-
logical factors, including depression, as one of the substantial risk factors for the
CAD, almost same as hypertension, diabetes mellitus, smoking, and hyperlipidemia
[31, 32].

This association between obesity and depression may be a response to stress and
unhealthy lifestyle or to obesity-related metabolic changes and negative self-image
that can result in further worsening of depression. In a meta-analysis, Luppino et al.
showed that obese people are at 55% increased risk of depression; on the other hand,
people with depression are at a 58% higher risk of developing obesity [33]. This
study also confirmed that depression is more common in young females. This high
prevalence of depression may be a result of sociocultural status [33]. The association
of psychosocial distress, including depression, and CVD, has also been shown in
other studies. Pimple et al. showed that for one standard deviation increase in the
score of psychological distress, the risk ofCVDevents increases 1.44 times inwomen
(95% CI, 1.09–1.92), although this association has not been confirmed in men [34].

Obese individuals tend to be physically inactive. Physical inactivity was identified
to be a risk factor for the development of myocardial infarction in the INTERHEART
study [31]. Other studies have shown poor outcome after myocardial infarction and
HF in physically inactive patients (Depressed patients tend to be physically inactive);
thus, there appears to be a link between obesity, depression and physical activity
and resultant CVD. Liu et al. [35] showed in a metanalysis the salutary effect of
cardiac rehabilitation on aerobic endurance, psychosocial well-being, and CVD risk
reduction in patients with coronary heart disease [35].
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Obesity Paradox

Obesity paradox is defined as the possible protective role of obesity in CVD.
Although a vast number of studies have shown obesity as a risk factor for CVD,
some investigators have pointed out some protective effects of obesity in CVD.
Obesity paradox was initially described in HF patients [36, 37]. Ellis et al. observed
obesity paradox around 1996. They showed that overweight and obese patients had
lower in-hospital mortality rates compared to normal-weight patients (mortality
rates: 2.8% for BMI ≤25 kg/m2, 3.7% for BMI >35 kg/m2, and 0.9% for BMI
26–34 kg/m2; p < 0.001) [38].

Gurberg and colleagues followed PCI patients for 5 years and found that the rate
of major in-hospital complications, including cardiac death was significantly lower
in both overweight (0.7%) and obese (0.4%) patients compared to normal weight
(1%) people [39]. Further, the rate of in-hospital and one-year mortality in obese
and overweight subjects was half of the rate in normal-weight patients (normal BMI
cohort 10.6%, overweight cohort 5.7%, and obese cohort 4.9%; p < 0.0001) [39].

Femmino et al. [40] have discussed the role of a better clinical status of HF
in obese patients than lean heart failure patients. It is possible that obese patients
with HF are younger, making age as an important confounder. Another critical factor
might well be high levels of “cachectin” in thin heart failure patients. Cachectin,
now recognized to be TNF-α, which may have an adverse effect on cardiomyocyte
viability and therefore, cardiac function.

However, obesity paradox needs to be studied more extensively.

Conclusions

Obesity is a rapidly growing, global health problem. It is associated with a large
number of risk factors that result in CVD. The development of obesity-mediated
CVD is multifactorial and include inflammation, oxidative stress, and activation of
the renin-angiotensin system. Nonetheless, studies show that a persistent loss in body
weight with dietary control and physical activity can result in a decrease in CVD risk
and improve outcome of patients CVD.
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Chapter 2
Obesity-Induced Cardiovascular
Complications and Therapeutic
Intervention

Md. Jahangir Alam and Sanjay K. Banerjee

Abstract In the last few decades, the prevalence of obesity has increased in a
pandemic manner worldwide and remains a growing global health problem. Morbid
obesity is a major health risk for different non-communicable diseases such as type
2 diabetes mellitus, fatty liver disease, stroke, dementia, osteoarthritis, and certain
malignancies. It is not only associated with these medical conditions but also poses
an increased risk of cardiovascular diseases including hypertension, atherosclerosis,
and myocardial infarction. Although a plethora of obesity-induced cardiovascular
complications has been documented, the underlying mechanisms governing obesity-
CVD link are complex and an obesity paradox (protective effect of obesity in patients
with CVD) exists. A variety of factors such as sedentary lifestyle, healthmetrices and
different anthropometric indices such as body fat distribution andmuscle mass play a
critical role in ensuing a cascade of pathophysiological consequences that determines
obesity-induced cardiovascular events. Adipose tissues create a microenvironment
and act as an endocrine organ by secreting several immune-modulatorymolecules. In
obese subjects, expanding and dysfunctional adipose tissues undergoes imbalance
in the expression of the pro-inflammatory and anti-inflammatory cytokines which
ultimately promotes systemic metabolic dysfunction and cardiovascular disease. In
this book chapter, we will focus on a comprehensive study of the pathogenic factors
and molecular mechanisms associated with obesity, and its link with structural and
functional changes of the cardiovascular system. Understanding the mechanistic link
between obesity and cardiovascular diseases will provide the basis for therapeutic
intervention for obesity-induced cardiovascular complications.

Keywords Obesity · BMI · Cardiovascular disease · Adipose tissue ·
Adipokines · Inflammation · Heart failure
Md. J. Alam
Translational Health Science and Technology Institute, NCR Biotech Science Cluster,
Faridabad 121001, Haryana, India

S. K. Banerjee (B)
Department of Biotechnology, National Institute of Pharmaceutical Education and Research
(NIPER), Guwahati 781101, Assam, India
e-mail: skbanerjee@thsti.res.in; sajayk.banerjee@niperguwahati.ac.in

© Springer Nature Switzerland AG 2020
P. S. Tappia et al. (eds.), Biochemistry of Cardiovascular Dysfunction in Obesity,
Advances in Biochemistry in Health and Disease 20,
https://doi.org/10.1007/978-3-030-47336-5_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47336-5_2&domain=pdf
mailto:skbanerjee@thsti.res.in
mailto:sajayk.banerjee@niperguwahati.ac.in
https://doi.org/10.1007/978-3-030-47336-5_2


16 Md. J. Alam and S. K. Banerjee

Abbreviations

11β-HSD2 11β-hydroxysteroid dehydrogenase type 2
ACE Angiotensin-converting enzyme
AF Atrial fibrillation
AGT Angiotensinogen
AMPK AMP-activated protein kinase
AngII Angiotensin II
ATBF Adipose tissue blood flow
BMI Body mass index
CAC Coronary artery calcium
CAD Coronary artery disease
CHD Congenital heart diseases
CI Cardiac index
CTRP1 Complement-C1q TNF-related protein 1
CV Cardiovascular
CVD Cardiovascular diseases
eCB Endocannabinoids
ECG Electrocardiography
HCC Hepatocellular carcinoma
HF Heart failure
HFpEF Heart failure with preserved ejection fraction
hsCRP High-sensitivity C-reactive protein
IL Interleukin
IR Insulin resistance
LDL Low-density lipoprotein
LV Left ventricular
LVEF LV ejection fraction
LVH Left ventricular hypertrophy
MCP1 Monocyte chemoattractant protein 1
mPTP Mitochondrial permeability transition pore
mTOR Mammalian target of rapamycin
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
NF-κB Nuclear factor-kappa B
NO Nitric oxide
NSTEMI Non-ST segment elevation myocardial infarction
OSA Obstructive sleep apnea
PCI Percutaneous coronary intervention
PH Pulmonary hypertension
RAAS Renin-angiotensin-aldosterone system
RISK Reperfusion injury salvage kinases
ROS Reactive oxygen species
SNS Sympathetic nervous system
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SS Simple steatosis
STEMI ST-segment elevation myocardial infarction
SVI Stroke volume index
SVR Systemic vascular resistance
T2DM Type 2 diabetes mellitus
TLR4 Toll-like receptor 4
VEGF Vascular endothelial growth factor
VSMCs Vascular smooth muscle cells
WAT White adipose tissue
WHO World health organization

Introduction

Non-communicable diseases such as diabetes mellitus, cancer and cardiovascular
diseases (CVD) represent the leading cause of morbidity and mortality (≥70%)
worldwide [1]. Obesity, being a major risk factor for such diseases [2–4], has been a
growing global health concern; affecting both developed and developing countries.
The world health organization (WHO) data shows that obesity affects about 13% of
the population who are above 18 years of age [5]. Obesity affects both gender, while
prevalence is higher in women than men (200 vs. 300 million) which counts sum of
1.5 billion adults worldwide [6].

According to theWHO, obesity is defined as excessive fat accumulation i.e. body
mass index (BMI) ≥ 30 kg/m2 that might impair other health conditions [5]. Cardio-
vascular risk assessment is challenging as the threshold proposed by the WHO is not
consistent throughout Asian population due to differences in fat distribution, the exis-
tence of obesity paradox [7] and ‘metabolically healthy obesity’ [8]. Distribution of
fat to other organs such as heart and liver plays a key role in the severity of risk posed
by obesity. Since BMI does not measure the fat distribution, other parameters like
abdominal circumference and the calculation of waist to hip ratio are being used to
characterize central or abdominal obesity [9–11].

Accumulating evidence suggests the association between the extent of obesity
and other metabolic disorders such as type 2 diabetes mellitus, Non-alcoholic fatty
liver disease (NAFLD), a range of cardiovascular diseases (hypertension, myocar-
dial infarction, heart failure, cardiac arrhythmias), neurodegenerative diseases like
Alzheimer disease, and some malignancies such as breast cancer, prostate cancer,
and hepatocellular carcinoma (HCC) [12]. Now it is clearly evident that obesity is a
prominent risk factor for other non-communicable disease where CVDs like dyslipi-
demia, insulin resistance, hypertension, and atherosclerosis are strongly associated
(Fig. 2.1) [13].
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Fig. 2.1 Schematic representation of obesity-induced cardiovascular disease (CVD) and their
complex interplay with their risk factors. In obesity or over-weight, various risk factors (middle
ring) such as metabolic syndrome, neurohormonal imbalance, inflammation and obstructive sleep
apnea (OSA) play a central role in inducing CVDs (outer ring) such as hypertension, coronary artery
disease, congenital heart disease and cardiac arrhythmia. (RAAS: Renin-angiotensin-aldosterone
system, EAT: Ectopic adipose tissue)

White adipose tissue (WAT), a constituent of adipose tissue, exerts crucial effects
on the metabolic and inflammatory pathway by secreting biologically active peptides
and proteins such as adiponectin that play an important role in obesity, insulin resis-
tance, inflammation, and cardiovascular diseases [14–16]. When adipose tissues
become expanded and dysfunctional in obesity, the adipose tissues cannot secret
sufficient level of anti-inflammatory cytokines, thereby aggravate the inflammatory
condition, thus obesity is considered as a state of inflammation. This imbalance in
the homeostasis of pro- and anti-inflammatory condition eventually starts obesity-
induced metabolic alteration not only in the cardiovascular system but also in other
tissues such as pancreas, liver, and kidneys [17, 18].Although it is difficult to decipher
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the obesity paradox, obesity and its comorbidities have harmful effects on cardiovas-
cular disease through various mechanisms including increase in pro-inflammatory
cytokines and decrease in anti-inflammatory factors, ectopic lipid accumulation,
and insulin resistance, hyperglycaemia, endoplasmic reticulum stress, generation of
reactive oxygen and reactive nitrogen species.

A large number of cross-sectional and meta-analyses studies were performed
to understand the association between obesity and various cardiovascular diseases.
Although the exact mechanism of link between them is not established well but
evidence suggest that there is a close relationship between the increasing BMI and
risk of CVD. For instance, in obese individuals, increase in adipose tissue causes
insulin resistant and activation of Renin-angiotensin-aldosterone system (RAAS)
which leads to remodelling of cardiac structure and function such as cardiac hyper-
trophy, apoptosis and fibrosis that ultimately leads to heart failure. Multiple factors
are involved in the progression of obesity-induced cardiovascular dysfunction such as
the formation of atherosclerotic plaques, infiltration ofmacrophages, neurohormonal
and metabolic alteration, hyperglycemia and epigenetic changes. Recent evidence
suggests that type 2 diabetes (T2DM) and non-alcoholic and alcoholic fatty liver
disease separately or synergistically are higher risk factors for CVD in obese subjects.

To control the risk of obesity-induced cardiovascular diseases, pharmacological
intervention alone could not help. Thus losing weight with anti-obesity medica-
tions along with lifestyle changes, improvement in diet and comorbid factors are
necessary. In this chapter, we are emphasizing the mechanisms of obesity-induced
cardiovascular complications and its relation to cardiovascular risks that might help
to provide the basis for a rational therapeutic strategy for obesity-induced cardiac
complications.

Obesity Paradox

The incidence of obesity is increasing tremendously in the world. As a consequence,
there is an increase in the risk of cardiovascular complications, metabolic disorders,
and their related risk factors such as fatty liver diseases and type 2 diabetes [19,
20]. While obesity increases the risk for CVD even in the absence of other risk
factors, several studies indicate the controversial relationship between obesity and
CVD [21]. Several epidemiologic studies have demonstrated the prevalence of
potential protective effect of obesity on the cardiovascular complications such as
heart failure, pulmonary arterial hypertension and congenital heart defects when
they coexist [22–27]; a phenomenon known as “obesity paradox” [28–30]. Recent
findings suggest a U-shaped association between BMI categories and mortality in
STEMI patients and CVDs. This data showed that the class I obesity (30–34.9) were
at lowest risk of mortality rate while normal weight and extremely obese (≥40)
patients had higher mortality (Fig. 2.2) [31, 32].
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Fig. 2.2 U-shaped associations of BMI with all-cause mortality (ACM), CVD, and expanded
CVD mortality (ECM). A U-shaped with flat bottom indicates that not only over-weight or obese
individuals are prone to cardiovascular complications but also underweight or low BMI individual
has increased risk of CVD. 15.0–18.4: underweight, 18.5–24.9: normal, 25–29.9: overweight, 30–
34.9: grade 1 obesity, ≥35: grade 2–3 obesity, HR: Hazard ratio. (Adapted from [32])

Epidemiology of Obesity and Cardiovascular Complication

Over the past few decades, the prevalence of obesity has increased globally in a
pandemic manner [5, 33–35]. Recently, a group of investigators from NCD-RisC
have demonstrated the trend that how obesity prevalence has increased worldwide in
the past 40 years [34]. The proportion of individuals with obesity has been increased
from 25.4 to 39.4% between 1980 and 2015, and it is estimated to be 57.8% by
2030 [33, 36]. The prevalence of obesity in 2015 was 10.1% for men and 14.8% for
women and estimated to be 18% in men and 21% in women by 2025. Serial National
surveys in India have demonstrated an increasing trend in the prevalence of obesity
(NFHS 2 and 3) [37, 38]. A population-based study performed by the Indian Council
of Medical Research-India Diabetes (ICMR-INDIAB) indicates the prevalence of
obesity ranges from 11.8 to 31.3% in India [39]. Prevalence of obesity is higher
in women and the urban population as compared to men and the rural population,
respectively [40–42].
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Obesity-Induced Cardiovascular Complications: Role
of Adipose Tissues

In healthy condition, in non-obese subjects, adipose tissues act as an endocrine gland
and regulate diverse processes such asmaintaining energy homeostasis, insulin sensi-
tivity and inflammation [43]. In obese subjects, a dysfunctional adipose tissue is asso-
ciatedwith a plethora of adverse health conditionswhich ultimately leads to increased
risk of mortality at the population level [44, 45]. Obesity and its comorbidities exert
its deleterious effects on cardiovascular function via several mechanisms including
ectopic fat accumulation, hyperglycemia, and development of the low-grade inflam-
matory condition, activation of the sympathetic nervous system and neurohormonal
imbalance, to name a few. By functioning as an endocrine organ, adipose tissues
secrete many peptide (adipokines) and non-peptides (lipokines) hormones, cytokines
and growth factors that regulate organ functions and metabolic processes. During
uncontrolled and sustained calorie intake adipose tissues expand in size and number,
and accompanied by structural and functional remodelling such as adipocyte hyper-
trophy and fibrosis, local inflammation, infiltration of immune cells, insulin resis-
tance and a altered metabolism. Imbalance in the secretion of adipokine (leptin and
adiponectin) leads to the development of a low-grade, chronic inflammatory state that
contributes to the development of metabolic and cardiovascular diseases (Fig. 2.3)
[46–48].

The adipocytes are enriched with endocrine hormones and immune-modulatory
factors which produces many different adipokines at the time of normal physio-
logical state or under stress [49, 50]. In non-obese healthy individuals, adipocytes
secrete various anti-inflammatory cytokines such as adiponectin, TGF-β, IL-10,
and nitric oxide which show protective effects, normal insulin response (anti-
diabetogenic) and anti-atherogenic effects [49, 50]. Adiponectin is the most abun-
dant adipokines secreted by adipocytes. In individuals with high obesity and CVD
risk factors, adiponectin concentration drops significantly while the concentration of
pro-inflammatory cytokines such as leptin, TNF-α, resistin, and IL-6 increases [51].
Recently Lekva et al. found that Leptin to adiponectin ratio was high during gesta-
tional diabetes, a risk factor for obesity-induced CVD [52]. Generally, adiponectin
shows anti-inflammatory properties via the inhibition of NF-κB (Nuclear factor-
kappa B) expression in macrophages and monocytes. It also inhibits macrophage
conversion to foam cells and reduces oxidation of low-density lipoprotein (LDL).
Leptin (encoded by ob gene) is the master regulator of food metabolism and energy
balance as well as it has various pleiotropic physiological actions such as inflam-
mation, bone metabolism, endocrine function, stimulation of sympathetic nervous
system (SNS), cardiovascular regulation and immune responses [53, 54]. Thus it
has been shown to increase the level of mediators of vascular inflammation such as
IL-2, IL-6, TNFα, MCP-1, reactive oxygen species (ROS), Th1-type cytokines from
endothelial cells and peripheral bloodmononuclear cells. On the other hand, elevated
plasma level of leptin was found to be associated with BMI and a degree of adiposity.
However, the satiety effect of leptin is abrogated during high plasma leptin level
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Fig. 2.3 Schematic illustration showing the mechanism of obesity-induced adipose dysfunc-
tion and its impact on the cardiovascular system. Excess caloric intake and consequent increase
in adiposity lead to adipocyte hyperplasia and hypertrophy. Sustained and chronic adiposity causes
necrosis and apoptosis of the cells, which further induce secretion of pro-inflammatory factors such
as leptin, TNF-, Resistin, IL-6 and recruitment of M1 macrophages. In contrast to normal physio-
logical condition, obesity is also characterized by the presence of M2 macrophages and a decrease
in anti-inflammatory factors such as Adiponectin, TGF-β and IL-10. All the above condition with
increased oxidative stress initiates a low-grade systemic pro-inflammatory state and adipose tissue
dysfunction, which promotes a number of intermediate risk factors such as insulin resistance,
dyslipidaemia, the formation of atherogenic plaque, cardiac fibrosis, microvascular dysfunction,
endothelial dysfunction, activation of SNS, alteration in RAAS and reduction in adipose tissue
blood flow (ATBF). Ultimately, all these risk factors cause several complications of the cardiovas-
cular system such as hypertension, CHD, arrhythmia, myocardial infarction, CAD and finally heart
failure

for the long term, a phenomenon called leptin resistance. Leptin resistance results
from several aspects such as (i) interruption of leptin-receptor signalling; (ii) limited
permeability to the blood-brain barrier; (iii) down-regulation of leptin receptor in the
hypothalamus [55]. Haemostatic imbalance and cardiovascular damagemay occur as
a result of accumulation of epicardial adipose tissue and concomitant coronary artery
disease during hyperleptinemia in obese subjects. Moreover, leptin has been associ-
ated with atherosclerosis, hypertension and congestive heart failure. The adipokines
action on the cardiovascular system-dependent mainly on two mechanisms either
direct to the heart or through interaction with the central nervous system. Leptin
acts by stimulating the migration and proliferation of vascular smooth muscle cells
(VSMCs) by upregulating the vascular endothelial growth factor (VEGF) expression
and the cytoskeleton reorganization [53, 55, 56]. Furthermore, adipose tissue releases
plasma endocannabinoids (eCB), such as anandamide and 2-arachidonoylglycerol,
which are involved in feeding behaviour and energy metabolism, as well as glucose



2 Obesity-Induced Cardiovascular Complications 23

and lipid metabolism. In obese individuals, insulin resistance and inflammation may
increase the level of cannabinoid receptors that causes further increase in visceral
fat deposition and concomitant reduction in adiponectin level [57, 58]. Recent find-
ings suggest that endocannabinoids may play an important role in the pathogenesis
of obesity-induced cardiovascular complications, such as atherosclerosis [59]. A
recent study has also shown that gastric bypass-induced weight loss in obese human
improved coronary circulation through the decrease in endocannabinoid levels and
a significant increase in adiponectin level [60]. Although there are a large number
of biologically active factors secreted from adipose tissue and their complex inter-
actions complicate the understanding of the mechanistic link between obesity and
the its impact on the cardiovascular system, the findings from experimental, clinical,
and epidemiological data strongly favour the devasting roles of the adipokines on
cardiovascular (CV) system.

Adverse Effects of Obesity on the Cardiovascular System

On theother hand, in spite of the existence of obesity paradoxormetabolically healthy
obesity, large number of studies indicate the potential negative consequences such
as hypertension, coronary heart disease, atrial fibrillation and sudden cardiac death
[59]. All of the above may occur either independently or with their risk factors i.e.
lipid disorder, diabetes mellitus, metabolic syndrome, obesity has adverse effects on
various CVD including (Fig. 2.1) [61].

Heart Failure

A number of epidemiological studies have shown that the prevalence of heart failure
is increasing. It is one of the major causes of mortality worldwide with a prevalence
of approximately 3% in developed countries [62]. Evidence also confirms that there
is a close correlation between heart failure and obesity, and obesity is a major risk
factor for the development of HF. Framingham Heart Study was done to evaluate the
relationship between BMI and incidence of heart failure. According to this study, the
rise of one unit BMI (1 kg/m2) increases the risk of heart failure by 5% for men and
7% in the case of women [63]. Similarly the incidence of heart failure in the obese
individuals happens 10years earlier than in the case of individualswith a normalBMI.
Moreover, the duration of morbid obesity increases the prevalence of heart failure
by 70% and 90% after 20 and 30 years of obesity, respectively [64]. Severe and
long-lasting obesity ultimately causes structural and hemodynamic changes in the
heart, which is often referred to as “obesity cardiomyopathy”, which leads to conges-
tive heart failure and sudden cardiac death [65]. Evidence on the exact mechanism
of obesity cardiomyopathy are sparse but the most important mechanisms include
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metabolic disturbances, activation of the RAAS and SNS, myocardial remodelling,
and endothelial dysfunction [66].

Data suggest that obesity leads to heart failure through several direct and indi-
rect mechanisms including haemodynamic changes, activation of RAAS and SNS,
inflammation and other comorbidities. A study showed that an increase in BMI of
5 kg/m2 involved a 5mmHg rise in systolic blood pressure. Thus a rise in both cardiac
output and blood pressure has been observed [67]. Association between obesity and
increased left ventricular (LV) end-diastolic pressure as well as right atrial pressure
and pulmonary wedge pressure has been shown in several studies [68, 69]. Increase
in blood pressure associated with arterial hypertension and left ventricular afterload
in obese individuals [70–72], which may lead to heart failure [73]. In the individual
with obesity, an increase in blood volume and high blood-flow is responsible for
the increase in ventricular preload and stroke volume [74, 75]. Initially, a persis-
tent increase in ventricular wall tension leads to ventricular dilatation followed by
concentric LV hypertrophy and ultimately heart failure [76–78]. Recent data suggest
that these cardiac structures and hemodynamic abnormalities can increase the risk of
heart failure with preserved LV ejection fraction (LVEF or HFpEF, heart failure with
preserved ejection fraction) [79]. Thus, recently, it has been proposed that the devel-
opment of targeted therapeutics for such patients with increased HFpEF will be
helpful [77, 80–82].

Obesity also causes the activation of the renin-angiotensin-aldosterone system
and increased activity of the sympathetic nervous system as evident from increase in
the aldosterone level and the mineralocorticoid receptor expression. All the changes
lead to cardiac fibrosis, platelet aggregation, and endothelial dysfunction [83, 84].
As evident from both human and animal studies, excess visceral fat can induce
the synthesis of several pro-inflammatory cytokines and adipokines which can be
attributed to the characteristic low-grade systemic inflammation (Fig. 2.3) [85].
Many of the inflammatory mediators and acute-phase proteins such as IL-1β and
IL-18, TNF-α enhances myocardial fibrosis, have cardio-depressant properties, and
play a central role in the development of heart failure [85–89]. The integrity of
skeletal muscle mass is a key factor for maintaining the physical activity. In obesity,
myocardium has increased level of triglyceride and muscle atrophy which is medi-
ated by generation of toxic metabolites such as ceramide and diacylglycerol, ulti-
mately causing apoptosis of cardiomyocytes [90–93]. Comorbid health conditions
in obese subjects increase the chances of heart failure. In obesity, insulin resistance
reduces the contractility of the myocardium [94], atherosclerosis enhances the risk
of ischemic cardiomyopathy and coronary artery disease [95] and lipid accumulation
in the myocardium enhances fibrosis promotes cardiac arrhythmias, and therefore
contribute to the development of heart failure [96, 97].
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Atherosclerosis

Atherosclerosis is one of the major causes of morbidity and mortality worldwide
and characterized by deposition of cholesterol and formation of the atherosclerotic
lesion [98, 99]. In the last 30 years,mechanistic details of the pathophysiology of both
obesity and atherosclerosis have been demonstrated as a chronic inflammatory condi-
tion, in which the activation of both innate and adaptive immune processes occurs
[100, 101]. The association between obesity and atherosclerosis depends on several
factors and their underlyingmechanisms, including dyslipidaemia, insulin resistance,
inflammasome activation, adipocytokines imbalance, and endothelial dysfunction.
However, the most important mechanism is the inflammation and NLRP3 inflam-
masome activation-mediated insulin resistant and endothelial dysfunction, which
links obesity to atherosclerosis and other cardiometabolic risks. Several signaling
pathways play roles in the pathogenesis of obesity-induced inflammation, such as
activation of toll-like receptor 4 (TLR4), activation of protein kinase C or c-JUN
N-terminal kinase by fatty acids and their derivatives (diglyceride or ceramide),
induction of endoplasmic reticulum stress, increased generation of reactive oxidative
species and activation of macrophages by adipocyte death [102].

A number of published results demonstrated that obesity causes a reduction in
the level of adiponectin and a rise in inflammatory adipokines such as TNF-α, IL-
6, leptin, resistin and CRP which is strongly associated with atherosclerotic risk,
myocardial infarction, and diabetes mellitus [103–106]. Recently, Shimobayashi
et al. reported that obesity-induced insulin resistance in mice leads to local accumu-
lation of macrophage and causes inflammation in adipose tissue by the production of
a chemokine monocyte chemoattractant protein 1 (MCP1). These findings prove that
obesity-induced insulin resistance in visceral WAT leads to inflammation rather than
vice versa [107]. Similarly, there are other factors contributing to the progression of
atherosclerosis in obese individuals viz., autophagy insufficiency, increased oxida-
tive stress and alteration in gut microbiota composition. Various reports showed that
autophagy insufficiency may have an impact on metabolic syndrome, may increase
generation of pro-oxidants that is linked to atherosclerosis. Similarly, gutmicrobiota-
induced TLR4 activation may be responsible for the low-grade inflammation in the
gut [100].

Coronary Artery Disease

According to several epidemiological studies it has been proposed that there is
a high prevalence of obesity paradox in patients with coronary artery disease (CAD).
Optimal survival was seen in overweight/obese patients undergoing percutaneous
coronary intervention, CAD patients with obesity had the lowest risks of CVD
mortality. However, there was an increase in total mortality risk in patients with
BMI≥ 35 kg/m2 [7, 108–110]. Although the obesity paradox is controversial till now,



26 Md. J. Alam and S. K. Banerjee

overweight and morbid obesity are closely related to risk factors for atherosclerosis
and associated CAD.

Obesity increases the formation of atherosclerotic plaques which is characterized
by increased infiltration of macrophage and state of low-grade systemic inflamma-
tion (Fig. 2.3) [111]. High-sensitivity C-reactive protein (hsCRP) and other pro-
inflammatory factors during systemic inflammation has long been attributed to the
pathophysiology of atherosclerosis. Recently, an IL-1β targeted anti-inflammatory
therapy was proven to be effective in reducing major adverse CVD events in
patients with elevated systemic inflammation and established atherosclerotic CVD
[112]. However, non-targeted anti-inflammatory therapiesmay not be efficacious and
perhaps could be even detrimental [113]. In addition to the inflammatory hypothesis
which may drive obesity to CAD, obesity is also associated with several major risk
factors for CAD, like T2DM and dyslipidaemia, which can, in turn, increase the risk
for CAD further [21].

Cross-sectional and longitudinal studies demonstrated that the extent and duration
of obesity affect the manifestation and risk of coronary heart disease [114, 115].
For instance, atherosclerosis predisposes young patients several decades before
the onset of CAD. Patients with increased BMI have more frequent and advanced
atherosclerotic lesions compared to that of normal BMI [116]. Increase in body
weight also affects the risk of CAD at the rate of 12% per 10kg and the systolic and
diastolic blood pressure rises by 3 mmHg and 2.3 mmHg per 10 kg body-weight,
respectively [117, 118]. Furthermore, overweight and obesity is also an independent
risk factor for ST- and non-ST segment elevation myocardial infarction (STEMI and
NSTEMI) patients in young age [108, 119, 120].

Haemodynamic Changes

A range of evidence suggest that obesity results in a variety of hemodynamic changes
which may predispose obese individuals to cardiovascular dysfunctions through
changes in cardiac structure and ventricular function and finally leads to heart failure,
independent of other risk factors. These alterations in obese subjects result from alter-
ation in various neurohormonal andmetabolic processes, whichmay cause LVhyper-
trophy and impaired LV diastolic function [121–125]. All those above alterations are
associated with hypertension [65, 126]. Many of these alterations are reversible with
substantial voluntary weight loss.

Excess adipose accumulation during peripheral obesity results into volume stress
characterized by an increase in total and central blood volume which leads to struc-
tural and functional changes in the heart which in turn predisposes to an increase in
cardiac output [65, 75, 127]. As blood volume rises in peripheral obesity, increased
stroke volume and cardiac frequency provide the increased cardiac output [65, 127].
Generally, the patientswith elevatedLVend-diastolic and pulmonary capillarywedge
pressures have increased ratio of stroke work index to LV end-diastolic pressure.
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Moreover, these obese patients are accompanied by various other altered hemo-
dynamic parameters such as right ventricular pressure, mean right atrial pressure,
and pulmonary hemodynamics [65, 128]. On the other hand, a difference has been
observed in the central hemodynamics of the patients with central obesity i.e. a lower
cardiac output and a higher peripheral vascular resistance [129, 130].

Studies suggest the potential link between adipose tissue blood flow (ATBF; ml
min−1 per 100 g tissue) and obesity. In both obese human and animals, a 30–40%
reduction in ATBF has been found as compared to non-obese subjects [102]. Obese
individuals exhibit reduced subcutaneous adipose tissue blood flow (when expressed
per 100 g tissue) and increased adipose tissue hyperoxia, as explained by lower
adipose tissue oxygen consumption. All of these are accompanied by insulin resis-
tance, reduce capillary density, and increased inflammation [131, 132]. Obese Zucker
rats (having inactive leptin receptor) exhibit diverse kind of vascular abnormalities,
including high SNS activity, increased vasoconstriction, and impaired vasodilatory
mechanisms that cause impaired total blood flow within the skeletal muscle [133].

Recently,Gayda et al. compared cardiovascular hemodynamics and cardiac output
during exercise in obese and nonobese individuals. They found a similar cerebral
hemodynamic but a higher systolic blood pressure among obese individuals during
exercise, which preserves cardiopulmonary and cardiac function during exercise and
recovery. Thus, this study suggests that a higher aerobic fitness in obese subjects
might have a protective effect through preserving cardiac and pulmonary function
during exercise and recovery [134]. Similarly, obesity does not impair myocardial
performance and cerebrovascular function as evidenced by a comparable level of
Cardiac hemodynamics and cerebral responses irrespective of their low fitness but
there was elevated heart rate and VO2 responses after the two-minute recovery of
submaximal effort. However, recovery from a short duration of work was influ-
enced by their fitness level [135]. In another study, cardiac function is significantly
altered in morbidly obese pregnant women as reflected by significantly higher heart
rate, lower stroke volume index (SVI) and cardiac index (CI) and higher systemic
vascular resistance (SVR) [136]. Although cerebral haemodynamics are normal in
obese subjects, the cerebral percentage of cardiac output and body oxygen uptake
are lower than that of non-obese control subjects. In obese patients, splanchnic blood
flow is substantially higher but the renal blood flow is substantially reduced [65].

Hypertension

Currently, hypertension plays a pivotal role in contributing to the global disease
burden [137]. It has been estimated that 60–70% of the incidence of hypertension
is attributed to overweight and obesity [138]. In the year 2011, around 9.4 million
deaths annually are attributable globally for hypertension [62]. According to some
studies, the ‘rule of halves’ [139] may be applied to the management of obesity-
induced hypertension, which suggest that hypertension may be less well-controlled
in obese patients [140–143]. Accumulating evidence suggest that there is a complex
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interplay between obesity and hypertension. Recent studies added a new paradigm
of association between obesity and hypertension which led to a better understanding
of the underlying mechanisms such as dysfunctional adipose tissue, imbalance in
adipokine synthesis and release, insulin resistance, activation of the RAAS, and
increased activity of the SNS, to name a few [144, 145]. Together, these neuro-
endocrine imbalances contribute to vascular and endothelial dysfunction, impaired
pressure natriuresis and sodium excretion, increased cardiac output and changes
in systemic vascular resistance and arterial compliance [146]. The accumulation
of excess adipose tissues augments a cascade of pathophysiological events that give
rise to obesity-induced hypertension, which ultimately increases cardiovascular risks
[70, 147, 148]. Retrospective analysis of a clinical study with 202 subjects suggest
that with primary hypertension identified that obese patients have increased CI and
SVR was the only predictor of the risk of uncontrolled hypertension (≥140 and/or
≥90 mmHg) in obese patients compared to non-obese patients [127].

The pro- and anti-inflammatory factors secreted from adipose tissues in patholog-
ical or physiological condition plays an important roles in obesity-hypertension link.
Insulin also associated with the pathophysiology of obesity-induced hypertension
as revealed by an impaired glucose tolerance, hyperinsulinemia, and concomitant
insulin resistant [149–152]. Thus increased insulin secretion in obese patients stim-
ulates sympathetic nervous system activity. Obesity induces SNS activity through
hypoglycaemia and chronic hyperinsulinemia and linked to heart dysfunction [153].
Furthermore, insulin also favours sodium reabsorption and increase sodium reten-
tion by acting directly on the kidney and renal tubules, respectively, which subse-
quently induces blood pressure during obesity [154–157]. Depending on various
pathophysiological states, glucocorticoids and their cognate receptors play a key
role in metabolic homeostasis during stress, such as fasting and starvation. During
chronic stress, high level of glucocorticoid causes metabolic complications such as
insulin resistance, hyperglycaemia, dyslipidaemia, and central obesity. Through their
action on adipose tissues, glucocorticoids appear to promote hypertension through
increased RAAS activity [70]. In obese individuals, activation of the RAAS plays
an central role in elevating blood pressure. This is not only attributable to SNS
overactivity and renal compression [70] but also to dysfunctional adipose tissue
with increased levels of angiotensin II (AngII) and aldosterone. In obese animal
and human, adipose tissues release a significant amount of AngII [158] which ulti-
mately serves asmachinery necessary to generateAngII, i.e. angiotensinogen (AGT),
renin, and angiotensin-converting enzyme (ACE) at both mRNA and protein level
[159–163]. Diet-induced obesity in rats increased both adipose tissue mass and AGT
expression in the liver. Moreover, AGT expression also correlates with the level of
AGT and AngII in the plasma and blood pressure [164]. Enhanced renal sodium
reabsorption and impaired pressure natriuresis are important factors for the increase
in blood pressure associated with obesity [70]. Adipocytes of hypertensive patients
with high BMI are also capable of aldosterone production [165, 166]. Moreover,
AngII, leptin and complement-C1q TNF-related protein 1 (CTRP1) released from
the adipose tissue, also stimulate aldosterone release in human adreno-cortical cells
[167, 168]. Literature suggests that, both elevated circulating levels of AngII and



2 Obesity-Induced Cardiovascular Complications 29

Aldosterone can act directly within the brain regions and are capable of stimulating
renal sympathetic nerve activity (and thus renin secretion and sodium retention),
impaired baroreflex sensitivity, vasopressin release, and elevated blood pressure [71,
148, 169]. Evidence shows that high caloric intake stimulates peripheral α1 and β-
adrenoreceptors by increasing peripheral noradrenaline turnover which elevates SNS
activity in patients with obesity [170].

Elevated RAAS activity not only induces sodium retention and SNS activation,
but may also cause microvascular dysfunction i.e. vascular rarefaction, impaired
dilatation, and enhanced constriction) and modulate arterial stiffening, ultimately
resulting into obesity-induced hypertension [171, 172]. A characteristic feature of
obesity-associated microvascular dysfunction is the microvascular insulin resistance
i.e. an impaired ability of insulin to dilate precapillary terminal arterioles and thus
causes arterial stiffness and induce capillary recruitment by increasing endothe-
lial nitric oxide (NO) synthesis [154–157, 173–175]. Observation from the Fram-
ingham Offspring Study and diet-induced model of obesity also demonstrated that
arterial stiffening may precede elevations in systolic blood pressure and incident
hypertension [176, 177].

Similar to AngII, aldosterone and insulin, leptin crosses the blood-brain barrier,
interacting with the arcuate nucleus, initiates an appetite suppression and increased
energy expenditure signal that ismediated through increasedSNSactivity [178]. Thus
elevated circulating level of leptin is also implicated in the obesity-induced hyperten-
sion. Recent results from the human study demonstrated that the presence of leptin
is not essential for obesity-related hypertension. However, short-term leptin substi-
tution can induce hypertension in these leptin-deficient obese humans, indicating
that leptin has a synergistic effect on obesity-associated hypertension by increasing
the regional sympathetic tone [179]. Growing evidence suggests that a dysregulated,
overstimulated eCB system is implicated both in cardiovascular physiology and the
pathogenesis of hypertension, heart disease and atherosclerosis [180, 181].

Pulmonary Arterial Hypertension

Pulmonary hypertension (PH) is a complex and multifactorial disease characterized
by pulmonary arterial inflammation, abnormal vasoconstriction and an increase of
the mean pulmonary arterial pressure (≥25 mmHg). Recent evidence revealed a
strong association between obesity and pulmonary hypertension. Adiponectin has a
potential protective role on the pulmonary vasculature by showing various pleiotropic
effects on inflammation and cell proliferation. Several in vivo and in vitro studies
demonstrated that adiponectin shows its protective roles in preventing endothe-
lial dysfunction and proliferation by an endogenous modulation of nitric oxide
production and interfering with AMP-activated protein kinase (AMPK) activation,
mammalian target of rapamycin (mTOR) and NF-κβ signalling [182].

The biologically active molecules released from adipose tissue in obese subjects,
including adiponectin, leptin, adipsin, visfatin, IL-β, IL-6, and TNF-α play a part in
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chronic inflammation. It has been demonstrated that leptin and adiponectin are the
two most important adipokines in pathogenesis of obesity-induced PH. Normally,
leptin has a vasodilator effect and is involved in glucose and lipid metabolism [183].
However, during obesity, its normal physiological level and function get dimin-
ished and thus responsible for endothelial dysfunction, and initiates pathogenesis of
diseases of the vascular tissues [184]. Evidence revealed that in PH patients, lower
leptin levels normalized by BMI were correlated with a higher mortality rate and the
leptin/BMI ratio represented a non-linear prognostic value for mortality at two years
[185]. Adipokines can also regulate the vascular tone and have direct vasodilator
properties. Adiponectin-deficient mice show diminished vasoreactivity and impaired
endothelial function, thus these finding supports the association between obesity
and PH. The elevated level of insulin in obese subjects may limit the protective
effects of adiponectin by decreasing AdipoR1/R2 expression, a phenomenon called
adiponectin resistance. Since it has been reported that insulin-resistant can alter
hemodynamic parameters, thus insulin resistance can serve as an important linkage
between adiponectin and PH [182].

In obese individuals, chronic hyperuricemia has been reported to be an indepen-
dent risk factor for PH [186] by reducing local flowwithin the pulmonary vessels as a
result of counteracting NO generation [187, 188] and increasing levels of endothelin
which ultimately leads to endothelial dysfunction and subsequently increases the
pulmonary pressures [189]. Furthermore, ectopic accumulation of triglyceride and
free-fatty-acid in themyocardium of obese individuals could lead to the development
of eccentric ventricular hypertrophy and diastolic heart failure in severe obesity. As
a consequence, a secondary form of PH develops characterized by an increase of
left-ventricular filling pressures associated with left-ventricular failure [68]. More-
over, obstructive sleep apnea (OSA)-induced nocturnal hypoxemia observed in obese
subjects, could lead to right ventricular hypertrophy and PH [190–192].

Cardiac Hypertrophy

In response to extrinsic or intrinsic stress, heart adaptation involves morpholog-
ical and structural changes (cardiac remodelling) such as mass and volume (cardiac
hypertrophy), diameter and geometry of the cardiomyocytes and cardiac chamber.
If this initial compensation mechanism sustains for long time, heart undergoes
malfunction processes which are the risks of congestive heart failure and sudden
death [193]. Obesity-induced cardiac remodelling is a multi-factorial process that
plays a key role in mediating cardiac-related structural and functional changes. The
components determining obesity-associated cardiac hypertrophy include hemody-
namic alterations, inflammation, neurohormonal imbalance, and metabolic alter-
ations [194–198]. In obese subjects, alterations in these components, mainly hemo-
dynamic alteration, contribute tomorphological changes in the cardiovascular system
that ultimately predisposes to ventricular dysfunction and heart failure [199, 200].
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A recent meta-analysis shows that left ventricular hypertrophy (LVH) is one of the
most frequent complications in the obese population [201].

The first observation by Lillington et al. suggests the importance of LVH in eval-
uating cardiac remodelling in severely obese patients [202]. Later in 1992, Kasper
et al. showed that most common histologic abnormality in the obese subjects was
characterized predominantly by LVH [69]. Although parameters like neurohormonal
and metabolic alteration play important roles in the development of LVH, Strong
Heart Study suggests that increased muscle mass is a better predictor of LVH than
increased fat mass [203]. More recent reports suggest that concentric LVH occurs
more frequently in obese patients than the eccentric LVH. This may be explained
by the development of a form of concentric LVH described as “eccentric-concentric
LVH” due to hypertension in these obese patients [204–206]. Although some of
the studies still report the predominance of concentric LVH in hypertension-adjusted
obese patients, the prevalence of development of either kind of LVH i.e. eccen-
tric or concentric is determined by the duration and severity of both hypertension
and obesity [206, 207]. Using magnetic resonance imaging and multinuclear spec-
troscopy on the obese population, Rayner et al. recently found that visceral obesity
negatively impacts diastolic function by causing concentric LV remodelling, visceral
obesity is also associated with increased triglyceride levels and impaired energetics
of the myocardium [208]. Leptin plays a role in cardiovascular disease development
such as LVH and fibrosis through various signalling pathways, for instance, activa-
tion of a protein Rho-associated protein kinase (ROCK) [209]. Recently, Geng et al.
demonstrated thatmice fedwith high-fat diet inducedobesity aswell as cardiac hyper-
trophy, inflammation and oxidative stress. Fibronectin type III domain containing 5
(FNDC5) is a protein that has beneficial roles in metabolic diseases by ameliorating
hyperlipemia and increasing lipolysis in adipose tissues. All the changes induced by
the high-fat diet were attenuated by FNDC5 by inactivating JAK2/STAT3 [210].

Congenital Heart Disease

Congenital heart diseases (CHDs) is considered as the most prevalent kind of
congenital anomalies and the highest prevalence (9.3/1000 live births) was found
in Asian sub-continents. It is affecting about one million new-borns annually [211].
Population-based studies reported that CHD occurs in ~1% of live births and 10%
of aborted foetuses globally. It is also the leading cause of mortality from birth
defects [212]. Between 1970 and 2017, the prevalence of CHD increased by 10%
every 5 years. Several analyses including this meta-analysis also showed that there is
continued increase in birth prevalence of CHD and estimated that obesity in women
will be increased to 21%by 2025 [33, 213]. Although there is inconsistency in results,
studies widely reported the link between obesity during pregnancy and CHDs in
new-borns. Maternal obesity is also a preventable risk factor for CHDs [214–216].

From recent cross-sectional studies, it is evident that severe obesity in pregnant
women has teratogenic effects on the foetus and is associated with several congenital



32 Md. J. Alam and S. K. Banerjee

anomalies of CNS, genitourinary system and lymphatic system, atrial and ventricular
septum [217, 218]. Although the precise pathophysiological mechanisms behind the
obesity-induced CHD is poorly understood, but recent studies using genomic tech-
nologies such as next-generation sequencing, single nucleotide polymorphism (SNP)
arrays and copy number variation (CNV) analysis enable the identification of genetic
causes and suggest a complex cross-talk between genetic and environmental factors,
of which the environmental factors is themost prevalent cause [219–222]. Two recent
meta-analyses and a study of Persson et al. showed a dose–dependent association
between maternal overweight and obesity severity, and overall risk of cardiovas-
cular defects as well as risks of few specific heart defects [223–225]. Some studies
reported that clinical outcome of CHD can be decreased if diagnosed prenatally using
fetal echocardiography [226, 227], during the neonatal period [228, 229], or later in
childhood within the first 3 years of life [230]. Increased fat mass especially in the
lower-body compartment in pregnant women, results in the metabolic dysregulation,
hyperglycaemia, lipo-toxicity and inflammation and which may influence endothe-
lial function, placental development and pregnancy outcome [231, 232]. Studies
have shown that maternal obesity has a tendency to the development of obesity in
offspring’s later life. A number of evidence showed that maternal obesity may induce
epigenetic modifications such as methylation of histone-lysine and DNA, and acety-
lation of histones during crucial stages of embryonic developmental that result in
fetal reprogramming of embryo [233, 234]. The major adipokines, adiponectin and
leptin, also play pivotal roles in the development of the functional placenta. As
evidenced by recent results, placenta of obese women has decreased level of the
two adipokines and has epigenetic changes in their promoters i.e. DNA methylation
[235]. Moreover, gestational diabetes is more frequently associated with maternal
obesity and is a major risk factor for congenital heart defects in their offspring [236,
237]. Thus, primary prevention aiming at reducing the prevalence of overweight and
obesity in women in reproductive age is essential for reducing obesity-related risks
of congenital heart defects.

Cardiac Arrhythmias and Sudden Cardiac Death

The conclusion “sudden death is more common in those who are naturally fat than
in the lean” derived in the 4th century, is attributed to Hippocrates [238]. A handful
of studies have associated obesity as a risk factor for cardiac arrhythmias and sudden
cardiac death [125, 239, 240] in both genders [241]. In the Framingham Study,
Kannel et al. showed the annual sudden cardiac death rate in the obese subject was
approximately 40 times higher than that of the non-obese population [242].

Atrial fibrillation (AF) is the most common and clinically significant form of
cardiac arrhythmia. Its incidence and prevalence in the world are still increasing,
affecting 1–2% of the adult population and global prevalence of 33.5 million indi-
viduals [243, 244]. Numerous studies have reported the association between obesity
or increased BMI and AF or its risk factors such as diabetes mellitus, hypertension,
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myocardial infarction, LVH, left ventricular diastolic dysfunction, and OSA [245].
Epidemiological andmeta-analyses studies suggest that the risk of incidence ofAF in
obese patients increases by 1.52 times and 49%, respectively, as compared to control
non-obese patients. A unit rise in BMI causes 3–4.7% increase in the risk of AF.
In addition to sudden cardiac death, AF also increases the risk of thromboembolic
complications, and heart failure [246–250]. The pathological changes during obesity
such as lipid accumulation in themyocardium, infiltration of inflammatory agents and
fibrosis are highly associated with decreased conduction velocity and increased AF.
A meta-analysis and several cross-sectional studies have demonstrated that accumu-
lation of adipose tissues in the epicardium is associated with prevalence, severity, and
recurrence of AF [245]. Together, these factors contribute to [251, 252] development
of atrial re-entry and finally AF.

Studies suggest that obesity alters several ECG parameters such as increase in
P wave duration, elevated PR duration and QT elongation which independently
increases the risk of ventricular arrhythmia [253–255]. An animal study showed that
diet-induced obesity may be progressively associated with atrial electro-structural
remodelling such as change in atrial conduction and increase in fibrosis markers,
which leads to AF [256]. The electrophysiological remodelling in obesity was found
to be due to PKD-induced reduction of CREB expression and the resultant decrease
in expression of the voltage-dependent potassium channels [253]. Similarly, diet-
induced obesity increases SNS activity and affects atrial autonomic control and
electrical remodelling of the heart that leads to cardiac arrhythmia [257].

There is an association between atrial fibrillation with low-grade inflammation
and oxidative stress, which is mainly observed in relation to obesity [258]. Ectopic
adipose tissue-derived adipokines and inflammatory cytokines such as CRP, TNF-α,
IL-2, IL-6, IL-8, and MCP1 predispose heart of obese patients to atrial fibrillation
[259]. Arrhythmogenic effect of leptin released from adipocytes is mediated by
elongation of action potential [126]. Several other factors like rise in the level of
atrial natriuretic peptide [260] and activation of the renin-angiotensin system are
associated directly or indirectly with atrial fibrillation (Fig. 2.3) [261].

Myocardial Infarction

Obesity also poses a serious risk to another cardiovascular disease i.e. myocardial
infarction (MI) [45]. In a study, Smith et al. reported that exogenous leptin, when
given at early reperfusion in an isolated mouse heart model, showed cardioprotective
effects by reducing infarct size. This action was exerted by leptin is associated with
RISK (reperfusion injury salvage kinases) activation and thereby inhibiting mPTP
(mitochondrial permeability transition pore) opening in isolated rat cardiomyocytes
[262].

It has been demonstrated that overweight and obesity are associated with acuteMI
(AMI) [45, 263, 264] and may also have an independent relationship between them
across age and sex [10, 265]. One study showed that the risk for mortality is lower
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in obese patients with AMI than patients with normal BMI [266]. Recently Bucholz
et al. observed an obesity paradox among patients with acute myocardial infarction.
Patients with higher BMIs (median= 28.6) had a 20–68% lower mortality compared
with patients with a lower BMI (18.5). This effect was independent of other patient
characteristics and was comparable across sex, age, and diabetes subpopulations
[267]. Consistent with obesity paradox, Dhoot et al., found that the mortality of
patients with morbid obesity was lower than those non-morbid obese patients [268].
In contrast, Fukouoka et al. observed high all-cause mortality in elders with low
BMI patients undergoing percutaneous coronary intervention (PCI). Further, young
patients with high BMI showed higher all-cause mortality [269].

In contrast, a meta-analysis of previous studies suggested that overweight and
obesity are associatedwith a higher risk ofAMI.Although there is an obesity paradox
exists in the case of AMI, controlling one’s BMI is necessary as overweight and
obesity may affect cardiovascular health [270].

NAFLD Is a Risk Factor for Cardiovascular Complications
in Obesity

As the incidence of obesity is increasing, it also fuels the prevalence and severity of
NAFLD [271]. In NAFLD, hepatic diseases such as cirrhosis andHCC are the factors
for mortality but other non-hepatic diseases, including chronic kidney disease, CVD
and malignancies play critical risk factors for the mortality [272]. NAFLD is a
progressive liver disease and its advancement in pathology is determined by multiple
genetic and environmental factors, can be described as “multiple parallel-hit” model
[273]. Most of these factors include specific genetic polymorphisms [274], lack of
physical activity [275], obesity and insulin resistance (IR) [276], dysregulation of
adipokines [277–279], accumulation of toxic lipid metabolites [280], endoplasmic
reticulum stress and oxidative stress [281], dysbiosis of the gut microbiota [282]
and endocrine disruptors [283]. Excessive accumulation of lipids in the liver and
sustained simple steatosis (SS) leads to an intra-hepatic inflammatory process [284]
which mimics the low-grade inflammatory state occurring within the adipose tissue
of obese individuals [285]. As a result of activation and progressive infiltration
of immune cells in the liver [34] and consequent release of cytokines not only
intensify the inflammatory process but also contribute to the fibrotic process [286].
Adipokines such as leptin, adiponectin and hormones derived from the adipose
tissue, also play crucial roles in contributing SS, Non-alcoholic steatohepatitis
(NASH), cirrhosis and carcinogenesis [287]. During the adipose tissue expansion
and dysfunction, immune cells produce cytokines such as IL-1, IL-6, TNF-α,
which crosstalk with adipokines and shift the liver towards a more steatogenic,
inflammatory and fibrogenic profile [276].

Although there are separate effects of obesity and NAFLD on the cardiovas-
cular system, the evidence is sparse regarding the synergistic effects of obesity and
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NAFLD on the progression of CVD and other metabolic disorders. Accumulating
evidence suggest that the NAFLD is not only a progressive liver disease (ranging
from NASH to HCC) [288, 289], but also a risk factor for CVD, T2DM, hyperten-
sion and chronic kidney disease [290, 291]. Moreover, long-term prospective studies
indicate that majority of patients with NAFLD will die of CVD rather than liver-
associated complications (38% versus 8%) [292]. Altered metabolism, including
central obesity, dysglycemia, atherogenic dyslipidaemia and hypertension increase
the risk of CVD. Thus, as NAFLD progress, most of the death in patients occur due
to CVD (~40–45% of the total deaths), followed by non-liver cancers (~20%) and
direct liver-related complications (~10% of the total deaths [288, 293, 294].

Mobilization of excess free fatty acid from subcutaneous adipose tissue and their
accumulation in the liver leading to SS by storing extra lipids in the form of triglyc-
erides, or in the other organs such as kidney, pancreas, skeletal muscle, and the
heart. Thus, evidence suggests that NAFLD and obesity together cause ectopic fat
accumulation in other organs such as, in myocardium and epicardium [295]. These
epicardial adipose tissues spread into the myocardium and releases altered pattern
of various pro-inflammatory adipokines such as TNFα, IL-6, MCP-1 and IL-1β,
free fatty acid and other vasoactive mediators, and could cause structural and func-
tional derangements of the myocardium such as mitochondrial dysfunction, cardiac
apoptosis, fibrosis, ventricular hypertrophy and contractile dysfunction [296–298].
Several clinical studies have demonstrated associations among epicardial adipose
tissue extension, IR and NFLAD [299]. IR may lead to altered metabolic flexibility
in the myocardium including fatty acid and glucose metabolism [300], resulting in
CVDs [295].

Several studies evaluated the association between NAFLD and CAD.Most results
demonstrated a significant increase in coronary artery calcium (CAC) score, amarker
of coronary atherosclerosis progression, in the presence of NAFLD [301–304].
On the basis of CAC score, several cross-sectional and population-based studies
confirmed association among NAFLD and CAD independent of other non-NAFLD
factors [305–310]. Using computerized tomography and by calculating the CAC
score, most results suggest a significant increase in coronary atherosclerotic risk
in NAFLD patients. Several cross-sectional studies showed an association between
the development of aortic valve sclerosis and hepatic steatosis mainly in diabetic
patients without other complicating factors [311, 312]. Multiple studies suggest the
association betweenNAFLDwith several electrocardiography (ECG)parameters and
demonstrated an increased risk of atrial fibrillation and prolongedQTc interval [313].

Although the prevalence of NAFLD and its mortality due to CVD has been
increasing worldwide but there is no approved treatment option is available. To
prevent progression of NAFLD and NASH-related mortality [314], it has been
assumed that the resolution of NASH and fibrosis could be endpoints of successful
management [315]. Achieving different level of weight loss i.e. ≥3%, ≥5%, ≥7%
and ≥10% results in the resolution of steatosis, inflammation, NASH and fibrosis in
patients, respectively [316, 317]. Due to the lack of pharmacological interventions,
targeting obesity through lifestyle modification remains the keystone of NAFLD
management [318].
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Prevention and Treatment Options for the Management
of Obesity and CVD

In spite of several paradoxical effects of obesity on CVD (Fig. 2.2), a number of
evidence suggest its adverse effects on the cardiovascular system and other comor-
bidity factors. Thus losing weight should be the key goal and maintenance of the
normal weight throughout life must be planned ab initio. Studies demonstrated that
taking part in various healthy life style program such as leaving a sedentary lifestyle,
regular exercise and increased physical activity, intake of a balanced diet may help
to lose an excess body weight.

A number of anti-obesity drugs have been reported to have weight-reducing
effects. They improved cardiovascular outcomes as evidenced by double-blind,
placebo-controlled, randomized studies (Table 2.1). Insulin-sensitizing effects of
leptin may be used for the treatment of obesity-associated cardio-metabolic dysfunc-
tions. Similarly, since adiponectin has several beneficial effects on cardio-metabolic
disorders such as insulin resistance and NAFLD; peroxisome proliferator-activated
receptors agonists can be used to elevate the level of adiponectin. To ameliorate
IR and vascular dysfunction, oral use of adiponectin receptor agonists: Osmotin
(a plant defence protein) and “adipoRon” have been shown proven efficacy [43].
Recently, Zhao et al. proposed a new weight-loss strategy in which neutralizing
antibodies can be used for the reduction of leptin levels [319]. Further under-
standing of the pathophysiological and molecular mechanisms of obesity-induced
cardiometabolic disorders may help to identify new pharmacological targets.
According to recent reports, adiponectin level can also be increased with the help
of various drugs such as osartan and simvastatin or fenofibrate which blocks
RAAS and cholesterol/triglycerides generation, respectively. Adiponectin can be
administrated directly as it has been shown to reduce glucose, lipid, and insulin
concentrations and increase insulin receptor expression in obese diabetic mice [59].
Few other anti-obesity drugs and their mechanism of action include, (a) orlistat;
a pancreatic and gastric specific inhibitor, (b) liraglutide; an appetite-suppressing
human glucagon-like peptide-1 (GLP-1) receptor agonist, (c) lorcaserin; suppresses
appetite by inhibiting the serotonin 2C receptor, (d) Sibutramine; increase satiety
by inhibiting norepinephrine and serotonin reuptake [13].

Although a number of anti-obesity drugs have been approved and are known to
reduce CVD risk factors, but they have encountered several adverse effects. A large
number of anti-obesity agents have been withdrawn from the market due to unex-
pected side effects like valvular abnormalities, increase in cardiovascular events and
neuropsychiatric side effects. Thus their toxicity on the CVD outcome must be eval-
uated for a long duration. Few examples of anti-obesity agents withdrawn from the
market due to unexpected CVD side effects include fenfluramine/dexfenfluramine,
sibutramine, ephedrine, and phenylpropanolamine [320]. To overcome the issue
regarding high developmental cost and the adverse effects of anti-obesity drugs,
future research should focus on identifying the basic mechanism of action for several
adipokines such as chemerin, resistin and apelin [321].
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Table 2.1 Mechanisms of action of anti-obesity drugs that show improvement in cardiovascular
outcomes

Pharmacotherapy
interventions

Mechanism of
action

Outcome(s) Adverse effects Cardiovascular
risks

Orlistat or
Tetrahydrolipstatin

Pancreatic and
gastric specific
lipase inhibitor;
prevents
absorption of fat
in the
gastrointestinal
tract

Primary:
Overweight or obese
Others: Reduced
blood pressure, LDL
cholesterol and
fasting glucose in
patients with
diabetes

Mild
gastrointestinal
problem

CV safety not
established

Liraglutide Human glucagon
like peptide-1
(GLP-1; an
incretin hormone
that reduces gut
motility and
promotes satiety)
receptor agonist

Primary:
Overweight or obese
and/or diabetes
Others: Lower blood
pressure, total
cholesterol and
triglycerides,
HbA1c, fasting
glucose, and fasting
insulin. Improved
fasting lipid levels,
CRP, plasminogen
activator inhibitor-1
and adiponectin

Nausea,
diarrhoea and
constipation in
transient and
mild/moderate
intensity

CV safety
established in
dose indicated
for type 2
diabetes

Lorcaserin A serotonin 2C
receptor agonist:
Decreases satiety
level by activating
the anorexigenic
POMC pathway

Primary:
Overweight or obese
with or without
CVD
Others: Slightly
better cardiac risk
factors

Hypoglycaemia Safe for CV
problems

Naltrexone/bupropion Naltrexone: An
opioid antagonist,
blocks
autoinhibitory
feedback of
β-endorphin
Bupropion: Acts
on anorexigenic
POMC neurons in
the hypothalamus
to reduce appetite
and increase
energy
expenditure.
Inhibits reuptake
of norepinephrine
and dopamine

Primary:
Overweight or obese
with controlled
hypertension and/or
dyslipidemia, obese
diabetic
Others:
Improvements in
waist circumference,
triglycerides, hsCRP
and HDL levels

Nausea,
seizures,
headache,
dizziness,
insomnia and
vomiting,
constipation,
upper
abdominal pain,
migraine and
cholecystitis

Elevated blood
pressure or
myocardial
infarction

(continued)
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Table 2.1 (continued)

Pharmacotherapy
interventions

Mechanism of
action

Outcome(s) Adverse effects Cardiovascular
risks

Phentermine/topiramate
(PHEN/TPM)

Phentermine:
Sympathomimetic
(α-adrenergic
receptors
antagonist),
increases blood
leptin level and
reduces appetite
Topiramate:
Targets
GABA-mediated
pathway to
modulate
voltage-gated ion
channels and
inhibits carbonic
anhydrase or
AMPA/kainate
excitatory
glutamate
receptors

Primary:
Overweight or obese
with or without
CVD
Others: An overall
significant
improvement in
markers for
cardiovascular risks,
such as waist
circumference,
blood pressure and
lipids

Dry mouth,
paresthesia, flu,
upper
respiratory
infection,
change in taste
and insomnia

Potential
teratogenic
risk, as well as
cardiovascular
risk with an
increase of the
heart rate

Sibutramine An inhibitor of
β-phenethylamine
or norepinephrine
and SRI; increases
the levels of
endogenous
catecholamines
and increases
satiety

Primary:
Overweight or obese

Insomnia,
nausea, dry
mouth and
constipation

Increased
blood pressure
and pulse rate,
tachycardia,
hypertension,
arrhythmias,
nonfatal
myocardial
infarction and
nonfatal stroke

POMC Proopiomelanocortin, GABA Gamma-aminobutyric acid

Conclusions

The prevalence of obesity has increased in a pandemic manner worldwide. From
the large numbers of epidemiological studies, it is clear that overweight and obesity
with increased BMI are associated with an increased risk of cardiovascular diseases.
Obesity itself has its adverse effects on the cardiovascular system. Obesity has syner-
gistic effects on the CVD when co-exists with its other risk factors such as diabetes,
insulin resistance, NAFLD and hypertension, thereby show more favourable comor-
bidities.Multiplemechanisms linking obesity and CVD events have been established
particularly in terms of (i) release of inflammatory cytokines from the epicardial
adipose tissues and (ii) development of dysfunctional subcutaneous adipose tissues
that initiates a cascade of pathological events. In obese patients, a low-grade inflam-
mation state, activation of SNS and neurohormonal imbalance play a central role in
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causing the structural and hemodynamic changes that finally lead to various cardio-
vascular complications. The pathophysiology of obesity-induced CVD is complex
and the exact mechanism of obesity paradox is not clear yet. Considering the above
facts, regular screening for cardiovascular complications and early diagnosis of
comorbid conditions in obese patients is crucial.

An increasing number of evidence report that anti-obesity agents have several
adverse effects on the cardiovascular system. Therefore, a long-term evaluation is
needed to investigate the side-effects of such interventions and the development of
new effective treatments are required. Although the drugs developed for obesity are
quite effective for improving cardiovascular outcomes, accumulating results suggest
that drugs or therapy that can decrease the pro-inflammatory and increase the anti-
inflammatory response to obesity may represent effective therapeutic strategy. Incor-
poration of regular exercise and balanced diet along with pharmacological interven-
tionmay showmore beneficial outcomes in overweight or obese individuals. Treating
CVD in obese patients is essential and should be a part of the therapeutic plan of
anti-obesity treatment.
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Chapter 3
Maternal Obesity: Impacts
on the Cardiovascular Health of Mother
and Offspring

Fahmida Jahan, Ashim K. Bagchi, and Rushita A. Bagchi

Abstract Maternal obesity serves as a potential risk factor for pregnancy outcomes.
Neuroendocrine regulation of energy balance during maternal obesity is associated
with childhood health problem. Increased gestational body-fat mass is controlled by
maternal neurohormonal factors such as adiponectin, lectin, ghrelin, obestatin and
insulin and their imbalance may have association with cardiovascular complications
after birth. The long-term effect of maternal obesity-induced neurohormonal factors
on their offspring is notwell understood. This review focuses on the crosstalk between
neurohormonal factors during maternal obesity and their potential outcomes on the
mother and offspring’s cardiovascular health.

Keywords Obesity · BMI · Preeclampsia ·Maternal · Offspring · Hormones ·
Inflammation · Oxidative stress

Introduction

Obesity poses a serious public health concern and has been associated with reduced
life expectancy [1]. It is linkedwith cardiovascular disease and type-2 diabetes (T2D)
which in later life contributes to morbidity and mortality [2–4]. According to the
Canadian Health Measures Survey (2007–2017), 34% of the respondents are over-
weight, and 27%are obese,with a concurrent increase in obesitywith aging.Maternal
obesity serves as a potential risk factor for complicated pregnancyoutcomes. Previous
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surveys indicate that from 1997–2009, the obesity rate among Canadian women of
reproductive age has increased from 16% to an alarming 23.9% [5]. According to
the US Institute of Medicine (IOM), abnormal weight gain during pregnancy is more
prevalent inwestern countries (approximately 40%) [6]. Studies suggest thatmaternal
pre-pregnancy obesity and excessive gestational weight gain are critical health risk
factors for both the mother and infant. Obesity increases the likelihood of devel-
oping various pregnancy complications such as hypertension, gestational diabetes,
preeclampsia, metabolic disorders, and others [7]. In this chapter, we discuss the
negative impacts of obesity on cardiovascular health during pregnancy, and the role
of obesity-related neurohormonal regulators and their mechanisms for long-term
effects on the mother and the offspring.

Cardiovascular Risks Associated with Maternal Obesity

Pre-existing obesity or excessive gestational weight gain can permanently affect
maternal cardiovascular health and fetal development. The following section
describes the cardiovascular risks associated with maternal obesity.

Maternal Hypertension and Cardiac Dysfunction

Several epidemiologic studies suggest that pre-pregnancy obesity or excessive gesta-
tional weight gain is a crucial risk factor for maternal and fetal complications during
pregnancy. These include gestational diabetes, hypertensive disorders of pregnancy,
C-section delivery, and stillbirth [2, 8, 9]. Data from a recent study conducted on
French and Canadian cohorts revealed that obesity rates were 9.1% and 16% (p <
0.001) among 26,973 and 22,046 deliveries, respectively and had a significant corre-
lation with maternal hypertension, C-section delivery and increased fetal weight [5].

Obesity is a nodal risk factor for gestational hypertension and preeclampsia, a
hypertensive disorder that arises at or after twenty weeks of gestation [10]. However,
the mechanism(s) by which obesity increases the risks for these diseases are not well
understood. If a mother’s body mass index (BMI) increases from 5 to 7 kg/m2, the
risk for developing preeclampsia increases dramatically by almost two-fold [10].
Obese individuals have been shown to have increased plasma levels of inflammatory
molecules [11, 12]. Women with preeclampsia also have elevated levels of these
inflammatory markers which may lead to vascular dysfunction and clinical presen-
tation of the disease. Both obesity and preeclampsia are linked to oxidative stress
suggesting that perhaps, the pre-existing inflammation and vascular damage due to
oxidative stress,makes obesity a predisposing risk factor for developing hypertension
during pregnancy [10, 13].
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Congenital Heart Defects

Fetal development can be permanently affected due to maternal over-nutrition or
under-nutrition as the fetus adapts to its environment. A rodent model study showed
that maternal over-nutrition caused interventricular septum thickening, cardiomy-
ocyte hypertrophy and increased left ventricular area in the offspring at the age of
8 weeks [14]. A meta-analysis performed in Sweden among 1,857,822 live single
births during 1992–2010 showed that obese and morbidly obese mothers have higher
risk of having infants with mild to severe heart defects. Moreover, early gestation
obesity was found to be associated with increased infant death mainly due to congen-
ital defects, and neonatalmorbidities such as birth asphyxia (reduced oxygen supply),
sudden infant death syndrome or infections [15]. In line with these, Stothard and
colleagues performed a meta-analysis of 18 different observational studies showing
that higher maternal BMI is linked to structural defects in neural tube, spine, heart,
orofacial clefts, brain and limb [16]. A large population-based study performed in
New York State showed that obese women have a greater chance to give birth to
children with fetal congenital heart disease [17].

Several human studies demonstrated that maternal obesity increases placental
weight and induces placental inflammation and endothelial dysfunction [18–24].
Increased adiposity reduces placental nutrient transporter activity, such as lowering
taurine transporter protein (TauT) activity [19]. In addition, maternal obesity
increases placental reactive oxygen species (ROS) levels and causes a decline in
placental ATP levels. Cultured primary trophoblasts from obese mothers were shown
to have decreased mitochondrial respiration [20, 23]. Together, these studies suggest
that placental abnormalities may affect fetal growth and development.

Long-Term Maternal Risk
Excessive gestational weight gain can have a lifelong effect in the mother [25]. A
study conducted on 11,006 women with 37 years follow-up suggests that increased
maternal BMI during pregnancy has a correlation with increased incidences of death
due to coronary heart diseases [26]. Another study performed in the United Kingdom
investigated whether maternal obesity in first pregnancy is linked to premature death
or later cardiovascular events [25].

As previously mentioned, obese women are more prone to develop gestational
hypertension and preeclampsia. These conditions further act as risk factors for devel-
oping future cardiovascular diseases due to existing vascular damage. Two studies
showed that over 60% of women who experienced gestational hypertension went
on to develop hypertension within ten years post-pregnancy [27]. Likewise, several
studies showed that preeclamptic women are at higher risk for developing chronic
hypertension, ischemic heart disease and stroke later in life [27]. Thus, pre-pregnancy
obesity or increased gestational weight gain can lead to serious pregnancy-related
complications that may have a lifelong impact on mothers.
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Long-Term Fetal Risk
Maternal obesity is not only limited to causing adverse effects on the mother or
the developing fetus, but also has a great potential to affect the offspring later in life
through developmental programming. Data from animal models and humans suggest
that exposure to harmful environmental stimuli during the developmental stages of
life can permanently alter metabolism, structure and architecture at the organ level,
which can lead to obesity, diabetes and heart disease in adulthood [28–30].

Samuelsson and colleagues studied the impact of maternal obesity on the
offspring’s cardiovascular health [30]. Female mice were given a palatable obeso-
genic diet (16% fat, 33% sugar) before mating, and maintained as such during preg-
nancy and lactation. Although obese dams were fed normal chow diet, they were
found to be more hyperphagic and showed less physical movement than control
offspring at 4–6 weeks of age. They had decreased skeletal muscle mass, reduced
locomotor activity, increased abdominal fat pad mass, elevated fasting insulin levels
and increased systolic pressure due to resistant artery endothelial dysfunction at
three months of age. Similarly, another animal study showed that obesity during
pregnancy led to cardiomyocyte hypertrophy, thickening of the left ventricular wall,
and increased heart to body weight ratio in the offspring. Markers of cardiac hyper-
trophy and pathologic fetal gene reprogramming such as β-myosin heavy chain,
Myh7 and brain natriuretic peptide, Nppb (BNP) were elevated in the dams. Plasma
insulin levels were also found to be elevated which led to the activation of several
signaling pathways such as cardiac protein kinase B (Akt), mechanistic target of
rapamycin (mTOR), extracellular signal-regulated kinase 1/2 (ERK1/2) andmitogen-
activated protein kinase (MAPK) pathways in these offspring [31]. A recent study
showed that diet-induced obesity during pregnancy causes cardiac dysfunction in
offspring. These adult offspring showed ventricular fetal gene reprogramming by
expressing higher levels ofMyh7. Moreover, post-weaning obesogenic diet coupled
with maternal obesity resulted in increased skeletal muscle alpha actin (Acta1) [14].
Thus, these studies suggest that excess availability of nutrients and hormones may
lead to abnormal metabolic and transcriptional profile which ultimately results in
cardiac dysfunction.

Maternal pre-existing obesity or excessive weight gain during pregnancy is also
associated with macrosomia, infants born large for their gestational age [32, 33].
Many observational studies also showed an association between maternal obesity
and risk for neonatal low Apgar score (based on newborns overall health at the
time of birth), low blood sugar and a requirement for intensive care upon birth [34].
Results from four meta-analysis showed that maternal obesity increases the risk of
their offspring developing obesity or being overweight during their childhood when
compared to children born to normal weight mothers (Odds ratio 1.95; 95%CI) [35].
Moreover, another study showed that excessive gestational weight gain increased
the risk for childhood obesity by an alarming 33% [36]. A Dutch study among 5908
mother–child pairs revealed that early-gestational weight gain, independent of pre-
existing obesity or weight gain later in gestation, negatively affects cardiometabolic
profile in offspring during their childhood [37].
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Higher maternal pre-pregnancy BMI and excessive gestational weight gain has
been shown to have an association with higher adiposity and total body mass in the
offspring in adulthood [38–42]. In an Australian study among 2432 mother–child
pairs, excessive gestational weight gain independent of pre-existing obesity, was
associated with higher BMI and systolic blood pressure in 21 year old offspring [42].
Another study performed in Jerusalem found a correlation between maternal pre-
existing overweight and cardiac dysfunction in 32 year old offspring [38]. Another
study showed association of premature all-cause mortality and offspring hospitaliza-
tion due to cardiovascular events with higher maternal BMI [43]. Thus, exposure to
an adipogenic diet during development and early stages of life can make individuals
more susceptible to metabolic and cardiac diseases in long-term.

Mechanisms of Maternal Obesity and Related
Cardiovascular Complications in Their Offspring

Theoffspringof obesewomen showedhigher risk of developingobesity, insulin resis-
tance and cardiovascular complications [44]. Studies have suggested that left atrial
and ventricular dimension are greater in offspring of obesewomen [45]. Pathogenesis
of obesity-induced cardiovascular defects in neonates is mainly controlled by posi-
tive energy balance and the rate of adiposity during pregnancy. During pregnancy,
increased adiposity with metabolic demand increased blood volume and preload to
the fetal heart [46]. Increased blood volume may adversely impact the development
of fetal heart leading to cardiovascular complications after birth. Right ventricular
outflow tract (RVOT) defect is very common in offspring of obese women. Obesity-
related neurohormonal factors such as adiponectin, leptin, ghrelin, obestatin and
insulin have been studied broadly (Fig. 3.1). However, molecular interaction and
mechanisms of action of these factors are not very clear during maternal obesity and
their impact on offspring’s health.

Hormone-Mediated Responses

Role of Leptin

Maternal obesity comprises a complex pathophysiological phenomenon involving
innumerable molecular, genetic and environmental factors. In general, adipokines
and hormones such as leptin, secreted by adipocytes, regulate body-fat mass and
maintain energy homeostasis. Physiological leptin replacement ameliorated both the
hyperphagia and reversed body-fat mass in leptin-deficient individuals suggesting
that leptin regulates normal bodyweight [47]. In the early days of pregnancy, placenta
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Fig. 3.1 Neurohormonal regulators of energy homeostasis in obesity-associated cardiovas-
cular disease. In this schematic, clockwise and anti-clockwise arrows are symbolic representation
of upregulation and downregulation of these regulators, respectively. These regulators have syner-
gistic or antagonistic effect on each other in modulation of obesity. Under normal conditions,
ghrelin, secreted by P/D1 cells in fundus or epsilon cells in pancreas is associated with lowering
body energy expenditure,while leptin secreted from adipocytes, has the opposite effect. Adiponectin
released by adipocytes antagonizes the effect of leptin to control body-fat mass by increasing energy
expenditure. It is also suggested that increased ghrelin and adiponectin is associated with insulin
sensitivity. Impaired adiponectin, ghrelin and leptin secretion influence insulin sensitivity which
is later involved in the pathogenesis of obesity. Increased insulin adversely impacts ghrelin and
adiponectin. Nevertheless, decreased adiponectin increases adiposity and food uptake by excessive
leptin production as a result of which energy expenditure decreases. In the process of obesity patho-
genesis, increased free fatty acid (FFA) oxidation further leads to increase in low density lipoprotein
(LDL). Increased adiposity aggravates oxidative stress-mediated inflammatory response. This is
responsible for atherosclerosis and other cardiovascular complications

produces higher amounts of leptin causing hyperemesis gravidarum (morning sick-
ness) [48, 49]. Obese pregnancy is associated with hyperleptinemia in the neonate
during fetal brain development, where leptin is thought to play a neurotrophic role
in establishing the neural circuitry of the hypothalamus, involved in both appetite
and blood volume control [50, 51]. Increased blood pressure in prenatal offspring
of female obese mice may promote dysregulation of the normal neurotrophic action
of leptin leading to leptin insensitivity. In these offspring of obese dams, higher
leptin increases the levels of the hypothalamic appetite marker, orexigenic peptide,
neuropeptideY (NPY), agouti-related protein (AgRP), and on the other hand, reduces
the levels of proopiomelanocortin (POMC), a precursor for the major anorectic
neuropeptide, α-MSH [52] (Fig. 3.2). These adaptive responses play a critical role
in the development of hypothalamic leptin resistance via the leptin-dependent signal
transducer and activator of transcription 3 (Stat3) pathway [53]. Studies showed an
impairment of leptin-signaling which alters neuronal development in hyperphagic
ob/ob mice offspring [54]. During maturation of these neonates, body-fat mass
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Fig. 3.2 Mechanism of energy balance during obesity, lactating dams and in their offspring.
Ghrelin released from neurons in the hypothalamic arcuate nucleus (ARC) potently stimulates
the release of growth hormone. Ghrelin receptor R1a (GHS-R1a) triggers transcriptional activa-
tion of hypothalamic orexigenic/appetite peptide, Neuropeptide-Y (NPY) agouti-related protein
(AgRP), and stimulates food intake. Ghrelin-responsive NPY/AgRP inhibits the levels of proo-
piomelanocortin (POMC)/ cocaine- and amphetamine-regulated transcript (CART), controlling
appetite and energy homeostasis. Gαq-mediated protein lipase C (PLC) activation promotes protein
kinaseC (PKC) and/or PKAwhich are required for ghrelin to activate intracellular calcium signaling
in the NPY neurons. Under normal condition, ghrelin maintains energy balance by inhibiting exces-
sive leptin and insulin production. However, leptin has opposite effect on ghrelin secretion, thus
is able to maintain a negative (−) energy balance. Leptin receptors (Lep-R1e) activation via Janus
kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) regulates neuropeptide
POMC activation which cuts-off the neuronal appetite NPY/CART circuit, and regulating hyper-
phagia and adiposity. Furthermore, leptin attenuates ghrelin-induced [Ca2+]i increases in ghrelin-
responsive NPY neurons. However, during early stage obese pregnancy, over-activation of leptin
receptor in placenta as well as in adipose tissues causes STAT3 and 5-adenosine monophosphate-
activated protein kinase (AMPK) activation, and thus attains positive (+) energy balance state.
Increased insulin levels cause the uptake of glucose into the cells via binding to GLUT4 membrane
receptors. On the other hand, insulin activates leptin signaling and regulates glucose uptake via
GLUT2 receptor activation. GLUT 2 receptor activation increases phosphorylation of insulin-
stimulated insulin receptor substrate–1 (IRS-1) and Akt. Besides, insulin-mediated leptin activation
helps in restoration of energy intake via (i) suppression of adiponectin through p38-MAPK pathway
and, (ii) overexpressing ghrelin and development of leptin resistance through the leptin-dependent
STAT3 pathway. In lactating obese dams, increased oxytocin or prolactin provokes suppression of
ghrelin

continues to grow despite a reduction in leptin expression suggesting that plasma
leptin is independent of body-fat mass [55].

The mechanisms of leptin action in the development of cardiovascular disease
are not well established. Understanding the binding efficacy of leptin to its receptor
(LepR)may pave theway for elucidation of the downstream pathways contributing to
pathogenesis of obesity. All six isoforms of leptin receptors (LepRa, LepRb, LepRc,
LepRd, LepRe, and LepRf), are known to have a common leptin-binding domain
[56]. LepRe is a soluble isoform that binds to circulating leptin and inhibits leptin
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transfer. Once leptin binds to its receptor LepRe, a long isoform Lep-Rb activates
Janus Kinase 2 (JAK)/STAT signaling pathway in the hypothalamus. Recruitment
of JAK2 and later its phosphorylation at three different sites Y985, Y1077, and
Y1138 promotes many downstream pathways [56]. Phosphorylation at Y985 residue
promotes mitogen-activated protein kinase (MAPK) pathway leading to a negative
regulation of leptin. Phosphorylation at Y1077 residue activates STAT5 and regulates
hyperphagia suggesting that JAK2/STAT5 activation prevents adiposity, whereas
phosphorylation at Y1138 site controls energy homeostasis via STAT3 recruitment
in obese individuals [57, 58]. STAT3 via suppressor of cytokine signaling molecule
3 (SOCS 3) activation inhibits MAPK and promotes neuropeptides such as POMC,
AgRP andNPY in the hypothalamus [58, 59]. A study further confirmed that POMC-
specific Stat3 female mutant mice exhibited slight increase in total body weight [59].
Obese women usually present higher circulating leptin and develop resistance to
leptin by downregulating LepRs in the hypothalamus and other tissues, but not in
cardiomyocytes [60, 61]. Expression of cardiac leptin enhances LepR and Stat3 phos-
phorylation levels in obese wildtype mice, but not in LepR mutant mice suggesting
that leptin-LepR mediates cardioprotection via Stat3 in LepRS1138 mice whereas
LepR-Tyr1138 promotes cardiac hypertrophy [61].

Role of Insulin

Insulin is more adipogenic than leptin, and shares many similar signaling path-
ways as leptin, to modulate energy homeostasis [62, 63]. Studies have revealed that
leptin infusion enhances insulin-stimulated glucose metabolism in adipose tissues
[64, 65]. Insulin signaling is activated by leptin and regulates glycemia via GLUT2
receptor activation [65]. Studies also suggested that GLUT2 downregulates phos-
phoenolpyruvate carboxykinase (PEPCK) levels and promotes phosphorylation of
insulin-stimulated insulin receptor substrate–1 (IRS-1) and Akt at both Thr308 and
Ser473 sites (Fig. 3.2). Akt phosphorylation inhibited relative p-phosphatase and
tensin (PTEN) expression in leptin-infused rats. Akt is mediator of insulin signaling
[66], and its phosphorylation promotes insulin sensitivity [67]. Similarly, insulin
intensely increases the production of leptin by adipose tissue [68]. Body-fat mass
and positive energy balance in infants is influenced by insulin secretion which is
directly associated with adipose tissue leptin mRNA expression. Studies also suggest
that offspring from obese dams exhibit increased insulin levels for several days to
weeks after birth prior to leptin surge with glucose in the milk [54, 69]. However,
no studies were conducted to show if glucose had any feedback effects on insulin or
leptin secretion in these offspring. A family-based study on 52 offspring of 22 obese
mothers revealed that neonatal obesity and insulin resistance is greatly associated
with the maternal obesity [70]. Enzyme required for gluconeogenesis and PEPCK
did not increase before birth suggesting a peripheral insulin resistance in the fetus of
obese women [71].
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Role of Ghrelin

Ghrelin is an orexigenic hormone that controls appetite. In obese patients, serum
ghrelin levels were lower compared to lean individuals suggesting that lower ghrelin
level is associated with obesity [72, 73]. In contrast, abnormal ghrelin levels in
obese individuals may develop due to insensitivity to ghrelin, which inversely affects
the insulin levels [74, 75]. Ghrelin is a negative regulator of leptin, and leptin-
induced insulin sensitivity is regulated by ghrelin. When ghrelin binds to growth
hormone secretagogue receptor (GHS-R), it stimulates the hypothalamus to increase
NPY and AgRP, and increases food uptake [76]. The G-protein coupled receptor,
GHS-R1a triggers transcriptional activation of these neuropeptides through intracel-
lular calcium signaling via calmodulin-dependent protein kinase-2 (CamK2), and
5-adenosine monophosphate-activated protein kinase (AMPK)-mediated MAPKs
pathway through Sirtuin 1 and p53 [77–79]. Effect of ghrelin on neuropeptides
suggested that AgRP reduces spontaneous physical activity (SPA) with increased
food uptake, however, NPYmoderately induces SPA inmice [77]. PeptideYY (PYY)
regulates obestatin and inhibits ghrelin action on food intake [76, 80]. Studies suggest
that increased insulin levels regulate body weight by down-regulating ghrelin levels
in obesewomen [81, 82].Maternal high fat diet (HFD)during pregnancy and lactation
influences ghrelin in both dams and their offspring which has been shown to increase
with age of neonates [80, 83, 84]. It has been demonstrated that ghrelin improves left
ventricular (LV)dysfunction andattenuates cardiac cachexia in ratswith chronic heart
failure (CHF) [85]. Fall in plasma ghrelin levels in lactating obese dams indicated that
prolactin or oxytocin release may have suppressed ghrelin during lactation, resulting
in cardiac dysfunction in offspring. In contrast, pregnant spontaneous hypertensive
rats (SHR) showed an increased plasma levels of ghrelin. However, downregulation
of leptin receptors in pregnant SHR presented lower mRNA ghrelin in placenta but
not in the stomach [86]. A study conducted on 28 infantswith congenital heart defects
showed that increased ghrelin level is associated with heart failure in infants [87].
Lower ghrelin levels in obesity may induce oxidative stress and enhance atheroscle-
rosis. Plasma levels of ghrelin has a positive correlation with the development of
carotid artery atherosclerosis and other cardiovascular problems.

Like ghrelin, obestatin also plays an important role in the regulation of metabolic
functions. Under physiological conditions, obestatin binds to G-protein-coupled
receptor GPR39 and regulates expression of ghrelin [88, 89]. Increased maternal
obestatin negatively controls ghrelin in pregnancy [90]. Obestatin has been reported
to inhibit glucose transport in adipose tissue by downregulating GLUT-4 together
with sirtuin 1 to regulate insulin signaling [91]. Moreover, maternal high-fat diet
during pregnancy lowers plasma ghrelin/obestatin ratio in offspring [83, 90] which
may be linked to the development of diabetic cardiovascular complications [92].
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Role of Adiponectin

In addition to leptin and insulin, adipose tissue also produces adiponectin that regu-
lates glucose and fatty acid oxidation. Caloric restriction contributes to elevated
plasma levels of adiponectin and increased energy expenditure [93]. Downstream
signaling is based on adiponectin’s binding affinity to its receptors, AdipoR1 and
AdipoR2, which bind with globular adiponectin (gADN) and full length adiponectin
(fADN) respectively [94].AdipoR1promotes downstreamAMPKpathway to control
appetite by increasing glucose utilization [95] (Fig. 3.2) and fatty acid oxidation,
which is controlled by peroxisome proliferator-activated receptor α (PPARα). Acti-
vation of p38-MAPK by AdipoR2 inhibits the insulin-mediated IGF-1 signaling
pathway. Adiponectin receptor activation also triggers ERK1/2 signaling in offspring
of obese dams infused with adiponectin [96].

Obese individuals showed a decrease in levels of serum adiponectin and had devel-
oped coronary artery disease [97, 98]. Low plasma levels of adiponectin in obese
pregnant females is associatedwith increased fetal bodyweight [96, 99]. Adiponectin
secreted fromplacenta controls placental nutrient transport during fetal development.
Low levels of adiponectin in obese pregnantwomen is also correlatedwith poor devel-
opment of placenta. Furthermore, decreased adiponectin is associated with increased
insulin resistance via p38-MAPK. Adiponectin supplementation during late gesta-
tion period reverses increased insulin resistance and fetal body weight which, in
turn, reduces cardiovascular risk suggesting that maternal adiponectin is required
to prevent offspring from long-term cardiac dysfunction [100]. Surprisingly, some
male offspring of these dams developed cardiac hypertrophy and some females devel-
oped cardiac fibrosis. Studies also suggested that leptin-induced adiponectin reverses
insulin resistance, T2D and cardiac dysfunction [101].

Inflammation-Mediated Responses

Metabolic events of obesity trigger cellular inflammation. Proinflammatory cells such
as macrophages (MQ) and T-cells in response to dietary free fatty acid (FFA) hamper
insulin receptor signaling and energy balance [102, 103]. These FFAs are known to
be recognized by molecular pattern receptors such as toll-like receptors (TLRs) to
activate downstream innate inflammatory signals that induces proinflammatory gene
expression in adipocytes. Studies in TLR4 knockout (KO) female mice have shown
inflammation to correlate with increased obesity. On the other hand, these mice
showed protection against HFD-induced insulin resistance via degradation of IkBα

following NF-kB activation. These mice also exhibited an inhibition of tyrosine
phosphorylated IRS-1 and docking of p85 to its receptor thus impairing insulin
signaling by reducing glucose turnover [103]. TLR4-deficient resident macrophages
in adipose tissue lacks TNF-α and IL-6 mRNA suggesting that IL-6 and TNF-α
contributes in obesity-induced low-grade inflammation which, in turn, is mediated
by SOCS3-mediated TLR4/MyD88 signaling [102].
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Leptin and insulin regulate hypothalamic inflammation via activation of
suppressor of cytokine signaling (SOCS)-3 and is considered as a negative feed-
back regulator of inflammation during obesity [104, 105]. HFD supplementation in
obese animals increases SOCS3 that inhibits leptin and insulin signaling by direct
binding to their cognate receptors to promote IRS-mediated JAK/STAT or IKKβ/NF-
κB pathways [105]. Another important adipocyte secretory hormone, resistin is also
linked to obesity, insulin resistance and cardiovascular disorders. Overexpression
of resistin reduces LC3II-mediated autophagy and regulates innate inflammatory
responses. Obesity-mediated inflammation is regulated by direct binding of resistin
to innate pattern receptor, TLR4/MyD88 that initiates downstream proinflammatory
signaling pathways [106]. Adverse effects by resistin/TLR4-mediated inflammatory
signal affecting energy homeostasis in obesity is linked with the progression of
metabolic disorders.

Increased adiposity in offspring of obese mothers have correlation with increased
insulin resistance and inflammatory markers. Offspring of mothers with diabetes
are at risk of obesity in their later life. Studies showed that, at birth, neonates of
type 1 diabetic pregnancy have increased placental pro-inflammatory genes [107]
suggesting that these offspring have greater risk for the development of type 2
diabetes, obesity and cardiovascular complications.Maternal peripheral blood aswell
as blood collected from umbilical veins from obese mothers showed increased IL-6
and C-reactive protein (CRP) together with increased leptin levels [71], suggesting
that leptin can be amajor factor that controls CRP and IL-6 levels. Nonetheless, there
was no significant difference in TNF-α and adiponectin levels in these neonates of
obese mothers [71, 108]. CRP and IL-6 are positively controlled by adiponectin
and insulin, and thus, contribute in the development of neonatal insulin resistance.
Differential roles of adiponectin showed that gADN increased secretion of IL-6 and
TNF-α in placenta, whereas fADNmodulate these IL-6 production with an increased
TNF-α [94]. A study reflected that increased CD24 presents on placenta and trig-
gers proinflammatory cytokines and chemokines such as IL-1β and IL8 [109]. These
inflammatory responses in neonates of obese women is associated with endothe-
lial cell dysfunction. Upregulation of E-selectin, intercellular adhesion molecule
(ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) promote proinflam-
matory cytokines and endothelial cell differentiation [110], which is associated with
hypertension, atherosclerosis and, later can contribute to development of cardiovas-
cular complications in obese women and a long-term effect in the offspring after
birth.

Oxidative Stress-Mediated Responses

Oxidative stress (OS) is one of the most common pathological states that occurs in
conditions including cardiovascular disease, diabetes and obesity. During cellular
metabolism, reactive oxygen species (ROS) are generated and activate many
signaling pathways such as MAPK, Akt/PI3K, PTEN and others [111]. In obesity,
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there was an increased level of free 8-epi-prostaglandin F(2α) (8-epi-PGF2α)
suggesting that obesity is linked to OS. On the other hand, low level of ghrelin
in obesity may have direct effect on OS and related heart diseases [112]. Studies
have shown that HFD increases ROS together with prostaglandin E2 (PGE2) in
hypothalamus [113]. During pregnancy, there are many pathophysiological changes
that occur in obese women due to multiple events of OS. Male offspring of these
obese rats fed on HFD have shown to affect male fertility due to increased OS [114].

Obesity-induced oxidative stress promotes inflammatory cytokines [115] and
cytokine-inducible NOS (iNOS) production [116]. Increased ROS-generation in
obese individuals causes higher nitric oxide synthases (NOS) and NADPH oxidase
activity [113, 117]. iNOS promotes peroxynitrite (NOO−) production and causes
cardiac dysfunction. Increased cytokine levels together with nitrites in these neonates
may cause serious cardiovascular complications. On the other hand, antioxidant
enzyme, superoxide dismutase (SOD) activity was also noted higher in obese preg-
nant mothers and in their offspring [118]. However, lower SOD levels in neonates
under intrauterine hypoxia or peroxidation conditions were also reported [119].
Maternal obesity-induced OS may negatively impact fetal development including
major heart defects.

Clinical Management of Maternal Obesity

As the obesity epidemic is increasing in women of reproductive age, it is critical to
establish an intervention to prevent or reduce maternal cardiovascular risks as well
as risks for future generations. Reducing pre-pregnancy BMI will likely benefit both
the mother and the offspring by improving pregnancy outcome. As such, the Institute
ofMedicine (IOM) established a guideline for gestational weight gain for optimizing
pregnancy outcome according to pre-pregnancy weight [6].

In addition to optimizingweight gain, increasing physical activitymay also reduce
maternal and fetal risks. Results from multiple randomized control trial shows that
dietary interventions and physical activity has the potential to decrease gestational
weight gain and reduces adverse pregnancy outcome [120]. Randomised controlled
trials showed that the use ofmetformin, a drug that lowers bloodglucose and increases
insulin sensitivity minimally reduced gestational weight gain but failed to decrease
macrosomia and did not show any fetal improvement [121]. A recent study showed
that there is a decline in plasma adiponectin levels in pregnant women with obesity.
In an animal model, low adiponectin levels in obese pregnant mice was linked to
placental dysfunction, fetal over-growth, altered metabolism and cardiac dysfunc-
tion in the offspring; and boosting adiponectin levels prevented these anomalies
[100]. Thus, restoring adiponectin levels in obese mothers has a potential to improve
pregnancy outcome.

For management of gestational weight gain, the National Institute for Health
and Care Excellence (NICE), UK suggests a balanced diet and moderate physical
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exercise 30 min daily [122]. Ultimately, raising greater awareness of the risk of
maternal obesity, life-style change, having a healthy diet, keeping weight gain under
check, seeking doctor’s advice; and regular check-ups for diabetes, blood pressure
etc. and screening for structural defects in fetus will improve pregnancy outcome.

It is evident from data obtained from studies conducted in both animals and
humans that pre-pregnancy aswell as gestational obesity can pose deleterious cardio-
vascular outcomes not just for the newborn, but can continue to generate debilitating
health conditions for the mother and growing offspring. While a multitude of factors
have been shown to be responsible for these conditions, there still exists a lacunae
in our understanding of the mechanisms underlying maternal obesity and its conse-
quences. Further research in this areawill warrant the development of highly effective
therapies to help maintain a healthier weight during pre- and post-pregnancy stages
in the mother and offspring.
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Chapter 4
Role of Liver X Receptor
in Cardiovascular Diseases

Tamhida Masi, Ramesh K. Goyal, and Bhoomika M. Patel

Abstract Cardiovascular diseases are the leading cause of death worldwide
including various complications like atherosclerosis, myocardial infarction, diabetic
cardiomyopathy, cardiac hypertrophy and cardiac fibrosis. Looking into the limita-
tions and side effects of interventional and non-interventional treatment strategies,
liver X receptors (LXRs) can be the novel targets as treatment strategy for cardiac
complication. Nuclear receptors like liver X receptors (LXRs) are known to regu-
late various physiological functions like cholesterol and carbohydrate metabolism,
energy expenditure and inflammation. Cholesterol derivatives, oxysterols were the
first endogenous ligand found to activate LXRs whereas T0901317 and GW3965
were the potential synthetic LXR agonist reported. Various evidences have suggested
that LXRmay exert their beneficial role in heart disease.We reviewed recent data that
shows a direct role of LXR agonist in various cardiovascular diseases like atheroscle-
rosis, myocardial infarction, diabetic cardiomyopathy, cardiac hypertrophy, fibrosis.
These accumulating evidences support that LXRs may represent a novel potential
therapeutic target for various cardiovascular diseases.
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Introduction

Cardiovascular diseases (CVDs) are the leading cause of death worldwide with an
estimated rate of around 17.9 million deaths in the year 2016, of which 85% of
deaths are caused by heart attack and stroke [1]. According to American Heart Asso-
ciation, 840,678 deaths were reported in 2016 in US which was approximately 1 in 3
deaths and expected to reach around 23.6 million by 2030 [2]. Every year 11 million
new cases of CVD are reported and 83.5 million population is living with CVD in
European countries [3].

At present, smoking cessation therapy, antiplatelet agents, antithrombotic agents,
lipid lowering agents, blood pressure lowering agents are used as non-interventional
strategy for treatment of CVDs (Table 4.1) [4]. Chest pain, swelling in face, legs,
hands, serious rashes, irregular heartbeats, painful erection in men, sudden weigh
gain, stomach pain, dizziness, hyperuricemia, muscle cramps, frequent urination,
dry mouth, cough, headache, vision problems and growth in body hairs are some of
the side effects associated with the conventional antihypertensive drugs [5]. Statins
(lipid lowering agents) are more likely to cause rhabdomyolysis, cognitive loss and
pancreatic, hepatic and sexual dysfunction [6]. Bleeding events are major concern
associated with antithrombotic agents [7]. In addition to drugs, surgery is often
recommended for various cardiovascular ailment viz.Coronary artery bypass grafting
(CABG), Transmyocardial laser revascularization (TMR), Heart valve replacement,
Heart transplant, Open heart surgery, etc. are some types of surgery for cardiovas-
cular complications. Bleeding, arrhythmias, damages to heart, kidneys, lungs and
liver tissues are some of the complications linked with cardiac surgery and requires
hospitalisation [8]. Hence, looking into the limitation and side-effects of interven-
tional as well as non-interventional treatment strategies, new drugs acting on novel
targets are needed of the hour.

Several novel targets like siRNA, renin angiotensin aldosterone system, opioids
are identified for CVD [9–11]. Liver X receptors (LXRs) belong to the superfamily
of nuclear receptors [12]. These receptors were originally cloned in 1990 as ‘orphan
receptors’ during their discovery because no endogenous ligandswere found [13, 14].
However, later in their discovery, oxysterols (a cholesterol derivatives) was found as
first endogenous ligand to activate LXRs [15]. In addition to this, several potent non-
steroidal synthetic LXR agonist have been reported which include T0901317 and
GW3965 [16]. There are two different isoforms of LXRs are found namely LXRα

and LXRβ which are encoded by nuclear receptor subfamily 1 group H member
3 (NR1H3) and nuclear receptor subfamily 1 group H member 2 (NR1H2) genes,
respectively. Both LXRα and LXRβ are expressed at different locations in human
body [17].

LXRs are termed as “cholesterol sensors” as they play significant role in main-
taining the cholesterol and lipid homeostasis by regulating the expression of various
genes [18]. Various studies proved LXRs to play important role in regulating the
carbohydrate and energy metabolism through different metabolic pathways [19, 20].
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Table 4.1 Current therapy used for preventing and treating CVDs

Class of agents Indications Side-effects

Anti-hypertensive agents

Angiotensin-converting
enzyme (ACE) inhibitors

• Acute myocardial infarction
• Heart failure
• Diabetic nephropathy
• Hypertension
• Progressive renal insufficiency

• Cough
• Dizziness
• Fast heart beat
• Headache

Beta blockers • Angina pectoris
• Cardiac arrhythmia
• Congestive heart failure
• Glaucoma
• Postural orthostatic
tachycardia

• Hypertension

• Tiredness
• Upset stomach
• Headache
• Irregular heartbeats

Calcium channel blockers • Hypertension
• Cerebral vasospasm
• Chest pain
• Cardiac arrhythmia

• Feeling drowsy
• Ankle swelling
• Serious rashes
• Fainting

Peripherally acting
alpha-adrenergic blockers

• Hypertension
• Pheochromocytoma
• Congestive heart failure
• Erectile dysfunction
• Benign prostatic hyperplasia
• Raynaud’s disease
• Post-traumatic stress disorder

• Vision problems
• Decreased sexual ability
• Painful erection in men

Vasodilators • Hypertension
• Pulmonary Hypertension

• Growth in body hairs
• Dizziness
• Problem breathing
• Sudden weight gain

Angiotensin II antagonist • Heart failure
• Diabetic nephropathy
• Hypertensive diabetic patient
• Hypertension complicated by
left ventricular hypertrophy

• Sore throat
• Sinus problem
• Heartburn
• Backpain
• Swelling face, throat, eyes,
hands or ankles

Aldosterone inhibitor
(Spironolactone)

• Hypertension
• Heart failure
• Hypokalemia

• Dehydration
• Hyponatremia
• Ataxia
• Dizziness
• Erectile dysfunction

Diuretics • Hypertension
• Ascites
• Congestive cardiac failure
• Edema of lungs, kidney and
liver

• Frequent urination
• Headache
• Feeling thirsty
• Muscle cramps
• Hyperuricemia

(continued)



80 T. Masi et al.

Table 4.1 (continued)

Class of agents Indications Side-effects

Centrally-acting alpha
adrenergic

• Hypertension • Dry mouth
• Upset stomach
• Feeling drowsy
• Fever

Lipid lowering agents

HMG-CoA inhibitors
(Statins)

• Primary prevention of arterial
disease

• Secondary prevention of
myocardial infarction Familial
hypercholesterolemia

• Rhabdomyolysis
• Cognitive loss
• Pancreatic and hepatic
dysfunction

• Sexual dysfunction

Fibric acid derivatives
(Fibrates)

• Atheromatous diseases
• Primary triglyceridemic

• GI side effects
• Urticaria
• Hair loss
• Anaemia

Bile acids-binding resins • Hypercholesterolemia
• Pruritis
• Bile acid diarrhea

• Flushing
• Palpitation
• GI disturbance

Anti-thrombotic agents

Antiplatelet drugs • Primary prevention of artial
thrombosis

• Coronary heart disease
• Stable and Unstable angina

• Bleeding events
• Various GI bleeding

Anticoagulant drugs • Atrial fibrillation
• Coronary artery disease
• Deep vein thrombosis
• Ischemic stroke
• Myocardial infarction
• Pulmonary embolism

• Risk of bleeding
• Alopecia
• Osteoporosis

Thrombolytic/fibrinolytic
drugs

• ST elevation MI
• Stroke
• Pulmonary embolism
• Deep vein thrombosis Acute
limb ischemia

• Hemorrhagic stroke
• Low-grade fever
• Hypotension

As they are involved in fat metabolism, LXRs can be one of the major potential ther-
apeutic target for metabolic diseases like atherosclerosis and other cardiovascular
disease [21]. Apart from these, LXRs is reported to be involved in treating cancer
[22], chronic inflammation [23], Alzheimer’s disease [24], skin diseases [25] and
insulin sensitivity [26]. The current chapter shall give a descriptive understanding of
role of LXRs in various CVDs.
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Liver X Receptors

Liver X receptors (LXRs) belong to the subclass of nuclear hormone receptors and
initially regarded as orphan receptors as therewere no natural ligands discovered. But
later on, several discoveries in LXRs suggested a cholesterol derivative, an oxysterols
as potent activator of LXRs. LXRα and LXRβ are the two isoforms of LXRs which
are expressed by NR1H3 and NR1H2 genes, respectively. LXRα is restricted to
various tissues of liver, intestine, kidney, macrophages, adipose tissues, lungs and
adrenal glands whereas LXRβ are found to expressed ubiquitously [17, 27]. Genes of
human LXRα and LXRβ are located on chromosomal number 11p11.2 and 19p13.3
respectively [28]. LXRα consist of 447 amino acids sequenceswhere asLXRβ consist
of 460 amino acids sequences. Both these isomers show 77% similarity in their
sequences and differ in one amino acid sequence at ligand binding domain. LXRα

and LXRβ have four different domains in their structure which include: a N-terminal
(AF1) activation domain, a DNA-binding domain, a ligand binding domain (LBD)
and a C-terminal (AF2) domain. C-terminal interact with coactivator and corepressor
which is responsible for the regulation of transcriptional activities [29, 30]. LXRs are
ligand activated transcription factor which bind to retinoid X receptors (RXRs) and
form permissive heterodimers. Hence, both RXR and LXR are activated by ligands
of each other. RXR/LXR complex bind to LXR response element (LXRE) at DNA
which contains direct repeats of AGGTCA which are separated by four nucleotides
(DR-4). Silencingmediator for retinoic acid and thyroid hormone receptor (SMART)
or nuclear receptor corepressor (NCOR) act as the corepressor for both LXRs and
RXRs. Binding of these corepressor to LBD causes the inactivation of targeted genes
where as RXR activator like retinoic acids and LXR activator like oxysterols are
responsible for the transcriptional activity of targeted genes. Binding of ligand to the
RXR/LXR heterodimers leads to conformational changes which results in release of
corepressors and recruits the coactivators (Fig. 4.1) [31, 32].

AGGTCAnnnnAGGTCA
LXRE (DR4)

RXR LXR

Co-activator

AGGTCAnnnnAGGTCA

LXR

LXRE (DR4)

RXR

Co-repressor

Oxysterol
9-cis-
retinoic 
acid Target 

gene 
activation

Fig. 4.1 Signal transduction of LXR/RXR. LXR forms heterodimer with RXR which binds to
a LXRE. Signal transduction is inhibited when co-repressor binds to LXR/LXR. Following ligand
binding to LXR or RXR, there is change in conformation of heterodimer, which leads to release
of co-repressor and recruitment of co-activator takes place. This results in transcription of target
genes. DR4—direct repeats separated by four nucleotides; LXR—liver X receptor; LXRE—LXR
response element; RXR—retinoid X receptor
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Physiological Functions of LXRs

Initial discovery pointed a significant role of LXRs in lipid metabolism. CYP7A1 is
cytochrome enzyme in liver which is responsible for the conversion of cholesterol to
bile acids. LXRα-/- and LXRβ-/- are LXRs knockout mice which were treated with
high-cholesterol diet. LXRα-/- mice failed to convert cholesterol into bile acids and
resulted in cholesterol accumulation whereas LXRβ-/- did not display this hepatic
phenotype, suggesting LXRα plays prominent role in regulating CYP7A1 enzyme
[33–35]. Another mechanism by which LXRs regulate cholesterol metabolism, is
promoting the efflux of cholesterol in the faecal matter via elevated expression of
intestinal ATP-binding cassette transporter (ABC) G5 and ABCG8 [36]. On the
other hand, LXRs also promote the triglyceride (TG) and fatty acids (FA) synthesis
in the liver by increasing the function of sterol regulatory element-binding protein 1C
(SREBP1C), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC) and stearoyl
CoA denaturase-1 (SCD1) genes. Thus, the treatment with LXR agonist may result
in lipogenesis in liver and serum [37]. LXRs also promote the process of reverse
cholesterol transport by regulating the genes such asATP-binding cassette transporter
(ABC) A1 and ABCG1 and ADP-ribosylation factor like 7 (ARL7). These genes are
responsible for the transport of the cholesterol from the peripheral tissues to the
hepatic cells for excretion [38]. Mitochondrial oxidation of fatty acid can counteract
the release of FA into the circulation. LXRs facilitate the oxidation of fatty acids in
the mitochondria and reduces glucose oxidation in white adipose tissues (WAT) [39].

In addition to lipid metabolism, LXR agonists are also reported to regu-
late carbohydrate metabolism. In db/db mice, LXR agonist T0901317 inhibited
phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase and fructose
biphosphatase-1 in liver thereby producing suppression of gluconeogenesis, ulti-
mately reducing the hepatic glucose output. Furthermore, in same study, treatment
with T0901317 in fa/fa rats improved glucose tolerance and insulin sensitivity [26].
LXRs also maintain glucose homeostasis by increasing glucose uptake in WAT by
inducing GLUT4, an insulin-dependent transporter [40].

Both LXRα and LXRβ shows their physiological action in regulating energy
expenditure in brown adipose tissues (BAT). BAT regulate body temperature, prevent
obesity and insulin resistance in the body. Uncoupling protein 1 (UCP-1) is found
to be present prominently in BAT which is responsible for heat generation. Absence
of both the LXR isoform in LXRα-/- and LXRβ-/- mice causes increases energy
expenditure and high expression of UCP-1 [41]. Treatment of female C57BL/6 wild
type mice with GW3965 produced a decreased energy expenditure (EE) and lower
expression of UCP1. Thus, it can be concluded that LXRα and LXRβ agonist can be
the therapeutic approach for obesity and maintaining energy homeostasis [41].

LXRs repress various pro-inflammatory mediators and reduces the inflammation.
Treatment with LXR agonist GW3965 in rat Kupffer cells produced attenuation in
expression of tumor necrosis factor alpha (TNFα) in dose-dependent manner [42].
In-vitro study in lipopolysaccharides (LPS)-induced inflammation in macrophages
depicted repressed nuclear factor kappa-light-chain-enhancer of activated B cells
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(NF-kB) and activator protein 1 (AP-1) when treated with LXR agonist GW3965
[43]. One mechanism by which LXR initiate its anti-inflammatory response is tran-
srepression. In transrepression, in presence of inflammatory signals, release of core-
pressors like NCOR or SMART takes place via coronin-2A (CORO2A)-dependent
manner. Additionally, NF-kB subunits p50 and p65 bind to the pro-inflammatory
gene promoters. Moreover, inflammatory signal causes recruitment of coactiva-
tors. Activation of LXRs by its agonist leads to SUMOlyation of LXR by the
SUMO2/3 protein. This LXR-SUMO complex binds to the corepressor complex.
Binding of LXR-SUMO complex to corepressor like CORO2A mediate the interac-
tion between LXR and CORO2A which impairs the inflammatory gene expression
[44]. Physiological function of liver X receptor is mentioned in Fig. 4.2.

Fig. 4.2 Physiological function of LXRs. LXR activation leads to inhibition of gluconeogenesis
in liver by downregulating PEPCK, G-6-Pase and F-1,6-Pase enzyme. LXR improves insulin sensi-
tivity and maintain energy balance in body by increasing GLUT4 and UCP-1 expression in white
and brown adipose tissues. LXR inhibit inflammation by blocking the recruitment of inflammatory
cytokines like TNFα and NF-kB. LXRs also elevates reverse cholesterol transport in macrophages
and other peripheral tissues by increasing the expression of ABCA1, ABCG1 and ARL7 and
promotes themovement of cholesterol fromperipheral tissues ormacrophages to the liver. LXR acti-
vation increases the CYP7A1 expression and convert cholesterol to bile acids. This bile acid moves
to intestine and excrete via faecal matter. Furthermore, LXR promotes efflux of cholesterol into the
faecal matter by increasing the expression of ABCG5 andABCG8. (black dotted line—inhibition of
process; black andorange solid line—promotionof process; red line—inhibition ofmolecule expres-
sion); ABCA1—ATP binding cassette subfamily A member 1; ABCG1—ATP binding cassette
subfamily G member 1; ABCG5—ATP-binding cassette transporter G5; ABCG8—ATP-binding
cassette transporter G8; ARL7—ADP-ribosylation factor like 7; BAT—brown adipose tissue;
CYP7A1—cytochromeP450 7A1; F-1,6-Pase—fructose biphosphatase-1;GLUT4—glucose trans-
porter type-4; G-6-Pase—glucose-6-phosphatase; LXR—liver X receptor; NF-kB—nuclear factor
kappa-light-chain-enhancer of activated B cells; PEPCK—phosphoenolpyruvate carboxykinase;
TNFα—tumor necrosis factor; UCP-1 uncoupling protein 1; WAT—white adipose tissue



84 T. Masi et al.

LXR in Cardiovascular Diseases

Atherosclerosis

Raised cholesterol level increases the risk of heart diseases and stroke. According
to WHO report, 2.6 million deaths around the globe are estimated to cause due
to hypercholesterolemia [45]. Atherosclerosis is the disease of arteries generally
marked by chronic inflammation due to formation of fatty streak lesion and rupture
of plaque and result in many cellular and molecular events. Increase in low-density
lipoprotein (LDL) level in blood is one of the major causes of atherosclerosis
initiation and development. Pathophysiology of atherosclerosis is marked by lipid
accumulation in blood by macrophages leads to inflammation and formation of
plaque. Various risk factors such as toxins, hyperglycemia, hypertension, infection,
oxidized LDL and elevated homocysteine promotes atherogenesis by upregulating
genes and activating macrophages and other inflammatory mediators resulting in
lipid deposition and endothelial injury [46]. Proprotein convertase substilisin/Kexin
type 9 (PCSK9) enzyme is produced and secreted mainly by liver. PCSK9 plays
essential role in cholesterol metabolism by regulating plasma low-density lipopro-
tein cholesterol (LDL-C). PCSK9 binds to LDL receptor (LDLR) on the cell
membrane of hepatocytes and causes lysosomal degradation of LDLR, which
results in increased plasma LDL-C. Thus, inhibiting PCSK9 reduced the risk of
atherosclerotic vascular disease [47]. miRNA-155 in C57BL/6J mice increased
LDL accumulation and promoted inflammatory cytokines and miRNA-155-5p
in human umbilical vein endothelial cells (HUVECs) caused atherosclerosis by
TNFα-induced eNOS downregulation [48].

Role of LXR in lipid metabolism and inflammation is already discussed earlier.
There are many preclinical evidences indicating LXR having anti-atherosclerotic
property [49]. LXR agonist R211945 reduces the inflammatory response by
decreasing number of macrophages, apolipoprotein B and oxidized phospholipids in
plaque and is responsible for reversal cholesterol transport in New Zealand white
rabbits [50]. In another study, treatment with LXR agonist T0901317 resulted
in increased expression of chREBP mRNA expression and modulation of the
carbohydrate-responsive element-binding protein (chREBP) and sterol regulatory
element-binding protein 1C (SREBP-1C) activity, resulting into hepatic lipogen-
esis in chREBP knockout mice [51]. Heat shock proteins (HSPs) are responsible
for the maintaining cellular homeostasis under stress condition. HSP70 is type of
heat shock protein which activate the LXRα and its mRNA expression and facili-
tate the cholesterol efflux by inducing the level of ABCA1 and ABCG1 in zebrafish
and also increased the cholesterol efflux from human macrophage foam cells [52].
Documented evidences suggested that natural substance quercetin interferes with the
atherosclerosis development in ApoE-/- knockout mice by increasing the ABCA1,
LXRα expression and by decreasing PCSK9, TNF-α, Il-6 and IL-10 expression [53].
Treatment with LXR agonist T0901317 in LDLR-/- male C57BL/6 mice reduced the
atherosclerotic lesions by increasing the ABCA1 and ABCG1 mRNA expression
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and also revealed that macrophage LXRs are essential for antiatherogenic effect of
T0901317 [54]. In another study, treatment with T0901717 in female apoE*3Leiden
(E3L) mice decreased the atherosclerotic lesions number and lesions size in aortic
valve area, reduced the expression of NF-kB, intercellular adhesion molecule
(ICAM-1) and CD44 and increased the expression of ABCA1 and ABCG1 [55].

Myocardial Ischemia/Repurfusion Injury (MI/RI)

According toWHO, everyyear around32.4millionpopulation suffered frommyocar-
dial ischemia and stroke worldwide [56]. MI in layman term is known as heart attack,
which is generally caused by reduced or stoppage of blood supply in the cardiomy-
ocytes. In MI, balance between oxygen supply and demand is disturbed and leads
to myocardial damage that is necrosis of heart muscles takes place [57]. Estrogen
modulates heart and protects against MI [58]. The cardiac cell injury enhances the
innate immunity response and thus inflammation and inflammatory cell infiltration
are considered as hallmarks for myocardial ischemia and reperfusion injury. Various
damage-associated molecular patterns (DAMPs) are released from the necrotic cells
which further activates the toll-like receptors (TLRs) [59]. TLRs further activates the
NF-kB,which release the pro-inflammatorymediators like IL-1α, IL-6, IL-18 and IL-
1β and pro-inflammatory chemokines (C–Cmotif) ligand 2 (CCL2) andCCL5. These
chemokines are found to be upregulated in ischemic heart [60]. Apoptosis is also
mediated by caspase-12 and caspase-9 upregulation in the endoplasmic reticulum-
mediated stress pathway and mitochondrial mediated stress pathway, respectively
[61, 62]. Clinical study confirmed that level of circulatingmiRNA-30a-5pwas signif-
icantly increased in patient who suffered left ventricular dysfunction and symptoms
of heart failure six months after acute MI [63].

To investigate protective role ofLRXs inheart,C57BL/6malemicewere subjected
to left coronary artery occlusion to induce M/I injury. Treatment with LXR agonist
GW3965 in mice showed a cardioprotective effect. It produced a decrease in infarct
size and also shown an improvement in the left ventricular contractile function [64].
As mentioned earlier MI leads to apoptosis of the cardiac cells due to increased
expression of caspase 3 (protein responsible for programmed cell death). Further-
more, in same study in-vitro treatment of cardiomyocytes with GW3965 resulted
in attenuation of caspase 3 protein when exposed to hypoxia/reoxygenated condi-
tion [64]. In another study, cardioprotective role of LXRα/β dual agonist GW3965
was impaired in LXRα knockout mice but was not impaired in LXRβ knockout
mice. Thus, it can be said that activating LXRα but not LXRβ isoform provides the
protective role in MI. In same study, GW3963 and endogenous LXR agonist 22(R)-
hydroxycholesterol [22(R)-HC] significantly inhibited caspase-12 and caspase-9
expression, attenuates the ROS formation and decreased myocardial apoptosis,
infarct size and cardiac dysfunction in infarctedC57BL/6mice [28]. Stemcell therapy
can also be the strategy for the regeneration of the cardiac cells. Adipose derived
mesenchymal stem cells (ADMSCs) are generally used for the clinical purpose for
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generation of cardiac cells. In Fluc+-eGFP+ transgenic C57BL/6amice, LXR agonist
T0901317 in combination with ADMSCs not only prevented MI injury but also
improved the survival of the ADMSCs by downregulating TNFα, IL-6, ROS produc-
tion, TLR4, MyD88, TRAF-6, IkBα and NF-kB-p65 and upregulating translocation
of Nrf-2 from plasma to the nucleus. Thus, this can be concluded that treatment
with LXR agonist result in downregulation of TLR4/NF-kB pathway and upregu-
lation of Keap-1/Nrf-2 pathway and thus increases the viability of ADMSCs [65].
Deletion of LXRα in mice resulted in the decreased glucose uptake by downregu-
lating GLUT1/4 and AMP-activated protein kinase (AMPK) phosphorylation, and
increased the CD36 and thus worsens the MI injury in LXRα-/- male mice compared
to normalwild-typeC57BL/6mice. Thus, regulation of glucosemetabolismbyLXRs
plays important role in improving the cardiac remodeling in MI [66].

Diabetic Cardiomyopathy (DCM)

Risk of developing CVD is 2–2.5 times higher in individual with type 2 diabetes
mellitus (T2D) compared to nondiabetic individuals. Around 2.7 million patients
with T2D shown to have heart failure in United Kingdom [67]. DCM is charac-
terised by the ventricular dysfunction in the diabetic patient in absence of coronary
artery disease like atherosclerosis and hypertension [68–70]. Clinical trials reported
heart failure cases in diabetic patient were ranging from 19 to 26% [71]. Risk factors
for theDCMare the hyperglycemia, hyperinsulinemia and insulin resistance inwhich
liver plays a major role [72]. This results in insulin resistance in cardiac cells and
metabolic disorders which further increases the mitochondrial dysfunction, inflam-
mation, oxidative stress, AGEs production, ER-stress, cardiomyocyte death. Due to
these, abnormalities like stiffness and hypertrophy takes place and resulting into dias-
tolic and systolic dysfunction [73]. Several anti-hypertensives have been reported to
play a role in diabetic cardiomyopathy [74–79]. Targets like serotonin [80], histone
deacetylases [81] and estrogen receptors [82] are also reported to modulate diabetic
cardiomyopathy. miRNA-1 found to have bidirectional role in pathogenesis of DCM.
Upregulation of miRNA-1 produces apoptotic role in DCMwhereas downregulation
of miRNA-1 had anti-hypertrophic effect on cardiac cells. High glucose upregulates
the miRNA-320 in cardiac cells and causes cardiac cells death [83].

As mentioned earlier, LXRs also play their significant role in glucose metabolism
and improved various conditions like insulin resistance and hyperglycemia.
PI3k/AKT/GLUT4 is insulin-stimulated pathway which is responsible for the
glucose uptake in the cells. In this pathway, phosphorylation of AKT protein causes
translocation of GLUT4 to the cellular membrane for entry of glucose into the cells
[84]. Treatment with LXR agonist GW3965 in type 2 diabetes mellitus (T2D) db/db
mice increased the phosphorylation of AKT protein and thus attenuates the insulin
resistance and hyperglycemic condition in the mice, ultimately improved the cardiac
function. Furthermore, GW3965 decreased ROS production, reduced apoptosis and
improved LV dysfunction in db/db mice [85]. Diabetic heart losses its flexibility to
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use various kind of energy source due to lack of insulin and reduced uptake of glucose
in cardiac cells. In T2D, lipolysis takes place due to less availability of insulin in
adipose tissue. Thus, there is more availability of lipids and fatty acids to the cardiac
cells. Cardiac cells utilise this freely available fatty acids which results in increased
fatty acyl-CoA concentration. This fatty acyl-CoA are used for synthesis of diacyl-
glycerol (DAG) which can be regarded as toxic. LXR agonist T0901317 reduced the
accumulation of DAG in the heart of streptozotocin induced diabetic rats [86]. Role
of LXRα inDCM is also reported to bemediated by themiRNA-1 in the cardiac cells.
LXRα are the direct target formiRNA-1. Expression ofmiRNA-1 regulate the LXRα

in the H9C2 cells. Interestingly, overexpression of miRNA-1 downregulated the
expression of LXRα and aggravated the apoptotic condition in heart [87]. Confirmed
role of miRNA in the DCM was given by Cheng et al. later in their discovery and
suggested that overexpression of miRNA-1 is responsible for the glucose induced
apoptosis in heart cells. He treated the rat H9C2 cardiac cells with anti-miRNA-1
and concluded that silencing of miRNA-1 provides the protection to the cardiac cells
via inhibiting mitochondrial signaling pathway by increasing expression of LXRα

[88]. In another study using H9C2 cells, GW3965 treatment inhibited hyperglycemia
induced inducible nitric oxide synthase (iNOS), NF-kB, Caspase-3 and Cytochrome-
C (myocardial injury marker) production thereby protecting cardiomyocyte against
high glucose stress-induced injury [89].

Cardiac Hypertrophy

Cardiac hypertrophy is global disease with an estimated rate of 1 in 500 people [90].
It is common complication in around 30% of hypertensive individuals [91]. Cardiac
hypertrophy is the compensatory mechanism to enhance the cardiac performance
and lessen the ventricular wall tension and also oxygen consumption [92]. Thus,
it results in the increase in the size of cardiomyocytes as a result of the arterial
hypertension, myocardial infarction, inflammation and valvular cardiac disease [93].
Cardiac hypertrophy is enhanced by various mediators like fibrosis, over production
of pro-inflammatory cytokines, autophagy suppression and hemodynamic stress [94].
Cardiac hypertrophy is reported to be modulated by various agents acting on targets
like estrogen [95], histone deacetylases [96, 97] and MAP kinases [98]. miRNA-
208a is cardiac specific miRNA which is upregulated in the cardiac hypertrophy by
increasing the MCHβ expression in cardiomyocytes. Upregulation of miRNA-208a
in reduces the Thrap-1 level and induces cardiac hypertrophy. Thus, provides the
link between the thyroid hormone and cardiac hypertrophy [83].

In order to investigate role of LXRs in cardiac hypertrophy, LXRα knockout
C57B6 mice were exposed to pressure overload induced hypertrophy. Treatment
with the T0901317 in C57BL/6 inhibited angiotensin-II and liposaccharides (LPS)
expression thereby producing suppression of NF-kB activity, ultimately producing
the cardioprotective role against hypertrophy. Moreover, LXRs are also involved
in the negative regulation of the cardiomyocyte growth [99]. T0901317 attenuates
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the cardiac hypertrophy by decreasing expression of endothelin-1 and atrial natri-
uretic factor (ANP) in cultured HL-1 cardiac cells. Treatment with T0901317 in
C57BL/6J wild-type mice also showed a decrease in thickening of heart walls and
left ventricularweight by reducing expressionof endothelin-1 andANP [100].AZ876
is potent LXR agonist and prevents the cardiac hypertrophy without causing alter-
ation in the lipid metabolism. AZ876 in C57Bl/6J mice reduces the transverse aortic
constriction induced cardiac hypertrophy by reducing the heart weight and fibrosis
without causing any effect to the blood pressure. This LXR agonist also reduces
the overexpression of transforming growth factor beta (TGFβ) and angiotensin-
II [101]. Increased LXRα expression prevented the development of left ventric-
ular hypertrophy induced by high fat diet. Moreover, LXRα transgenic mice shows
1.5-fold increase in glucose uptake by increasing GLUT4 expression compared to
non-transgenic wild-type mice [102].

Cardiac Fibrosis

Cardiac fibrosis is characterized by disturbance in balance between extracellular
matrix production and degradation which finally lead to cardiac muscle dysfunction
and reduction in overall heart function [103]. Extracellular matrix (ECM) is gener-
ally composed of the type I and type III collagen type. Collagen type I and type III in
normal heart is found to be approximately 85%and11%, respectively [104].Collagen
fibres are important for the normal contractile function of heart. Cardiac fibroblast
regulates the synthesis and turnover of the collagen. Cardiac fibrosis leads to depo-
sition of type I collagen, activation of fibroblast and myofibroblast differentiation
[105]. Activating angiotensin II, atrial natriuretic peptide (ANP) and catecholamines
leads to activation of fibroblast to myofibroblast. Activation of fibroblast to myofi-
broblast participate in elevation of collagen, cathedrin-11 and alpha-smooth muscle
actin (α-SMA). Angiotensin-II also activate endothelin-1 and TGFβwhich results in
collagen and α-SMA synthesis [106]. Furthermore, downregulation of miRNA-29
in C57BL/6 mice provides a basis for mechanism of cardiac fibrosis [107].

Treatment with LXR agonist, AZ876 in the C57BL6/J mice shown marked
decrease in collagen synthesis, reduced expression of TGFβ and α-SMA by
reducing the expression of angiotensin-II. Moreover, AZ876 also downregulated
connective tissue growth factor (ctgf) and collagen type I, alpha 1 (Col 1a 1) gene
expression [101, 102]. Matrix metalloproteinases (MMPs) belongs to the family
of endopeptidases containing Zn2+. MMP-9 is responsible for the degradation of
extracellular matrix (ECM) component during remodeling. In-vitro study revealed
that LXR agonist GW3965 and T0901317 in macrophages obtained from mice
represses the expression of MMP-9 by inhibiting the pro-inflammatory mediators
such as NF-kB pathway [108]. The summary of key effects of liver X receptor is
described in Table 4.2.
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Table 4.2 Summary of key effects of liver X receptors in CVDs

Disease Animal model Key effects References

Atherosclerosis High cholesterol
diet-induced
atherosclerosis in New
Zealand White Rabbits

• LXR agonist R211945
↑ Reverse cholesterol
transport
↓ Macrophages,
apolipoprotein B and
oxidized phospholipids

[50]

High cholesterol diet fed
Zebrafish

• HSP70 protein
↑ LXRα expression
↑ ABCA1 and ABCG1
gene

[52]

ApoE-/- knockout mice • Quercetin
↑ ABCA1, LXRα and
PCSK9 gene expression

[53]

chREBP knockout mice • LXR agonist T0901317
↑ chREBP and SREBP-1c
mRNA expression

[51]

LDLR-/- male C57BL/6
mice

• LXR agonist T0901317
↑ ABCA1 and ABCG1
expression

[54]

Female apoE*3Leiden
(E3L) mice

• LXR agonist T0901317
↓ Atherosclerotic lesion
number and size
↓ NF-kB, ICAM-1 and
CD44
↑ ABCA1 and ABCG1
expression

[55]

Myocardial ischemia/
reperfusion injury [MI/RI]

Left coronary artery
occlusion-induced
C57BL/6 male mice

• LXR agonist GW3965
↓ infarct size
↑ left ventricular
contractile function

[64]

In-vitro study of
cardiomyocytes exposed
to hypoxia/reoxygenated
condition

• LXR agonist GW3965
↓caspase-3 expression

[64]

LXRα-/-, LXRβ-/- and
Infarcted wild-type
C57BL/6 mice

• LXR agonist GW3965
↓caspase-12 and
caspase-9 expression
↓ ROS formation

[28]

Fluc+-eGFP+ transgenic
C57BL/6a mice

• LXR agonist T0901317
in combination with
ADMSCs
↓ TNFα, IL-6, ROS,
TLR4, MyD88, TRAF-6,
IkBα and NF-kB-p65
↑ translocation of Nrf-2
from plasma to the
nucleus

[65]

(continued)
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Table 4.2 (continued)

Disease Animal model Key effects References

LXRα-/- male mice • Decreases expression of
LXRα

↓ GLUT1/4 expression
compared to wild-type
C57BL/6 mice
↑ AMPK phosphorylation

[66]

Diabetic cardiomyopathy T2D db/db mice • LXR agonist GW3965
↑ phosphorylation of
AKT protein
↓insulin resistance,
apoptosis and
hyperglycemia
↑ Left ventricular function

[85]

Streptozotocin induced
diabetic rats

• LXR agonist T0901317
↓ accumulation of DAG in
the heart

[86]

Glucose induced
apoptosis in H9C2 cells

• Anti-miRNA-1 treatment
↑ LXRα expression

[88]

High glucose
stress-induced injury in
rat H9C2 cells

• LXR agonist GW3965
↓ iNOS, NF-kB,
Caspase-3 and
Cytochrome-C

[89]

Cardiac hypertrophy Pressure overload induced
hypertrophy in LXRα

knockout C57BL/6 mice

• LXR agonist T0901317
↓ Angiotensin-II and
liposaccharides (LPS)
expression
↓ NF-kB activity
↓ Cardiomyocytes growth

[99]

Cultured HL-1 cardiac
cells

• LXR agonist T0901317
↓ Endothelin-1 and ANP
expression

[100]

Pressure overload induced
hypertrophy in LXRα

knockout male C57BL/6J
wild-type mice

• LXR agonist T0901317
↓ Endothelin-1 and ANP
expression
↓ Thickening of heart
walls and left ventricular
weight

[100]

Transverse aortic
constriction induced
cardiac hypertrophy in
C57BL/6J mice

• LXR agonist AZ876
↓ Fibrosis and TGFβ

expression

[101]

(continued)
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Table 4.2 (continued)

Disease Animal model Key effects References

Cardiac fibrosis Transverse aortic
constriction induced
cardiac hypertrophy in
C57BL/6J mice

• LXR agonist AZ876
↓ Collagen synthesis
↓ Connective tissue
growth factor (ctgf) and
collagen type I, alpha 1
(Col 1a 1) gene expression

[101, 102]

In-vitro study in
macrophages obtained
from mice

• LXR agonist GW3965
and T0901317
↓ MMP9 expression and
NF-kB

[108]

↑—increase and ↓—decrease

Conclusions

LXR agonists have long been established to play an important role in maintenance
of lipid and glucose homeostasis, inflammation and energy balance in vertebrates.
In addition to this, recent evidences have suggested that LXR exhibit wide range
of beneficial effect in several cardiovascular diseases like atherosclerosis, myocar-
dial infarction, diabetic cardiomyopathy, cardiac hypertrophy and cardiac fibrosis.
Despite this, LXR agonists are not approved and have not been able to reach to
the market. The future lies in designing and developing molecules, which are either
selective agonists at LXRα or LXRβ, or are selective agonist of transrepression or
tissue selective. Such focussed drug discovery process will be beneficial for patients
suffering from CVDs.
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Chapter 5
Role of NLRP3 Inflammasomes
in Obesity-Induced Cardiovascular
Diseases
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Abstract The prevalence of obesity is increasing at an alarming rate in many
countries across the world. This is a significant concern given that obesity is
associated with several metabolic complications including cardiovascular diseases
such as myocardial infarction, hypertension, atherosclerosis, dyslipidemia, chronic
kidney disease, insulin resistance and type 2 diabetes mellitus. The discovery of
the NLRP3 (NLR family, pyrin domain containing 3) inflammasome as an intracel-
lular machinery responsible for the activation of inflammation in variety of tissues or
organs opened new avenues for treatment of a host of obesity-induced cardiovascular
disorders. Here, we summarize our current understanding on how theNLRP3 inflam-
masome is involved in obesity and associated cardiovascular complications. The
modulation of NLRP3 inflammasomes may have a great impact in the development
of novel therapeuticmodalities in obesity induced cardiovascular diseases.We review
various NLRP3 inflammasome-targeted strategies and the evidence supporting the
role of the NLRP3 inflammasome in obesity induced cardiovascular complications
such as atherosclerosis, hypertension, myocardial infarction and adverse cardiac
remodeling.
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Introduction

Obesity is a multi-factorial disorder, which is often associated with several comorbid
disease conditions such as insulin resistance, type 2 diabetes mellitus, dyslipidemia,
atherosclerosis myocardial infarction, hypertension, and chronic kidney diseases
[1–4]. Its prevalence is on continuous rise in all age groups across many developed
countries in the world [5]. Epidemiological data reveals that 30% of the world
population is obese or overweight [6]. Obesity which was once viewed as a lifestyle
“choice”—the choice to overeat and under exercise, is now being considered more
appropriately as a chronic disease by the modern world [7]. Chronic inflammation
is the hallmark of obesity. Adipose tissue acts as an active metabolic tissue which
secretes multiple metabolically important proteins known as ‘adipokines’. These
adipokines play a major role in the development of insulin resistance and cardio-
vascular complications associated with obesity [8–11]. Recent studies recognized
the role of NLRP3 (nucleotide oligomerization domain (NOD)-like receptor protein
with pyrin domain containing 3) inflammasome in obesity and related cardiovascular
complications. This review discusses the molecular mechanisms of NLRP3 inflam-
masome activation involved in chronic inflammation associated with the progression
of obesity and obesity-induced cardiovascular diseases (CVDs) like atherosclerosis,
hypertension, myocardial infarction and highlights various therapeutic approaches
to inhibit inflammasome formation which could play a key role in the treatment of
several chronic inflammatory disease conditions.

NLRP3 Inflammasome as a Sensor of Inflammation

The inflammasomes have been identified as an intracellular machinery responsible
for the activation of inflammatory responses in a variety of tissues or organs
[12, 13]. They are made of multiprotein complexes consisting a NOD-like receptor
(NLR) protein, the pro-protein, procaspase-1 and adaptor molecule ASC (Apoptosis-
associated speck-like protein containing a CARD) [13]. Pattern recognition receptors
(PRRs) present in cytosol initiate inflammasome complex formation by recognizing
pathogen-associated molecular patterns (PAMPs) and danger-associated molecular
patterns (DAMPs). PAMPs and DAMPs are also detected by various immune cells
and macrophages which initiate a series of inflammatory reactions [14–16]. NLRP1,
NLRP3, NLRP6, NLRP7, NLRP12, NLRC4 and the HIN-200 family member
AIM2 (absent in melanoma-2) which constitute the nucleotide binding domain and
leucine-rich (NLR) protein family, toll-like receptors (TLRs), retinoic acid-inducible
gene I-like helicases (RLHs) can act as PRRs [17]. The inflammasomes are formed
upon exposure to pathogens, reactive oxygen species (ROS), and environmental
irritants [18]. Among the NLR family, the NLRP3 inflammasome (also referred to
as cryopyrin and NLRP3) is the best characterized and most extensively studied
inflammasome. NLRP3 has been found to detect endogenous stress-associated
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danger signals including PAMPs (viruses, intracellular bacteria, cell-wall compo-
nents), bacterial toxins and extracellular components such as adenosine triphosphate
(ATP), uric acid, β-amyloid, cholesterol crystals, calcium pyrophosphate dehydrate,
sphingosine, homocysteine and DAMPs to produce local tissue sterile inflammation
[19–21].

Several diseases like acute myocardial infarction, diabetes mellitus, liver toxicity,
gout etc. are known to be associated with NLRP3 inflammasome formation [8, 13,
21, 22]. NLRP3 has leucine-rich repeats (LRRs) at the C-terminal and pyrin domain
(PYD) at theN-terminal alongwith a nucleotide-binding and oligomerization domain
(NBD) which forms the core of the NLRP3 inflammasome. An adapter protein ASC
which contains a PYDdomain and a caspase recruitment domain (CARD) is required
for pro-caspase-1 recruitment and the activation of NLRP3 [23–25]. Procaspase-1 is
activated into capsapse-1which further activates cytokines IL-1 β and IL-18 initiating
the inflammatory process [23, 25].

Activation of Inflammasome in Obesity-Induced
Cardiovascular Diseases

Obesity is a major risk factor for cardiovascular disorders and obese patients have
significantly elevated morbidity and mortality due to CVDs [8, 9]. Activation of
the NLRP3 inflammasome plays a central role in obesity-induced chronic inflam-
mation and CVDs [26]. Accordingly, several studies have reported an association
of the NLRP3 inflammasome with obesity, insulin resistance and type 2 diabetes
mellitus [26–28]. Over-nutrition associated with obesity is known to activate NLRP3
inflammasome [29].Mounting evidence from the studies in animal models of obesity
and obese human subjects indicate that obesity is associated with increased NLRP3
expression in adipose tissue [28, 30–33]. Activation of NLRP3 is a two-step process
which includes priming and triggering [34]. The first or “priming” signal is carried by
DAMPs/PAMPs like glucose, palmitate, ceramide, uric acid or lipopolysaccharide
(LPS) which are identified by toll-like receptors (TLRs) or cytokines such as tumor
necrosis factor α (TNF-α), activating mainly nuclear factor-κB (NF-κB)-dependent
signaling which results in the expression and of NLRP3 components and inactive
precursors of IL-1β namely pro-IL-1β, pro-IL-18, and transcriptional expression of
inflammasome such as NLRP3 deubiquitination and ASC phosphorylation [35]. The
second or “triggering” signal involve the oligomerization of inactive NLRP3, ASC
and procaspase-1, resulting in proteolytic cleavage of caspase-1 instigating caspase-1
activation [25]. Activated caspase-1 then processes pro-IL-1β and pro-IL-18 to their
mature forms that are rapidly secreted from the cell which results in the maturation
of IL-1β and leading to final inflammasome formation.

There are three important mechanisms underlying NLRP3 inflammasome activa-
tion including reactive oxygen species (ROS) activation, lysosome rupture and ion
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channel gating. The regulation of NLRP3 inflammasome activity by several trig-
gers can be explained by these three mechanisms. NLRP3 is a sensor for changes
in cellular oxidative stress, where increases in ROS activate this inflammasome.
Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-derived ROS acti-
vateNLRP3 inflammasomes in the pathogenesis of homocystine-induced glomerular
sclerosis or adipokine visfatin or cholesterol crystals or 7-keto-induced atheroscle-
rosis [36]. More recent studies have also implicated mitochondrial ROS in inflam-
masome activation [37, 38]. One recent study found that thioredoxin-interacting
protein (TXNIP), a binding partner of the antioxidant protein thioredoxin, can
directly bind NLRP3 and regulate inflammasome activation in a ROS-inducible
manner [22, 39]. Another mechanism of inflammasome activation is potassium (K+)
efflux through endogenous ion channels. Intracellular potassium is an indicator of
membrane integrity and loss of potassium leads to NLRP3 inflammasome activation
by disruption of cell membrane integrity [40]. In addition, crystals like monosodium
urate, amyloid-β, alum silica and asbestos are phagocytized by cells leading to the
release of proteolytic lysosomal contents into the cytosol, resulting inNLRP3 inflam-
masome activation through lysosomal destabilization [20, 41]. The formation and
activation of NLRP3 inflammasome is shown in Fig. 5.1.

The NLRP3 Inflammasome and Obesity

Chronic low-grade inflammation is an important feature of obesity. Obesity-induced
inflammatory responses involve both innate and adaptive immune processes which
indicate the potential roles for NLRP3 inflammasome activity. NLRP3 inflamma-
some components are expressed in adipose tissue macrophages. During obesity,
adipocyte secretion of proinflammatory or pathogenic adipokines, is increased
markedly. The role of NLRP3 inflammasome in the pathogenesis of obesity was
supported by data showing that NLRP3-/- and ASC-/- knockout mice are protected
against high fat diet (HFD)-induced obesity [28, 42, 43]. IL-1β and NLRP3 mRNA
expression in visceral adipose is markedly decreased upon caloric restriction and
increased in obese diabetic and HFD fed mice relative to their lean controls on stan-
dard chowdiet [28, 44]. Adipocyte differentiation is also regulated byNLRP3 inflam-
masome activation [44]. NLRP3 and IL-1β gene expressions in the adipose tissue are
reduced in type 2 diabetics following exercise and calorie restriction [28]. Similarly,
serum adipokines are decreased upon fat mass reduction and increased upon excess
calorie intake [45–47]. HFD-fed mice have exhibited increased Caspase-1 mRNA
activity and enhanced adipose tissue IL-18 protein levels [28, 44, 48].
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Fig. 5.1 NLRP3 inflammasome activation and formation. In obese conditions, damage-
associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) acti-
vate macrophages in adipose tissue which act via toll-like receptors (TLRs) which activate nuclear
factor-κB (NF-κB) resulting in the expression of NLRP3 components and inactive precursors of IL-
1β namely pro-IL-1β, pro-IL-18 which remain in cytoplasm. In obesity, DAMPs also directly leads
to NLRP3 inflammasome formation via three main pathways including reactive oxygen species
(ROS) generation, lysosomal destabilization and rupture and K+ ion channel gating, all of which
lead to the activation of NLRP3 inflammasome through the oligomerization of the inactive NLRP3,
the apoptosis-associated speck-like protein (ASC), and the procaspase-1 components. The acti-
vated inflammasome produce active interleukin-1β or -18 (IL-1β and IL-18) from pro-IL-1β and
pro-IL-18 which initiate inflammatory responses in obesity induced cardiovascular diseases

The NLRP3 Inflammasome in Obesity Induced
Cardiovascular Diseases

Obesity is associated with the dysregulation of multiple metabolic factors that
increase inflammasome activation resulting in an increased incidence of CVDs. In
particular, abdominal obesity is a known risk factor for CVDs worldwide. CVD
mortality and morbidity is significantly increased in obese individuals [3]. CVD risk
is associated with the inflammatory status of an obese individual. Obese individuals
with CVD risk often exhibit increased metabolic biomarkers such as adiponectin,
cytokines which lead to vascular endothelial dysfunction and atherosclerosis [49].
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Several cardiometabolic disease states display enhanced inflammatory responses and
cytokines like IL-1β and IL-18 [50, 51]. Cardiovascular injury in obesity is produced
by stimuli which induceNLRP3 inflammasome activation.Hence it has been recently
suggested that both NLRP3 and pro-inflammatory cytokines are biomarkers of
cardiovascular risk in obese patients. Molecular mechanisms of NLRP3 inflamma-
some in various obesity induced CVDs such as atherosclerosis, hypertension and
myocardial infarction are described below.

NLRP3 Inflammasome in Atherosclerosis

Obesity is a major risk factor for atherosclerotic disease. Atherosclerosis is char-
acterized by lipid deposition and inflammatory cells infiltration in the arterial
wall. Abnormal lipid metabolism and chronic inflammation are the fundamental
connecting links between obesity and atherosclerosis although several other factors
such as insulin resistance, endoplasmic reticulum stress, ROS formation, and mito-
chondrial dysfunction during obese conditions may also impact inflammasome acti-
vation. Macrophages and other immune cells like T cells and B cells in the adipose
tissue are activated in obesity induced inflammation [52]. Inflammasome activa-
tion is triggered by circulating lipids, free fatty acids and crystalline cholesterol
(ChC) [53]. The NLRP3 inflammasome was shown to participate in the develop-
ment of atherosclerosis making it a common mechanism and potential target of
increased cardiometabolic risk in obesity and atherosclerosis [19]. ChCs are engulfed
by macrophages which results in lysosomal destabilization and cathepsin B release
leading to Nlrp3 inflammasome activation and accumulation of inflammatory cells
[19]. Low-density lipoprotein (LDL) cholesterol in the vasculature is phagocytized
by macrophages resulting in lipid rich foam cell formation and inflammation leading
to plaque destabilization. Lysosomal damage by ChCs leads to caspase-1-dependent
macrophage IL-1β secretion [19]. The progression of atherosclerotic lesions is asso-
ciated with Pro-IL-1β [54]. Yajima et al. demonstrated for the first time that NLRP3
inflammasome contributes to atherogenesis. Studies in ASC-/- mice showed that ASC
deficiency reduced the expression of IL-1β and IL-18 and attenuated atherosclerotic
lesion formation [55]. Deficiency of NLRP3, ASC, or IL 1α/β is shown to decrease
inflammasome- dependent IL-18 levels and attenuated atherosclerosis [19]. Studies
in both human and murine macrophages have shown that ChCs induce NLRP3
inflammasome dependent IL-1β production which leads to both the development
and destabilization of atherosclerotic lesions [56]. Bonemarrow transplantation from
NLRP3 or IL-1α/IL-1β-deficient mice significantly reduced atherosclerosis in high-
cholesterol fed LDL receptor-deficient (Ldlr-/-) mice indicating that macrophage-
derived NLRP3 and IL-1 are important determining factors for cholesterol-driven
atherosclerosis [19]. Studies in apolipoprotein E (ApoE-/-) mice showed that nuclear
factor erythroid 2- related factor (Nrf2) plays an essential role in the NRLP3 acti-
vation and atherosclerosis progression [57]. Endogenous cholesterol crystals act as
pro-atherogenic danger signals. They initiate inflammation in the vasculature via
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Nrf2 pathway. It has been identified that Nrf2 is required to induce inflammatory
effects of IL-1β and IL-1α which occur both in a NLRP3/caspase-1-dependent
and independent manner [57]. NLRP3 inflammasomes also cause atherogenesis
via hyperhomocysteinemia-induced inflammation. A study done in ApoE-/- mice
demonstrated that activation of NLRP3 inflammasome contributes to atherogen-
esis and hyperhomocysteinemia (HHcy) and that deletion of NLRP3 inflamma-
some ameliorates HHcy-induced inflammation and atherosclerosis [58]. Studies in
humanmacrophages and aorta of patientswith atherosclerosis also confirmed the role
NLRP3 in atherosclerosis [59]. Paramel et al. recently reported that atherosclerotic
plaques have high expression of NLRP3 inflammasome-related genes which were
found to be activated upon exposure to ATP and cholesterol crystals [60]. Lectin-
like oxidized low-density lipoprotein receptor-1 (LOX-1) expression, mitochondrial
DNA damage and ROS generation were induced in human macrophages exposed
to lipopolysaccharide followed by NLRP3 inflammasome activation. It has been
demonstrated that in cardiovascular diseases such as atherosclerosis and myocardial
ischemia, LOX-1-mediated autophagy and mtDNA damage induce NLRP3 inflam-
masome activation. Inhibitors of ROS are known to reduce NLRP3 inflammasome
formation while autophagy inhibitors activate NLRP3 inflammasome [61].

Taken together, all these findings indicate that the NLRP3 inflammasome-
mediated signaling is involved in atherosclerosis. Hence, NLRP3-inflammasome is
an essential step in the inflammatory process involved in atherosclerosis and inflam-
masome inhibitors have a therapeutic role in the prevention of cardiovascular damage
induced by obesogenic diets. In fact, cholesterol crystal-induced NLRP3 inflamma-
some activation is inhibited by arglabin which is an inflammasome inhibitor has
shown to reduce atherosclerotic lesions in apolipoprotein mice [62].

NLRP3 Inflammasome in Hypertension

Obesity has been shown to increase the risk of high blood pressure [63]. Several
studies indicated a clear association between increased weight gain and obesity with
elevated blood pressure [7]. Obese people have a 3.5 fold increased risk of developing
hypertension compared to the non-obese counterparts. Inflammasome activity and
resulting IL-1β production was shown to play a key role in the progression of hyper-
tension. Hypertensive patients were found to have elevated levels of circulating IL-1β
[64]. Salt-sensitive hypertension is also characterized by chronic inflammation and
high-salt-induced inflammation andoxidative stress activateNF-κBwhich is an effec-
tive activator of NLRP3 and contributes to the pathophysiology of hypertension [65].
Inhibition of NF-κB attenuates oxidative stress, NLRP3 inflammasome formation
and activation followed by caspase-1 activation thus resulting in the reduction of pro-
inflammatory cytokines in the paraventricular nucleus of salt-sensitive hypertensive
rats [66]. NLRP3 inflammasome activation leads to the production of IL-1β which
is an essential pro-inflammatory cytokine with pleiotropic effects. IL-1β inhibitor,
gevokizumab, attenuated oxidative stress and release of pro-inflammatory cytokines
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leading to suppression of sympathoexitation in the paraventricular nucleus of salt-
sensitive hypertensive Dahl rats, indicating that inhibition of IL-1β centrally reduces
oxidative stress and renin-angiotensin system activation and delays hypertension-
induced cardiovascular damage [67]. In hypertension, Angiotensin II (Ang II) is
an essential vasoconstrictive peptide produced upon activation of renin-angiotensin
system. Ang II is an important regulator of the inflammatory processes in hyper-
tension. It has been demonstrated that Ang II infusion in murine hearts leads to
NLRP3 inflammasome activation and increased expression of cytokines like IL-1β
[68]. It has been demonstrated that NLRP3 inflammasome leads to cardiac remod-
eling independent of hypertension, sinceNLRP3 inflammasome inhibition attenuated
Ang II-induced cardiac fibrosis without affecting blood pressure [68]. Thus, it can be
concluded that in hypertensive cardiac diseases NLRP3 inflammasome/IL-1β nexus
could be a potential therapeutic target for intervention.

NLRP3 Inflammasome in Myocardial Infarction
and Cardiac Remodeling

Epidemiological studies suggest that both overweight and obesity increases the inci-
dence of acute myocardial infarction. Myocardial infarction is commonly caused by
the rupture of atherosclerotic plaques in the coronary arteries, narrowing of arteries
and insufficient blood supply to the heart. Myocardial infarction is accompanied
by inflammatory process leading to pathological changes in the myocardium and
tissue injury. Inflammation is also involved in the tissue repair and recovery after
myocardial infarction [69]. Studies in HFD diet-induced obese mice demonstrated
large infarct sizes compared to mice on standard diet. In addition HFD mice also
had increased NLRP3 inflammasome formation and activation [70]. NLRP3-/- mice
were protected against the vascular hyper permeability and damage induced byHFD.
Myocardial ischemia–reperfusion injury was also attenuated upon NLRP3 inhibition
[71]. In myocardial ischemia by coronary artery ligation model, it was found that
NLRP3was upregulated in the cardiac fibroblasts of the ischemic hearts [72]. NLRP3
expression, capase-1 activity and IL-1βwere increased inmousemodels of ischemia-
reperfusion injury [73]. Cytokine expression and inflammatory cell infiltration is
significantly diminished in ASC-/-or caspase-1-/- mice. ASC-/- or caspase-1-/- mice
also exhibit reduced left ventricular dysfunction after myocardial infarction coupled
with decreased infarct size and myocardial fibrosis. Taken together it indicates that
inflammasome components, such as NLRP3 and ASC play a role in the myocardial
damage following permanent coronary ligation in HFD mice.

Obesity is very well associated with left ventricular hypertrophy and cardiac
remodeling. Several pathologies such as valvular heart diseases, myocarditis,
myocardial infarction and dilated cardiomyopathy which gradually lead to progres-
sive decompensation are accompanied by cardiac remodeling [74]. NF-κB and
p38MAPK signaling are regulated by caspase activation and recruitment domain 3
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(CARD3) which acts as a positive modulator of ventricular remodeling and dysfunc-
tion after myocardial infarction [75]. NLRP3 inflammasome activation is partially
involved in the inflammatory responses following myocardial remodeling [76].
CARD3 and caspase-1 being important components of NLRP3 inflammasome acti-
vation play an integral role in cardiac remodeling following NLRP3 inflammasome
activation [75].

Therapeutic Strategies Targeting Inflammasome

Effective inhibition of the NLRP3 inflammasome would be very useful in the treat-
ment of multiple inflammatory and metabolic disease conditions. Therefore, there
is an active search for therapeutic modulators of NLRP3 inflammasome pathways
to address the unmet clinical needs. So far some of the major therapeutic strate-
gies developed in this line include inhibition of NLRP3 inflammasome, inhibition
of IL-1β and caspase-1 inhibition. The potential inflammasome inhibitors and their
mechanism of action is described in Table 5.1.

Summary

In conclusion, NLRP3 inflammasome plays an important role in the pathogenesis
of obesity and associated CVDs like atherosclerosis, hypertension, and myocar-
dial infarction all of which lead to the increased mortality and morbidity in obese
patients. NLRP3 inflammasome and IL-1β activity seem to regulate PAMPs and
DAMPs during injury, inflammation, infection, or stress and contributes to a number
of inflammatory disorders as well as obesity induced cardiovascular pathologies.
Understanding the molecular components involved in the NLRP3 inflammasome
formation is important to the development of safe therapeutic strategies. Experi-
mental evidence from both in vitro and in vivo studies suggest that pharmacological
interference with inhibitors targeting various mechanistic pathways leading NLRP3
inflammasome formationmay offer novel approaches for treatment and prevention of
obesity and associated CVD complications. Although there are no selective NLRP3
inhibitors available clinically at present, results from several undergoing transla-
tional studies with selective NLRP3 inhibitors are eagerly awaited in our fight against
inflammatory diseases.
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Table 5.1 List of the NLRP3 inflammasome inhibitors

NLRP3 inflammasome inhibitor Mechanism of action

Direct/Indirect inhibition of NLRP3inflammasome

MCC950 Inhibits NLRP3-induced ASC speck formation and
oligomerization

BAY 11-7082 Alkylates cysteine residues within the ATPase region
of NLRP3 and inhibits NLRP3 ATPase activity

OLT1177 Inhibits NLRP3 oligomerization

Glyburide Prevents ASC oligomerization independent of KATP
channels

BHB Inhibits K+ efflux and blocks ASC oligomerization
(β-hydroxybutyrate)

Colchicine Lysosomal destabilization, inhibition of the
polymerization of ASC

IL-1 β antagonists

Anakinra IL-1β receptor antagonist which blocks 1β activity

Canakimumab Monoclonal antibody which blocks 1β activity

Caspase-1 inhibitors

VX-740 & VX765 Blocks pro-IL-1β cleavage

Autophagy inducers

Metformin Activate AMPK/autophagy and inhibit NLRP3
inflammasome

Resveratrol Induces autophagy and attenuates mitochondrial
damage

Arglabin Induces autophagy process and inhibit NLRP3
inflammasome
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Chapter 6
Vicious Link of Obesity
with Cardiometabolic and Renal Diseases

Amrit Pal Singh, Tajpreet Kaur, and Harpal Singh Buttar

Abstract Obesity is escalating all over the world and prevails among 13% of
adult population. World Health Organization (WHO) has estimated that excessive
body weight and obesity related incidences of type 2 diabetes mellitus (T2D) and
cardiovascular diseases (CVDs) has increased nearly fourfold over the last 25 years.
Excessive deposition of peripheral and visceral fat also causes metabolic syndrome
and renal complications. In obese subjects, the risk of non-communicable diseases
(NCDs) such as musculoskeletal and neurodegenerative disorders, infertility, and
breast cancer is relatively higher than lean persons. The white adipocytes secrete
a wide variety of bioactive chemicals such as adipokines, resistin, leptin, inter-
leukins (IL-1β, IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), mono-
cyte chemoattractant protein-1 (MCP-1), free fatty acid, macrophages infiltration,
mast cell degranulation, plasminogen activator inhibitor-1 (PAI-1), endothelial adher-
ence molecules and oxidative stress. These bioactive chemicals play crucial role
in the pathogenesis of obesity-induced disorders like insulin resistance, dyslipi-
demia, metabolic syndrome, atherosclerosis, thrombosis, vasculopathy, high blood
pressure, glomerulopathy and glomerulosclerosis. Well planned health care strate-
gies are needed to reduce the risk of nongenetic factors associated with obesity,
and their links with T2D, CVDs and renal diseases. The health-care burden related
to NCDs such as obesity, T2D, and CVDs and neurodegenerative disorders, renal
diseases and cancer is escalating worldwide. People need to think about the cost-
effective measures such as lifestyle modifications, unhealthy dietary habits, physical
activity, and consumption of healthful foods containing green vegetables, fruits, and
Mediterranean-type diet consisting of olive oil, poultry and fish, dairy products, fiber
rich foods, and low amount of red meat. The focus of this review is to highlight the
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relationships of obesity-induced production of inflammatory cytokines, adipokines,
distortion of carbohydrate and lipid metabolism, kidney malfunction, activation of
the renin-angiotensin-aldosterone system, arterial hypertension, and heart attack and
stroke.

Keywords Obesity · Cardiometabolic disorders · Obesity-associated kidney
dysfunction · Activation of renin-angiotensin-aldosterone system · Arterial
hypertension · CVDs

Introduction

Obesity is characterized by excessive accumulation of body fat and is recognized as a
global epidemic health problem. The incidence of obesity has doubled between 1980
and 2014, and is increasing among children and middle age-populations [1, 2]. It is
estimated that about 8.5% of world population is inflicted with obesity that includes
around 78 million people worldwide [3]. Industrialization and urbanization in devel-
oping countries have not only changed the living standards, but have alsomodified the
lifestyles and dietary habits of children and adults. Excessive intake of carbohydrate
diets, fatty foods, sugar loaded drinks, salty foods and inactivity promote rapidweight
gain in all populations [4–7]. It has been reported that lower energy expenditure due
to lack of physical activity promotes weight gain, and life expectancy is reduced by
almost seven years in obese persons [8–10]. Generally, accumulation of excessive
fat occurs in skeletal muscles, liver, peritoneum, gastro-intestinal tract, abdomen,
buttocks and mammary tissues [11–13]. Obesity causes deterioration of metabolic
functions, and consequently produces pathological changes in the cardiovascular and
renal systems [14]. Overwhelming number of studies have indicated that obesity is a
major risk factor for neuro-degenerative disorders, cardiovascular diseases (CVDs),
type-2 diabetes mellitus (T2D), fatty liver, respiratory problems, renal disorders and
cancer [15–22]. There is a higher prevalence of metabolic syndrome, osteoarthritis
and pulmonary hypoventilation in obese patients [15, 23–25].

During the last 25 years, obesity related T2D and CVDs have become a major
public health hazard in developed and developing countries [26, 27]. T2D and CVD
rates have risen dramatically in Asia, Africa, and Middle Eastern countries [28], and
premature mortality and morbidity due to heart disease and stroke are escalating in
the relatively younger population under the age of 50 years [29, 30]. It has been
reported that in Asian countries, obesity related disorders such as T2D, hypertension
and CVDs often occur in younger age groups than western countries [31, 32]. CVD-
related death rate is generally higher among low and middle income populations
[33–35]. Heart attack and stroke impose very high burden on the health care system
due to prolonged rehabilitation, hospital and drug costs as well as employee absen-
teeism. It has been estimated that obesity related disorders cost around 4 to 8%of total
health care budget in several countries [35–39]. Thus, prevention andmanagement of
obesity, T2D, CVDs and kidney diseases are targeted as the most important public
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health issues worldwide. Currently, cost-effective public health policies are being
directed to lay out appropriate anti-obesitymeasures in children and adults, including
healthy dietary habits, consumption of fresh vegetables and fruits, reduction of sugar
loaded beverages, and intake of Mediterranean style diets and encourage exercise as
useful non-pharmacologic therapies. Several types of dietary formulations and herbal
remedies are also being promoted in lay press to reduce weight gain [25, 40–42].

Most commonly used index of obesity is body mass index (BMI) which measures
body weight in kilograms divided by height in meters square (kg/m2) [1]. According
to World Health Organization (WHO), individuals with BMI ranging from 18.5 to
25.0 kg/m2 are considered normal healthy. On the other hand, people with BMI <
18.5 kg/m2 are underweight. Thosewith BMI 25–30 kg/m2 are regarded over-weight,
whereas individuals with BMI > 30–35.5 kg/m2 are considered moderately obese
(Class I), and BMI > 35.5–40 kg/m2 severely obese (Class II), and BMI > 40 kg/m2

are categorized as extremely obese (Class III). Apart fromBMI,MRI, anthropometry
and computed tomography densitometry are other approaches tomeasure obesity [1].

There are 2 types of adipose tissues, white adipose tissue (WAT) and brown
adipose tissue (BAT). The total body composition of lean adult men and women
consists of about 20 % white adipose tissue (WAT), however, in obese humans
WAT can increase far upto >40% [43–46]. The WAT serves as passive depot for
energy storage in the form of lipids, and release of free fatty acids and adipokines.
Adipocytes of white adipose tissue have endocrine and paracrine functions and
secrete wide range of adipokines which regulate appetite, insulin sensitivity and
angiogenesis [47–49]. TheWAT produces pro-inflammatory cytokines such as tumor
necrosis factor TNF-α, interleukins like IL-1, IL-6, IL-8, IL-18, monocyte chemo-
attractant protein-1 (MCP-1), transforminggrowth factor-β (TGF-β), adrenomedullin
and calcitonin gene-related peptide, which are responsible for causing patholog-
ical conditions like endothelial inflammation and atherosclerosis, CVDs, T2D and
metabolic syndrome [50–54]. Obesity promotes pathological conditions such as
metabolic syndrome which is characterized by hyperglycemia, insulin resistance,
dyslipidemia, thrombosis, atherosclerosis, hypertension, and systemic inflamma-
tion [47, 55]. WAT produced adipokines like leptin, resistin, adiponectin, TNF-α,
and IL-6 govern food intake, energy balance and insulin sensitivity by impinging
upon the hypothalamus and vagal inputs [56–58]. Augmentation of WAT and defi-
ciency of BAT produces increased releases of adipokines, pro-inflammatorymarkers,
angiotensin converting enzyme (ACE) and reduction of lipoprotein lipase [59, 60].

In neonates, BAT make upto 5% of total body weight which helps to prevent
hypothermia due to higher ratio of body-surface area to body-volume and lack of
thermal insulators like subcutaneous fat and body hairs. BAT serves as alternative to
regulate bodyheat [61, 62].Mitochondrial richBATactivates peroxisomeproliferator
activated receptor-γ (PPAR-γ) and uncoupling protein-1 (UCP-1) which improves
metabolic rate and reduces body weight gain through thermogenesis of lipids present
in WAT and increases utilization of energy [63, 64]. The decreased BAT abates
expression of UCP-1 which declines utilization of fat stored in white adipose tissue
[47, 63–65].
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It has been hypothesized that altered gut microbiota (bacteriodes, staphylococcus,
bi-fido bacterium, lactobacillus) increase the risk of childhood overweight [66].
Intake of probiotics like yogurt and cheese improve growth of beneficial bacteria
in the gut and reduce the incidence of childhood obesity [67, 68]. Prebiotics like
indigestible oligosaccharides also promote growth of beneficial bacteria in the
gastrointestinal tract and reduce the risk of irritable bowel syndrome [69].

Obesity-Induced Cardiovascular Disorders

The obesity related cardiometabolic alterations are illustrated in Fig. 6.1. Obesity
produces cardio-metabolic syndrome which is characterized by high blood pressure,
hyperglycemia, hyperlipidemia, reduced high density lipoproteins (HDL), increased
low density lipoprotein (LDL), atherosclerosis and vascular diseases. WAT causes
the development of systemic inflammatory state that provokes high incidences of
cardiometabolic disorders in children and young adults [70–74]. In obesity, the circu-
lating blood volume is increased that puts high demand on function of left ventricle
and consequently causes left ventricular remodeling. Generally, these effects result in
left ventricular dilation with eccentric left ventricular hypertrophy, increased cardiac
output and cardiac overload. The cardiac hypertrophy increases cardiac mass due to

Fig. 6.1 Diagrammatic representation of various mechanisms involved in obesity-induced ROS
lipotoxicity, inflammation, high density HDL and low density LDL lipoproteins, endothelial
dysfunction, atherosclerosis, and cardiovascular events andheart failure. Theupward arrows indicate
increase and downward arrows indicate decrease
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compensatory mechanism to manage pressure overload or volume overload, thereby
producing excessive stress on the heart function [2, 75]. In obese patients, there is
increase in chances of developing heart failure is enhanced by 5–7% for every 1 BMI
(kg/m2) increase and contributes upto 11–14% of all heart failure cases [76].

The Frank-Starling curve is often shifted to the left because of increase in filling
pressure and volume, thus increasing cardiovascular work. Obesity is responsible for
alteration in various cardiovascular function i.e. alterations in volume and pressure
overload [30, 77]. The activation of renin angiotensin aldosterone system (RAAS)
causes cardiac overload through an increase in blood volume in obese individuals
[78]. Obesity also leads to left atrial enlargement, both by increased circulating blood
volume as well as abnormal left ventricular diastolic filling [78, 79]. These abnor-
malities not only increase the risk of heart failure, but also left atrial enlargement,
increase of atrial flutter and cardiovascular complications [80].

Obese patients are more likely to be hypertensive than lean patients and their
high blood pressure is primarily due to increase in systolic arterial pressure [81].
Nearly 60% of obese persons are hypertensive owing to the activation of RAAS,
increased sensitivity of the sympathetic nervous system, leptin resistance, elevated
cardiac output, expanded vascular volume, and reduction in cardiopulmonary func-
tion [82–84]. In obese patients, there is also escalation of inflammatory proteins in
the systemic circulation, intracellular adhesion molecule-1 (ICAM-1), vascular cell
adhesion molecule-1 (VCAM-1), and P-selectin as well as increase in C-reactive
protein (CRP). CRP also activates endothelial nuclear factor-κB (NF-κB), IL-1β,
plasminogen activator inhibitor-1 (PAI-1), IL-6, TNF-α, MCP-1, endothelin-1 and
inhibition of endothelial nitric oxide synthase (eNOS) [85]. PAI-1 serves as a regu-
latory cascade of coagulation, which is primarily derived from platelets and gets
elevated in case of inflammatory disorders during obesity. It also promotes hyper-
coagulation and contributes to cause atherosclerosis through deposition of platelets
and fibrin molecules in blood vessels [85, 86]. TNF-α and IL-6 contributes towards
vasculopathy. IL-6 declines lipoprotein lipase activity, which increases lipid uptake
by vessel walls, resulting in atherosclerosis [87, 88]. The WAT secretes serum
amyloid A that also contribute towards atherogenesis [48, 85]. The vascular inflam-
mation is amplified by CRP and increased expression of adhesion proteins and
cytokines that cause adherence of leukocytes in bloodvessels. The inhibition of eNOS
causes vasoconstriction, induction of endothelin-1 and P-selectin, pro-aggregatory
effects, and consequently increases the risk of CVDs [89, 90]. The production of
angiotensinogen and ACE from the adipocytes causes inflammation of blood vessels
through stimulation of MCP-1, VCAM-1, and ICAM-1, increase in blood volume
due to the Na+ and body water expansion. Obesity also causes hardening of blood
vessels by promoting the secretion of aldosterone and stimulating β-1 receptors
present in juxtaglomerular cells of the kidney [91]. Escalation of leptin resistance in
obesity causes insulin resistance, depresses parasympathetic activity and stimulates
sympathetic activity, thereby causing vasculopathy [92, 93].
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The subepicardial adipose tissue (SEAT) releases FFA that provides energy to
epimyocardium and coronary arteries. The nerve growth factor (NGF) and mast
cell infiltration are also expressed in atherosclerotic SEAT. The SEAT produces
atherosclerotic lesions in left anterior descending coronary artery resulting in
myocardial infarction [94].

Obesity-Induced T2D and Associated Complications

Figure 6.2 summarizes obesity induced T2D and associated complications. Insulin
deficiency and hyperglycemia are the key features of T2D. Obesity down-regulates
the GLUT-4 expression and decrease in glucose uptake by tissues and organs,
thereby causing hyperglycaemia [95–97]. On the other hand, obesity-induced up-
regulation of resistin and decreased adiponectin levels contributes to peripheral
insulin resistance.The enhanced levels of bloodglucose andmicroalbuminuria lead to
diabetic nephropathy and cardiovascular complications [48, 57, 98–101]. Sustained
hyperglycaemia-induced oxidative stress also causes retinopathy and neuropathy
[102, 103].

Fig. 6.2 Diagrammatic representation of various mechanisms involved in obesity-induced
metabolic syndrome: increased sympathetic activity, high UCP-2 and low GLUT-4 activity, leptin
resistance, increased production of ROS, pancreatic B-cell dysfunction, reduced insulin sensitivity
and hyperinsulinemia, hyperglycemia and diabetes mellitus. The upward arrows indicate increase
and downward arrows indicate decrease
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Oxidative stress induced by increased glucose level results in the pathogenesis
of various chronic complications of diabetes mellitus [104, 105]. Various metabolic
alterations are induced by hyperglycemia and results in remarkable increase in oxida-
tive stress to cells. Redox imbalance or oxidative stress is the outcome of intense
generation of reactive oxygen species (ROS) and of reactive nitrogen species (RNS)
[106, 107]. When not counteracted by endogenous pro-oxidants and anti-oxidant
molecules, oxidative stress can cause DNA lesions and loss of cell membrane
integrity due to lipid peroxidation as well as protein and carbohydrate structural
changes [107–109]. Oxidative damage is linked to many types of pathologies such as
cardiometabolic diseases (e.g. atherosclerosis, hypertension, T2D, CVDs), neurode-
generative disorders, auto-immune and rheumatic diseases or cancer [107, 110, 111].
Endogenous anti-oxidants that can scavenge free radicals include glutathione and
enzymes (catalase, superoxide dismutase) produced internally, and dietary anti-
oxidants like vitamin A, C and E. Elements like selenium, zinc, copper and iron-
binding proteins such as ferritin and transferrin contribute to anti-oxidant defense by
quenching free radicals and inhibiting lipid peroxidation [112, 113]. Mediterranean
style of diet containing fruits, nuts, vegetables and foods rich in anti-oxidants reduce
the risk of CVDs, T2D, and non-communicable diseases by lowering oxidative stress
in cells [25, 40–42].

Obesity-Induced Renal Malfunction

Figure 6.3 depicts obesity-induced changes in renal architecture and its functions.
In obese persons, the kidney weight is increased by upto 40%. Obesity causes
podocyte injury, expansion of mesangial cells, glomerulosclerosis, and increase
the risk of renal cell carcinoma [16, 114]. As mentioned above, the WAT increases
production of RAAS and inflammatory cytokines, consequently resulting in lipotox-
icity. The leptin resistance suppresses parasympathetic activity and increases renal
sympathetic excitation that alters baroreflex control in obese persons [19, 100]. The
increased production of pro-inflammatory molecules and oxidative stress leads to
renal malfunction [115].

Increase in ACE and angiotensin activities in obesity enhance tubular reabsorp-
tion of Na+ and water by the kidney tubules and lead to efferent arteriolar constric-
tion of glomerulus thereby causing hypertensive nephrosclerosis [116]. Elevated
levels of leptin resistance in obesity may predispose the individual to glomeruloscle-
rosis through up-regulation of transforming growth factor-β (TGF-β). Hyperinsu-
linemia stimulates the production of insulin like growth factors (IGF), that promotes
glomerular hypertrophy, whereas hyperlipidemia promotes glomerulosclerosis with
the engagement of low density lipoprotein receptors on mesangial cells and fibro-
genic chemokines [19]. In nephropathy, there is increase in intimal thickening and
narrowing of lumenof renal arteries and arterioles. The dysregulated adipokines leads
to hemodynamic and structural changes in kidneys and renal malfunction [116, 117].
Diabetes-induced nephropathy and immunoglobulin A induced glomerulonephritis
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Fig. 6.3 Diagrammatic representation of various mechanisms involved in obesity-induced kidney
malfunction and its sequela: renal compression and vasodilation, glomerular hypertrophy, increased
activities of the autonomic sympathetic system and renin-angiotensin-aldosterone system (RAAS),
increased absorption of Na+ and arterial hypertension

are aggravated during obesity [118]. Figure 6.3 summarises obesity induced changes
in renal architecture and its functions.

Obesity-Induced Inflammatory Disorders

Besides secreting beneficial adipokines, the white adipocytes produce pro-
inflammatory cytokines which increase the risk of non-communicable diseases.
Obesity also promotes circulating levels of inflammatory proteins like C-reactive
protein (CRP-1), IL-6, vascular cell adhesionmolecule-1 (VCAM-1), serum amyloid
A3 (SAA3), fibrinogen, IFN-γ, MCP-1, PAI-1 and mast cell degranulation [85, 119].
The bioactive products released from macrophages and mast cells cause inflam-
matory diseases, namely atherosclerosis, osteoarthritis and auto-immune problems.
Obesity-induced collagen deposition results in systemic inflammatory complications
such as thrombosis, vasculopathy, fatty liver, respiratory disorders, glomeruloscle-
rosis, glomerulopathy, decreased in insulin sensitivity, decreased glucose transporter-
4 (GLUT-4) expression, tissue fibrosis and some cancers [14, 85, 119, 120]. Reduced
levels of adiponectin have been noted to suppression of gluconeogenesis and causing
inflammatory disorders [48, 57, 58].
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Conclusion

The occurrence of obesity has escalated globally especially among children and
middle age populations. Increased intake of saturated fat and carbohydrate rich diets
and lower energy expenditure due to inactivity result in excessive accumulation
of WAT in the body. In obese men and women (BMI > 30 kg/m2), WAT plays a
crucial endocrine/paracrine role and secrete a wide variety of adipokines and pro-
inflammatory cytokines. Obesity-induced up-regulation of inflammatory cytokines
are linked with an array of pathological conditions such as hyperglycaemia, insulin
resistance, atherosclerosis, hyperlipidemia, hypertension, and increased risk of T2D,
CVDs, renal dysfunction, and increased risk of breast cancer. The high occurrence
of premature mortality and morbidity associated with obesity, T2D and CVDs create
unusual economic pressure on the family and society as well as national economy
due to prolonged treatment, rehabilitation, hospitalization, drug costs and employee
absenteeism. To decrease the incidences of obesity related complications described
in this review, holistic approaches are needed to educate people about the significant
health risks associated with obesity and to promote healthy eating habits and benefits
of exercise. There is overwhelming evidence that intake of Mediterranean-type diet
containing vegetables, fruits, omega-3-fatty acids, fish and poultry diet, low fat dairy
products and olive oil help to reduce the incidence of obesity as well as obesity linked
disorders discussed in this review.
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Chapter 7
Role of Sodium-Glucose Co-transporters
on Cardiac Function in Metabolic
Syndrome Mammalians

Belma Turan

Abstract Metabolic syndrome (MetS) is increasingly common among humans
all over the world and a combination of serious pathological conditions occurred
together. MetS induces increasing of risks for several organ dysfunctions including
heart and type 2 diabetes (T2DM) since it is closely linked to overweight or obesity
and inactivity among humans, currently, also linking to insulin resistance. To prevent
MetS, it is needed first to have a healthy lifestyle, however, several therapeutic
approaches also are in used to lighten its risky effects. Sodium-glucose co-transporter
2 (SGLT2) and 1 (SGLT1) inhibitors are relatively new glucose-lowering agents that
work by increasing urinary glucose excretion through the kidneys, exerting their
action independently of insulin. However, there are a number of side effects of these
agents in humanswithMetS.Nevertheless, different research teams, recently, demon-
strated that SGLT2 inhibitors (SGLT2is) exert important cardioprotective effects
in patients with MetS and T2DM via lowering the high risks for cardiovascular
morbidity and mortality. Furthermore, it has been also emphasized that SGLT2is-
associated cardioprotection in insulin-resistant overweights rats includes prevention
of prolongation in ventricular-repolarization via marked augmentation of mitochon-
drial function together with normalization of oxidative stress followed by improve-
ment of fusion-fission proteins, without its glucose-lowering effect. Moreover, two
recent clinical studies announced that SGLT2is, electrophysiologically, could provide
marked protective effects on electrocardiographic parameters in T2DM patients.
Therefore, in the present review article, it has been documented the recent data
related to SGLT2is on both experimental and clinical studies and their outcomes in
terms of either adverse, beneficial, or both effects.
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Introduction

Patients with metabolic syndrome (MetS), at most, characterized with insulin resis-
tance and overweight and/or obese body, most of the cells cannot respond to insulin,
and, thereby glucose cannot influx into the cells normally. As a result, a serious
number of pathological stimuli arise into the tissues and related functional changes
in organs [1, 2]. Increased oxidative stress parallel to depressed antioxidant defense in
the heart is onemost common factor in cardiovascular disorders inMetSmammalians
with insulin resistance [1]. In this regard, studies demonstrated elevated oxidative
damage, at most, due to increased reactive oxygen species, ROS, together with
depressed antioxidant protection in patients with the MetS [3–5].

Metabolic syndrome, characterized by insulin resistance and generally further
developed type 2 diabetes (T2DM), is one of the cardiovascular risk factors
for humans, including high blood pressure, atherosclerotic alterations (including
endothelial dysfunction), left ventricular dysfunction (including long-QT syndrome),
and hypertrophy besides others [1, 2, 6]. All those alterations underline serious
cardiovascular diseases. Therefore, it can be clearly understandable why cardio-
vascular diseases arise through more that one reason in MetS humans as well as
experimental animals. Furthermore, studies emphasized that more than one organs
are affected by MetS, together and/or individually [3, 7–10].

One common organ system affected in the MetS is the cardiovascular system.
Among this system, the heart in the MetS is affected by organ-specific insulin
resistance and increased oxidative stress [9–11]. A close relationship between heart
dysfunction and increased oxidative stress (due to both increases in ROS and RNS),
alone and/or together with depressed antioxidant defense in MetS mammalians have
been shownwith the results of many experimental and clinical studies [3, 10, 12, 13].
More importantly, a cross-correlation between systemic insulin resistance, oxidative
stress, and development of T2DM diabetes has been demonstrated with a wide-
spread clinical study [14]. Moreover, the findings of several experimental studies
on MetS emphasized that cardiomyocardium has specific own oxidative stress and
insulin resistance besides systemic ones, which underline the MetS associated heart
dysfunction in mammalians [9, 11, 15–17]. The basic mechanisms responsible for
alterations in the heart in MetS, further leading to cardiac disease, are highlighted in
Fig. 7.1.

Metabolic Syndrome and Heart Function

As mentioned in the introduction and due to already published data, the percentage
of morbidity and mortality is seriously high among humans with MetS [18–20].
According to criteria announced byWHO, patients withMetS have impaired glucose
tolerance, increased levels of insulin triglycerides, and/or low HDL cholesterol in
their sera, parallel to hypertension and high body mass index. These patients usually
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Fig. 7.1 Potential mechanisms are responsible for cardiac dysfunction in metabolic syndrome
mammalians via either high-carbohydrate or high-fat diet. Metabolic syndrome generally is char-
acterized with over body weight, hyperinsulinemia with slightly (but significantly) increased blood
glucose and insulin resistance which followed with type 2 diabetes (T2DM) in humans. All those
changes can basically promote the severe alterations many parameters in cardiomyocytes, such
as decreases in cellular ATP level and mitochondrial functions, decreases in antioxidant defense
system together with increases in oxidative stress. All those changes underline the development of
serious cardiac dysfunction in mammalians

have insulin resistance and then followed with T2DM. In these regards, Tenerz
A, and co-workers demonstrated nicely the cross-correlation between diabetes and
insulin resistance in patients with MetS who have an acute myocardial infarction
(using a data from a total of 145 patients) without previously known T2DM [20].
A population-based study performed among 106,470 residents of Olmsted County
who have abnormal cardiac structure and function in the MetS is given by Aijaz and
co-workers [21]. Interestingly, their data demonstrated that womenwithMetS had an
incidence of early left ventricular dysfunction characterized by increased mass index
and diastolic dysfunction in the left ventricle. Moreover, the relationship between
oxidative stress and cardiovascular dysfunction in the MetS and diabetes has been
documented, previously [1, 22]. As an example, authors have shown that there is
a close relationship between increased oxidative stress with depressed antioxidant
defenses definite with decreased superoxide dismutase activity in a patient with the
MetS [5, 12].
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Microscopic analysis of the heart tissue documented that there weremarked disor-
ganization of cardiac myofibrils parallel to the loose of their integrity, smaller diame-
ters in myofibrils, increases in the content of connective tissues localized to myofib-
rils and vessels in the heart and vessels isolated from MetS rats [11]. There were
also significantly seen intracellular vacuolization, intracellular lipid inclusion, and
alterations in both composition and function of cardiomyocyte organelles in left
ventricular cardiomyocytes fromMetS rats. Notably, most of all those changes were
supporting the hypothesis onMetS-associated direct targeting of heart with increased
oxidative stress. In addition, similar findings in MetS heart were already shown such
as significantly pale staining in tissue sections, eosinophilia loss in some myofibrils,
and marked heterogeneity in the cytoplasm [23, 24]. Indeed, all those changes are
linking to intracellular vacuolization and defects of organelles, ones similar to those
of observed streptozotocin-diabetic rat heart [25]. More importantly, those structural
alterations have been demonstrated in other animal models with increased oxidative
stress status [23]. Of note, those changes observed in the heart of animals either
MetS and/or increased oxidative stress conditions are fitting to the changes observed
in individuals having obesity [24].

Experimental data provided further information related to the demonstration of
the role of oxidative stress on heart dysfunction in MetS mammalians. In the concept
of this information, research data showed seriously production of hydrogen peroxide,
increases in lipid and protein oxidation in the heart of obesity-related diabetic mice
[26].More importantly, development of insulin resistance inmicemarkedly increased
a direct ROS production the heart, being independent of hyperglycemia and hyper-
insulinemia [15], while and the cardiac high superoxide production and depressed
antioxidant enzymes were also observed in the high fat-diet fed rats [16, 17].

In the subcellular levels, both experimental and clinical data emphasized thatmito-
chondrial dysfunction plays an important role in the pathogenesis ofMetS-associated
heart dysfunction. Indeed, even early studies have pointed out not only hyperlipi-
demia or hyperinsulinemia but also every component of the risk factors associated
with MetS can modulate independently the mitochondrial function [17, 27, 28].
Besides animal model studies [29], clinical data in obese or T2D patients showed
the changes in cardiac oxygen consumption, the ratio of phosphocreatine/ATP and
atrium mitochondrial oxygen consumption [30–32]. As summary, the mechanisms
for impaired cardiac mitochondrial function in the MetS include the insulin resis-
tance, mitochondrial uncoupling, increased mitochondrial oxidative stress [33], and
impaired mitochondrial Ca2+-handling [9, 34, 35].

Of note, although obesity is one of the well-characterized risk factors for heart
failure in MetS individuals, some authors, depending on the outcomes of studies,
discussed “the obesity paradox” for heart diseases in humans whether as a true
protective effect or not [36]. Despite the close correlation between MetS and cardiac
dysfunction, numerous studies have documented that individuals with overweight
and/or obese and diagnosed with cardiovascular disease, have a better prognosis
than the none of ones with overweight or obese patients [37]. In this regard, some
studies also reported that patients with higher BMI have more convenient lifespan
than those of lower BMI as well as high rates of hypertension and T2DM [38–40].
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In those studies, authors even showed that cardiovascular mortality was significantly
lower in both overweight and obese patients comparedwith that in slimones.Notably,
these observations were also observed in patients regardless of their age and gender
differences, as well as regardless of their systolic or diastolic heart failure [40]. More
importantly, some studies also reported that MetS patients with heart failure without
T2DM had the best survival compared to those of heart failure patients without
T2DM, whereas heart failure patients with T2DM (non MetS) showed the worst
survival compared to the other groups [41].

As a summary, both experimental and clinical investigations have shown that the
structure of the left ventricle is significantly impaired in patients with MetS, together
with left ventricular both systolic and diastolic dysfunctions. Thus it can be concluded
that the impaired global left ventricular function is actually the result of impairment of
several factors, including increased oxidative stress in MetS individuals. The degree
of structural and functional damage increased with the number of risk factors for
MetS. Further studies are necessary for complementing the influence of MetS on the
left ventricular structure and function. Findings show that not only structure but also
a function of the heart are affected by every component of the MetS as either alone
or multi-factorial ways as well as either independently or combined manner. It is
well-accepted that their combination effects affect the heart more seriously [13, 42].

Role of SGLTs in Cardiac Function

One of the glucose transporter families is membrane specific carrier proteins, named
as the sodium-glucose cotransporters (SGLTs). Two members of this family are
SGLT1 and SGLT2 which are functioning as sugar transporters across the cell
membrane. T2DM, with importantly increasing rate among humans all over the
world, and heart failure coincide, usually, and, in turn, it can contribute to develop-
ment of heart failure, while an important percentage of heart failure patients have
T2DM [43, 44]. This serious event faced highlights our needs to develop novel
therapeutic agents, which will not only improve the altered glycemic system but
also protect the cardiovascular system against hyperglycemia and hyperinsulinemia
associated damages.

Many anti-diabetic agents drugs were used for different trials as parallel to insulin
therapy, includingmetformin groups [45, 46] and incretin therapies, including dipep-
tidyl peptidase-4 (DPP-4) inhibitors [47]. However, there are no consistent findings
associated with the well-controlled progress in the disease. SGLT2 inhibitors are
oral antidiabetic agents currently approved for the treatment of T2D [48]. It has been
demonstrated SGLT2 inhibitors (SGLT2i) could reduce alterations in cardiovascular
events under cardiovascular outcome trials [49–53]. SGLT2is, despite these compen-
satory mechanisms, due to the positive effects on lowering the hyperglycemia, they
exert clinically relevant promoting theweight loss of obese and/or overweight people.
Furthermore, the combination of SGLT2 inhibitors with other drugs seems to have
more efficient for protection and management of T2DM [54–58].
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Although it has been documented that SGLT1 expression was in the small intes-
tine, liver, lung, kidney, and heart, we, recently, demonstrated that SGLT2 expression
is not only in the kidney [59] but also in the heart, as well [34]. Several theories have
been put forward to explain the profound beneficial effects of SGLT2is on cardio-
vascular disorders [53, 60], Turan’s team demonstrated that their cardioprotective
action was due to their existence in the heart thereby directly affecting the cardiac
system under hyperinsulinemia and hyperglycemia [34]. Due to both our findings
and literature data, SGLT2is, including empagliflozin, provides marked cardiopro-
tection through reducing the hyperglycemia in T2DMpatients via increasing glucose
excretion via renal system, thereby reducing the occurrence of nonfatal myocardial
infarction, or nonfatal stroke and finally decreasing the cardiovascular mortality
[61–63] whereas some of them demonstrated SGLT2is empagliflozin did not affect
the rates of myocardial infarction or stroke but reduced the rate of cardiovascular
mortality, admission for heart failure, and all-causemortality [49]. Besides cardiopro-
tective actions, SGLT2 inhibition reduces inflammation and attenuates nephropathy
in T2DM patients [64]. More importantly, some studies emphasized the beneficial
effects of SGLT2is as their action on the body weight lose [63, 64].

Consequently, it can be summarized that cardiovascular outcome trials have
shown why SGLT2 inhibitors are effective anti-diabetic agents to reduce cardio-
vascular alterations, particularly heart failure in diabetic patients. However, there is
an important mechanistic discussion on the context of completed and ongoing trials
of SGLT2is in the prevention and treatment of heart failure in individuals with and
without diabetes. Therefore, one can suggest putative mechanisms associated with
the underlying events of SGLT2is-related cardioprotection: SGLT2i can (1) recover
the depressed cardiac metabolism and bioenergetics [65, 66] and myocardial Na+/H+

exchange [56, 67], (2) improve the ventricular loading via a reduction in increased
both preload and afterload, due to, at most, reduction in high blood pressure [53,
60, 68], (3) recovery in stuructural alterations in both kidney and heart [69], and
(4) improvement in adipokines and cytokines and adipose tissue accumulation into
epidardium [70, 71].

SGLT2 Inhibitors and Cardiovascular Protection:
Experimental and Clinical Trial Outcomes of Diabetics

Generally, it had been preferred the use of insulin in T2DM patients for a long
time, the high mortality rates and uncontrolled glycemic level with serious cardiac
problems could not be prevented. Therefore, besides insulin and insulin-sensitizing
therapy, in the recent decade, some clinical trials outcomes demonstrated the impor-
tant benefits with non-insulin therapies on glycemic control and heart dysfunction
[72]. Among them, the first experimental studies tried to asses their in vitro and
in vivo pharmacology in either hyperglycemic cells or T2DM animals [73]. Han
et al. performed the experimental studies with SGLT2is (i.e. dapagliflozin) and used
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both acute and multi-dose studies in normal and diabetic rats to improve fed and
fasting plasma glucose levels as well as to improve glucose utilization after multi-
dose treatment [73]. Their data strongly emphasized that SGLT2is can be accepted
as an efficacious treatment for T2DM. Latter experimental studies with SGLT2is
provided important novel mechanisms associated with their benefits, particularly
in cardiovascular disorders. Hansen HH et al. treated Zucker diabetic fatty rats
with empagliflozin and showed that this inhibitör preserved β-cell mass through
the restoration of glucose homeostasis, at most, through insulin-independent path-
ways [74]. In another study, using dapagliflozin, Lee T-M et al. also provided a novel
mechanism of SGLT2is-associated cardiac benefits including attenuation of cardiac
fibrosis, which is through the regulation of the macrophage polarization via STAT3
signaling in infarcted rat hearts [69]. More importantly, we also demonstrated, for
the first time, that dapagliflozin-treatment of MetS rats, but not insulin-treatment,
provided important cardioprotective action, at most, though not only ECG (preven-
tion of QT-prolongation) but also improvements in the depressed left ventricular
developed pressure, heart rate and relaxation activity of vessel system [34].

Most of the studies on the cardioprotective role of SGLT2 inhibitors are concen-
trated in the field of their important cardioprotection in T2DM patients. Although
diabetes mellitus is still very complex and a set of syndromes and requires medi-
cations usually insulin for T1DM and oral antidiabetics for T2DM, SGLTis are
new classes of antidiabetic drugs, working via kidney system to extrude the urinary
glucose [38–40, 75].

Comparison to that SGLT1, SGLT2 is a low affinity but high capacity transporter
and works to absorb the most of glucose in the proximal tubule in humans [76].
Although it was believed that SGLT2 exists in the kidney while SGLT1 is found in
the skeletal muscles and heart, recently the presence of SGLT2 in the mammalian
cardiomyocytes has been demonstrated [34]. Among others, SGLT2is did bring an
imposing strategy for the treatment of T2DMpatients, particularly against cardiovas-
cular disorders. More importantly, besides their insulin-independent effects, clinical
outcomes led to re-consider their protective actions when used in multi-drug treat-
ment approaches [57, 58]. With this consideration, the recent studies emphasized the
benefits of using an SGLT2i in dual combination with metformin and triple combina-
tion with a glucagon-like peptide 1 receptor agonist, dipeptidyl peptidase 4 inhibitor,
or other glucose-lowering agent to treat T2DM patients [57, 77]. However, a number
of questions appeared on the reduction of cardiovascular disease outcomes trials with
SGLT2is.

If one looks at the literature data on SGLT2is-associated outcomes,Vasilakou et al.
performedameta-analysis and examined theglucose-lowering efficacyofSGLT2is in
T2DM patients through analysis of renal function [78]. Their data demonstrated that
SGLT2is increased plasma glucagon levels and stimulated hepatic glucose produc-
tion, via being independent of insulin resistance andβ-cell damage. Similarly, another
study performed in T2DM patients, Zinman et al. performed a clinical study by
using a SGLT2 inhibitor, in addition to standard care, on cardiovascular morbidity
andmortality at high cardiovascular risk (EMPA-REGOUTCOMETrial) while their
data provided important novel action of SGLT2is in T2DMpatients through inducing
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lower rate of cardiovascular complications [49]. Following these important clinical
trials reports, SGLT2is is advanced to use primarily by clinicians for their benefits in
the prevention of cardiovascular disease, rather than focusing on their glucose-control
in T2DM patients. Another cardiovascular trial outcome study with SGLT2is was
CANVAS program [52]. They performed the analysis in over 10,000 T2DM patients
with high risk for cardiovascular disease. They used canagliflozin and demonstrated
that this inhibitor provided also important benefits in renal pathologies. In both clin-
ical trials, the collected data showed that the promise findings associated with low
hospitalization period for cardiac diseased patients. In addition, the results of Han JH
et al. provided new information related with SGLT2is benefits such as antiatheroscle-
rotic action and lowering of the levels of C-reactive protein, tumor necrosis factor-α,
interleukin-6 and monocyte chemoattractant protein-1 in sera [79]. Similar to our
experimental findings, Sato T et al. examined the efficiency of different SGLT2is on
the reversibility of ventricular repolarization heterogeneity in T2DM patients [80].
Their analysis demonstrated the normalization of QTc dispersion, independently of
their effects on glycaemic control in those patients.

Taken into consideration the data with clinical trials outcomes, authors and the
publication of DECLARE–TIMI 58 (https://www.jwatch.org/na47925/2018/11/10/
cardiovascular-effects-sglt2-inhibitors), in very important review articles, empha-
sized that SGLT2is have unique actions inT2DMpatients such as lowering highblood
glucose being independent of insulin level with acceptable risk factor profiles as well
as their benefits in cardiovascular endpoints and sympathetic overactivity [53, 81–
84]. However, the mechanisms by which SGLT2 inhibition improves cardiovascular
outcomes are not fully understood.

Effects of SGLT2 Inhibitors on the Morphology of the Heart

Studies have shown that demonstration of the effects of SGLT1is on the heart is
a relatively easy compared to those of SGLT2is because there are importantly high
expression levels of SGLT1s inmammalian hearts,while SGLT2s are expressed in the
kidney [85]. Furthermore, we recently have shown the important amount of SGLT2
expression in left ventricular cardiomyocytes from male rats, while its expression
was found to be increased significantly in the cardiomyocytes from MetS rats [34].

In experimental studies, dapagliflozin treatment of infarcted rats provided impor-
tant attenuation in cardiac fibrosis as well as increases in the collagen formation in
the left ventricle [69]. In that study, light microscopy analysis demonstrated that the
infarcted area of the left ventricle in dapagliflozin-treated rats was very thin. In addi-
tion, there was differentiated scar tissue four weeks after infarction. Those benefits
in those hearts were confirmed with the increased maximal rate of left ventricular
contractive and relaxation activities favorable remodeling in the left ventricle.

Histologic investigations in the heart from diabetic, the heart failure modeled, and
also the myocardial ischemic modeled experimental animals treated with SGLT2is
have shown the marked improvements in the morphology of those samples [86–88].

https://www.jwatch.org/na47925/2018/11/10/cardiovascular-effects-sglt2-inhibitors
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Those reports demonstrated that SGLT2is could significantly decrease the weight
of left ventricle, at most, reduction in cardiomyocyte size, interstitial fibrosis, and
infiltration of interstitial macrophage. In addition, those treatments induced a signif-
icant improvement in both tissue and cardiomyocyte levels, such as decreasing
in the cross-sectional area of cardiomyocytes and inhibition in collagen I and III
depositions [55]. Furthermore, the data with Lin et al. reported that empagliflozin
could decrease the fibrosis and thickening in pericoronary arteria [88]. Moreover,
Hammoudi et al. studied the effect of empagliflozin in genetic diabetic mouse [89].
Authors have demonstrated the prevention of the cardiac hypertrophy and remod-
eling markers (such as extracellular signal-regulated kinases, c-Jun NH2-terminal
kinases, and p38) [90], as well as significant attenuation in disordered cell arrays
and focal necrosis with that treatment, markedly [91]. All those reports clearly
suggest that SGLT2is are potentially important agents to improve the morphology
of the diabetic heart. More importantly, the reports on the investigation of SGLT2is
treatment (i.e. dapagliflozin) in different pathological heart models (i.e. myocardial
ischemia, heart failure), showed that those drugs could attenuate myocardial infarct
size [92], myofibroblast infiltration and cardiac fibrosis [69] while empagliflozin
pretreatment improved the cardiac edema and deformed cardiac chambers [53, 93].

There are also important reports related to the effects of SGLT2is and human
heart tissue. Lin et al. treated T2DM patients with empagliflozin treatment of T2DM
patients and reported that that treatment improved cardiac interstitial fibrosis, coro-
nary arterial thicking and remodeling, cardiac interstitial macrophage infiltration and
cardiac antioxidant enzyme levels as well as vascular dysfunction [88]. In a recent
clinical trial, Januzzi et al. also tested the effect of canagliflozin treatment for 2-
year inelderly T2DM patients and their data demonstrated that the SGLT2i treatment
prevented the alterations not completely but delayed the development of heart failure
compared to nontreated group [94]. Overall, taken into consideration the outcomes of
the clinical trials documented widely in recent review articles, SGLT2is have cardio-
protective effects in not only T2DM but also other types of the pathological heart
[58, 82]. Of note, it seems even great need to substantiate their safety and efficacy,
the recent reports emphasized the important valuable therapeutic side of SGLT2is
for reduction of cardiovascular risk in diabetic patients as well as for acceptable
preventive agents in nondiabetic patients.

Effects of SGLT2 Inhibitors on Cardiac Oxidative Stress

There is a number of proposals on the potential mechanisms responsible for cardio-
protection with the treatment of SGLT2is in different types of cardiac pathologies.
Considering the current findings, it can be proposed that the direct cardiac-targeting
effect of SGLT2is includes their effects mediated through reduction of oxidative
stress and recovery in both ionic dyshomeostasis and mitochondrial dysfunction
in cardiomyocytes, besides their systemic effects by hemodynamic and metabolic
actions [95, 96].
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The cardiac effects of SGLT2is are demonstrated by different research teams
through their effects on cardiac oxidative stress. Indeed, the important role of
increased oxidative stress in the pathogenesis of cardiac pathologies including hyper-
trophy and remodeling as well as diabetic cardiomyopathy [97–100]. The contri-
bution of increased oxidative and nitrosative stress to hyperglycemia associated
cardiomyocyte dysfunction was widely investigated by Turan’s team using different
animal models [25, 97, 98, 101–104]. In those studies, antioxidants, and agents
having antioxidant-like actions provided important cardioprotection against desired
increases in oxidative stress at both system and cell levels. Recent investigations, at
both experimental level and clinical outcomes, have shown that SGLT2is can present
effects through their antioxidant actions, independent from their glucose-lowering
effects. In these regards, we and others treated genetically prediabetic and/or MetS
rats with SGLT2is and demonstrated their action on the reduction of increased oxida-
tive stress at tissue, cellular and systemic levels, significantly [34, 69, 87, 88, 105].
These recoveries in oxidative stress are parallel to the augmentation in both struc-
ture and function of the samples. Consistent with previously published findings, we,
recently, determined the levels of ROS and RNS in isolated left ventricular cardiomy-
ocytes fromMetS rats, using specific fluorescence probes for the production of these
oxidant agents. Dapaliflozin treatment of the MetS rats protected significantly the
cells against the production of these oxidant agents and the levels of both ROS and
RNSwere found to be a similar level to those of control cells [34]. As a summary, one
can propose that all above cardioprotective effects of SGLT2is might be attributed
to their direct cardiac-targeting effect, at least, due to lowering of cardiac oxidative
stress, being independent of their antidiabetic actions.

Effects of SGLT2 Inhibitors on Ultrastructure and Function
of Mitochondria in Hyperglycemic Cardiomyocytes

It is well known that there is a close relationship between the increased amount
of ROS production and mitochondrial dysfunction in cells. Supporting this state-
ment, several reports demonstrated how mitochondria are crucial in different intra-
cellular signal transduction pathways, in part, through changes inmitochondrial Ca2+

([Ca2+]Mit)-homeostasis in cardiovascular diseases [106–108]. Indeed, even early
studies emphasized the mitochondrial role in energy production, and thereby, a
well-controlled modulation of [Ca2+]Mit-homeostasis also in cardiomyocytes among
others [109–111].More importantly, studies also have shown the association between
mitochondrial dysfunction and decreased ATP production [112], while a reduction
of ROS via mitochondria-sensitive protein modifications prevented chronic heart
failure associated remodeling [113, 114] as well as the role of this relation in devel-
opment of glucose tolerance, insulin resistance, and cardiac diastolic dysfunction in
mammalians [108].
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We and others have shown the association betweenmitochondrial dysfunction and
the development of diabetic cardiomyopathy [34, 115, 116]. Furthermore, our recent
data, as well as other reports, showed the benefits of SGLT2is treatment on mito-
chondrial dysfunction in rat diabetes models [34, 86, 92]. SGLT2is exerted important
benefits on the morphology of mitochondria in diabetic animals, such as attenuation
in abnormal inter-myofibrillar mitochondria, normalization of disorganized sarcom-
eres, recovery in reduced matrix electron density, loss of cristae and mitochondrial
fragmentation [86]. Consisting of those findings, there were irregularly partitioned
and clustered inter-myofibrillar mitochondria, together with numerous lysosomes
and irregularly arranged mitochondrial crysta in isolated ventricular cardiomyocytes
from MetS rats (Fig. 7.2). Furthermore, we observed marked recovery in inter-
myofibrillar mitochondria, normal appearance of sarcomere organizations and very
little amount fragmented mitochondria in isolated cardiomyocytes from MetS rats
treated with dapagliflozin (Fig. 7.3). More importantly, when we treated the MetS
rats with insulin, we observed more fragmented mitochondria and numerous lyso-
somes together with a reduced but still significant amount of irregularly arranged
mitochondrial crysta in those cardiomyocytes (Fig. 7.4).

SGLT2is were used for the recovery of mitochondria in other types of cardiac
pathologies such as ischemia–reperfusion, cardiac arrest, and diabetes [92, 117–119].
In most studies, dapagliflozin treatment prevented the depolarization and mitochon-
drial swelling, markedly improved the mitochondrial morphology through attenu-
ating mitochondrial fragmentation, loss of cristae and fusion of cristae. Furthermore,
dapagliflozin treatment increased the expressions of some proteins essential for the
regulation of cardiac mitochondrial fatty acid oxidation and some others such as

Fig. 7.2 Electron microscopic examination of isolated cardiomyocytes from the MetS rats. Rats
were received 32% sucrose into their drinking water for 30 weeks and then the development of
metabolic syndrome (MetS) was confirmed by determination of body weight, fasting blood glucose
level, insulin level, oral glucose tolerance test, and insulin resistance, as described elsewhere [10, 11].
Transmission electron microscopy analysis (LEO Electronenmikroskopie, Oberkochen, Germany)
showed that there aremarkedly observed irregularly partitioned and clustered intermyofibrillarmito-
chondria, numerous lysosomes, irregularly arrangedmitochondrial crysta in isolated left ventricular
cardiomyocytes. Shorten symbols are m; mitochondrion, L; lysosome, arrow; Z-line, thin arrow;
T tubules, asterisk; partitioned mitochondria. Magnifications: ×7,750 (left), ×10,000 (middle), ×
21,560 (right)
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Fig. 7.3 Electron microscopic examination of isolated cardiomyocytes from dapagliflozin treated
MetS rats. MetS rats were treated with dapagliflozin (5 mg/kg, Bristo-myers SquibbManufacturing
Company, Humacao, Porto Riko) for 2 weeks. The freshly isolated left ventricular cardiomyocytes
were examined with transmission electron microscopy analysis (LEO Electronenmikroskopie,
Oberkochen, Germany). In these samples, there are the well-organized intermyofibrillar mitochon-
dria along sarcomere and there are a very little number of partitioned mitochondria can be detected.
Shorten symbols: N; nucleus, m; mitochondrion, L; lysosome, arrow; Z-line, thin arrow; T-tubules,
asterisk; mitochondria. Magnifications: ×7,750 (left), ×10,000 (middle), ×21,560 (right)

Fig. 7.4 Electron microscopic examination of isolated cardiomyocytes from insulin-treated MetS
rats. For comparison to dapagliflozin effect, MetS rats were treated with insulin (0.15 mg/kg,
Humalog Mix25 Kwikpen, Lilly) for 2 weeks, and then the isolated left ventricular cardiomyocytes
were examined with transmission electron microscopy (LEO Electronenmikroskopie, Oberkochen,
Germany). There are relatively less but significantly seen lysosomes and partitioned mitochondria
with relatively organized intermyofibrillar mitochondria along sarcomere in these samples. Shorten
symbols:m; mitochondrion, L; lysosome, arrow; Z-line, thin arrow; T-tubules, asterisk; partitioned
mitochondria. Magnifications: ×7,750 (left), ×10,000 (middle), ×21,560 (right)

DRP1, MFN1, MFN2 and OPA1 responsible from proper mitochondria functioning
[92, 115, 117–120].

Overall, it can be concluded that a strategy with SGLT2is to improve mitochon-
drial dynamics, mitochondrial function, as well as mitochondrial morphology, ROS
production, biogenesis and protein expressions would help to attenuate the devel-
opment of risk factors for cardiovascular dysfunction under not only hyperglycemia
but also other pathologies in the body of mammalians. However, these benefits are
still unclear and need further investigations.
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Beneficial Effects of SGLT2 Inhibitors on Ionic Mechanisms
in Hyperglycemic Cardiomyocytes

Metabolic syndrome is metabolic syndrome and closely associated with overweight-
ness and/or obesity in humans, which is generally followedwith T2DM.More impor-
tantly, this syndrome has also serious risk factor for cardiovascular disorders, charac-
terized with insulin resistance and long-QT interval in their ECGs [121–125]. Since
the very long period, it is well known that there are severe alterations in the heart
from diabetics, basically left ventricular dysfunction, decreases in the heart rate,
and increases both systolic and diastolic pressures. In a short statement, there are
marked depressions in both electrical and mechanical properties of the myocardium
from diabetics, at both body and organ as well as cardiomyocyte levels [126–131].
Besides above studies, we investigated the contribution of altered sarcoplasmic retic-
ulum (SR) function to altered intracellular Ca2+-cycling in isolated left ventricular
cardiomyocytes from MetS rats with depressed left ventricular function [9]. Our
single cell level examinations demonstrated that there weremarkedly increased basal
level of Ca2+ consisting with depressed SR Ca2+-loading and SERCA2a activity, and
leaky-ryanodine receptor (RyR2) function and inhibited sodium-calcium exchanger
(NCX) [9]. Furthermore, we have also shown that there were markedly prolonged
action potentials, at most, through inhibited voltage-dependent K+-channel currents
[34]. In that study, we also determined significantly increased voltage-dependent
Na+-channel currents with no change in voltage-dependent Ca2+-channel currents
as well as increased intracellular pH level. Importantly, dapagliflozin treatment of
eitherMetS rats of cardiomyocytes isolated fromMetS rats exhibited marked protec-
tion against all above changes [34]. Our investigations with SGLT2i in MetS rats,
overall, confirmed the previous clinical outcomes through a mechanism of insulin-
independent pathways, in part, mediated with well-controlled oxidative stress in
cardiomyocytes.

Among well-known events contributing to maintenance of cardiac function under
physiological condition, intracellular homeostasis of both Ca2+ and Na+ are impor-
tant players in cardiomyocytes and both can increase in hyperglycemic heart, further
leading to heart failure [132–135]. Experimental studies with SGLT2is have shown,
depending on either SGLT2 activity or not, the important benefits via improvement
of intracellular Ca2+ and Na+ levels in cardiomyocytes [67]. This inhibitor treatment
also exhibited marked normalization in mitochondrial Ca2+ level, either directly or
indirectly [34]. Moreover, the authors mentioned that those effects with SGLT2i
were similar to the effect of Na+/H+-exchange inhibitor [135]. Moreover, it has
been emphasized that NHE inhibitors directly inhibited cardiac NHE inducing a
markedly controlled intracellular level of Na+ and mitochondrial Ca2+ level, which
can further prevent sudden cardiac death in mammalians [136, 137]. In addition,
other actors, played an important contribution to cytosolic ionic levels, can also
be under controlled with SGLT2is in diabetics [138]. In that concent, we, recently,
have examined the effect of SGLT2i, dapagliflozin, on cardiac Zn2+-transporters and
cellular Zn2+-level as well as oxidative stress and matrix metalloproteinase (MMP)
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status in MetS rat cardiomyocytes [139]. In that examination, we demonstrated
that dapagliflozin treatment of MetS rats presented an important anti-oxidant like
action and therefore provided marked protective effect on cellular Zn2+-homeostasis
affecting protein expression levels of Zn2+-transporters, MMPs. And increased
oxidative stress. Overall, all above reports strongly imply the important roles of
SGLT2is in cardiovascular disorders, under pathological conditions, at most under
hyperglycemic and hyperinsulinemic conditions in mammalians.

Conclusions

Following a demonstration of antidiabetic agents, SGLT2is were generally under
use for diabetics as a novel approach, at most through their inhibitory action on
renal glucose reabsorption. After the discovery of their preventive actions on the
development of risk factors for heart dysfunction, independent of their glucose-
lowering effects, SGLT2is are currently used as cardioprotective agents, at least, to
reverse the ventricular repolarization heterogeneity, not only in T2DM patients but
also other patients with heart failure, independent of their glycemic control action
[53, 56, 58, 80, 95, 140–142]. Those cardioprotective effects of SGLT2is include
their mediation to reduce inflammation, oxidative stress, apoptosis, mitochondrial
dysfunction and ionic dyshomeostasis at the cellular level in the heart.

Taken as a whole, the results of recent cardiovascular protection with SGLT2is, in
different pathological conditions, support the opening of a new therapeutic approach
for the prevention of cardiovascular risk factors. However, more studies associated
with the efficacy and safety of those inhibitors are needed for a better understanding
of their meditative actions in the cardiovascular system. Overall, the reports on bene-
ficial effects of SGLT2is, a new class of anti-diabetic agents, can confer significant
cardiovascular protection in patients with different origins.
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Chapter 8
The Roles of HIFs in the Complications
of Diabetes

Nuray Yazihan and Mehtap Kacar

Abstract Diabetes is mainly defined as disturbances of glucose and lipid
metabolism, and characterized by hyperglycemia. The progress of diabetes affects
most of the tissues and organs such as endothelium, retina, heart, kidney, and brain.
Glycolysis and metabolism are controlled by oxygen (O2) which is essential for
the maintenance of life of all aerobic organisms. Disturbances of O2 level results
in disturbed mitochondrial respiration, metabolic and oxidative stress. Generally
adipose tissue O2 level is lower than the alveolar and vascular area and brown and
white adipose tissues have differentO2 concentrations.With increased nutrient intake
and expansion of adipose tissue, O2 need will be increased and induce hypoxia-
inducible factors (HIFs). Insufficient vasculature and blood flow to adipose tissue
increase expression ofHIF-1 dependent genes to induce angioneogenesis. Hypoxia in
adipose tissue and adipocytes was shown to inhibit insulin-responsive pathways such
as IRS and protein kinase B, receptor autophosphorylation and insulin-dependent
glucose transport and have the capacity to control inflammation and immune cell
polarity. These mechanisms and cascades take part in the pathogenesis of metabolic
syndrome and diabetes and subsequent complications. In this chapter, we will
discuss the role of HIFs in the pathogenesis of diabetes-associated vascular and
renal complications.

Keywords Hypoxia inducible factors (HIF) · Diabetes · Adipocyte ·
Mitochondrial stress · Cardiovascular complications
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Oxygen (O2) is essential for the maintenance of life of all aerobic organisms. O2

is needed for aerobic glycolysis. Decreased O2 level disturbs mitochondrial respira-
tion and oxidative phosphorylation, inducesmitochondrial stress and starts anaerobic
metabolism. Tissue O2 level, especially adipose tissue O2 level is lower than alveolar
and vascular area. O2 levels are lower in white adipose tissue compared to brown
adipose tissue. Both acute and chronic excessive intake of nutrients results in adipose
tissue expansion especiallywhite tissue expansion by a combination of increase intra-
cellular lipid deposition, hypertrophy and hyperplasia of adipocytes. Increased fat
volume needs more O2 and induce hypoxia inducible factors (HIFs). Insufficient
vasculature and blood flow to adipose tissue increases expression of HIF-1 depen-
dent genes to support angioneogenesis. Hypoxia in adipose tissue and adipocytes
was shown to inhibit insulin responsive pathways such as IRS and protein kinase B,
receptor autophosphorylation and insulin dependent glucose transport. Both induc-
tion of hypoxia with cobalt, and overexpression of HIF-1 in adipocytes were shown
to decrease insulin responses [20, 42, 51, 52].

Pancreatic islets receive almost 1/6 of pancreatic total blood flow, but they only
account for 1–2% of the volume. Blood supply and O2 content is important for regu-
lation of endocrine function of the pancreas. During hyperglycemia, islet cells need
more oxygen and in case of O2 deficiency pseudohypoxia occurs. HIFs are critical
for switching from aerobic to anaerobic glycolysis by induction of GLUT1, multiple
glycolytic enzymes and most importantly control of excess mitochondrial oxygen
consumption. Chronic intermittent hypoxia interferes pancreatic β-cell function and
impairs basal and glucose induced insulin secretions. Chronic hypoxia disturbs mito-
chondrial functions and increases reactive oxygen radical formation which further
increases the pancreatic damage [15, 53, 54].

It is well known that hypoxia has a significant role on adipocyte functions, control
of metabolism and development of inflammation in obesity-related diseases espe-
cially in the pathogenesis of metabolic syndrome, diabetes and subsequent compli-
cations. In this chapter we will discuss the role of HIFs in pathogenesis of diabetes
associated vascular and renal complications.

Hypoxia Inducible Factors

Hypoxia inducible factors (HIFs) play important roles in cellular adaptation to
hypoxia inflammation, stress conditions and nutrient deprivation. There are three
members of the family: HIF-1α, HIF-2α, HIF-3α. HIF-1α and HIF-2α are the
main factors that regulate hypoxic responses. HIF-1α is associated with glycolytic
gene expression, whereas HIF-2α is associated with lipid metabolism. Expres-
sion of erythropoietin is under control of HIF-2α. HIF-1α is found decreased
during preadipocyte to adipocyte differentiation. HIF-2α and HIF-3α expressions
are increased in mature adipocytes. HIF-2α-specific target genes are involved in
the regulation of function and/or differentiation of stem cell, cell cycle progres-
sion of renal carcinoma cells. ATP dependent K channels are main regulators of
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metabolism, insulin secretion and glucose transport are also under control of HIF-
1α. Although limited information is found about HIF-3α; its isoforms HIF-3α2 and
3α3 inhibit HIF-1α and HIF-2α gen expressions; and hypoxia activated glycolytic
genes [3, 11, 22, 23, 34, 46].

In hypoxic conditions, HIF-1 pathway regulates the responses of organism. There
are two different subunits, HIF-1α and HIF-1β, and they are encoded by the HIF1α
and HIF1β genes, respectively. Both of subunits are expressed constitutively, but
hypoxia affects only HIF-1α expression. HIF-1α undergo degradation by oxygen
dependent reactions in normoxia, the changes in the transcription of hypoxia related
genes are not induced. The prolyl hydroxylase domain proteins (PHDs) of HIF-1α
continueswith hydroxylation reactionwith oxygen and convert prolines. The hydrox-
ylated prolines noticed by the von Hippel-Lindau (VHL) protein, then ubiquitination
occurs and is degraded in the 26S proteasome. In hypoxic conditions, degradation of
HIF-1α is inhibited. Then, HIF-1α and HIF-1β subunits generate a heterodimer and
translocate to the nucleus. HIF-1α binds to hypoxia-responsive elements (HREs) on
DNA, and affects several hundred hypoxia-responsive genes. As response to hypoxia,
HIF-1 signaling triggers many different adaptive and responsive signaling pathways
such as the switch from oxidative phosphorylation to anaerobic glycolysis, angiogen-
esis, erythropoiesis, and cell survival. The responses to physiological hypoxia can be
observed during development and growth process of human life. The pathological
hypoxia presents during pathophysiological events [9].

HIFs are oxygen sensitive response factors that regulate metabolic adaptation.
Now, it is accepted that HIFs are master regulators of all hypoxic responses and
cellular survival. HIFs have a central role in control of crosstalk between inflamma-
tory cells and tissue microenvironment. HIFs are oxygen sensitive response factors
that regulatemetabolic adaptation. Now, it is accepted that HIFs aremaster regulators
of all hypoxic responses and cellular survival. HIFs have a central role in control of
crosstalk between inflammatory cells and tissue microenvironment. While adipose
tissue increases in size, vascular supply need will be increase and in the case of inad-
equate O2 supply local hypoxia will occur. Local hypoxia will induce HIF-1 related
genes that will activate local inflammation, fibrosis, neoangiogenesis, smoothmuscle
proliferation, and anaerobic glycolysis. BothHIF-1α andHIF-2α are hypoxia respon-
sive genes but it has been recently shown that HIF-1α and HIF-2α antagonize each
other in the regulation ofmacrophage polarization and inflammatory responses of the
tissues.M1 andM2polarizations are important for fate of the system.M2polarization
is regulated by HIF-2 activation and NO production, resulting in different effects on
the vascular responses and cardiovascular complications of hyperglycemia induced
pseudohypoxia. It is demonstrated that M2 polarization with HIF-2α decreases the
adipose tissue inflammation and insulin resistance. HIF-2α gene modification could
modulate proinflammatory responses of adipose tissue macrophages in high fat diet.
HIF-2α is important for protection of the body against obesity induced inflamma-
tion and insulin resistance. Understanding mechanisms that regulate hyper nutrition
induced expansion of adipose tissue is critical for identify obesity related metabolic
syndrome and diabetes pathophysiology. These are also important for determining of
therapeutic strategies for minimizing the complications of obesity and/or metabolic
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Fig. 8.1 Hypoxia and hyperglycemia

syndromes. It is interesting that intestinal HIF-2α signaling was positively correlated
with body-mass index and hepatic steatosis. It is shown that overexpression of both
HIF-1α and HIF-2α could induce hepatic steatosis. Hepatic HIF-2α is critical for
regulation of lipid metabolism more than HIF-1α [2, 10, 16, 36, 57] (Fig. 8.1).

Pathophysiology of Diabetic Macro and Microvascular
Complications

Diabetes ismainly defined as disturbances of glucose and lipidmetabolism, and char-
acterized by hyperglycemia. It affects most of the tissues and organs such as endothe-
lium, retina, heart, kidney, and brain. It leads to different complications including
cardiovascular disease, stroke, nephropathy, and retinopathy. In humans, metabolic
reactions aremostly oxygen dependent (aerobicmetabolism). Hyperglycemia affects
HIF-1 signaling. Hyperglycemia that is typical sign of diabetes leads to pseudohy-
poxia because of increased glucose concentration in the tissues. Glucose is used by
alternative pathways such as polyol pathway in the patients with diabetes. Increased
activation of polyol pathway causes increased ratio of NADH/NAD+ which resem-
bles pyruvate/lactate ratio. PseudohypoxiawithNADH/NAD+stimulates the produc-
tion of reactive oxygen species ROS. Increased ROS and pseudohypoxia stimulate
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transcription of HIF-1α mRNA. Diabetic or hyperglycemic pseudo hypoxia disturbs
HIF-1 signaling. This conflict generates inappropriate response against hypoxia in
the cells. The dysregulation of HIF-1 signaling plays main role in the development
of diabetic complications [9].

Hyperglycemia blocks the hypoxia-induced HIF-1α stabilization. Hypoxia and
hyperglycemia are two important factors in development of diabetic complication
such as retinopathy, nephropathy, neuropathy, atherosclerosis and foot ulcers [7].

HIF-1α regulated genes are linked to cell adaptation and survival mecha-
nisms which are angiogenesis, anaerobic glycolytic pathway, erythropoiesis, wound
healing, cell growth, proliferation, differentiation, survival and apoptosis. Some of
these genes are vascular endothelial growth factor (VEGF), haem oxygenase 1 (HO-
1), nitric oxide synthase (NOS), endothelin, erythropoietin (EPO), lactate dehydroge-
nase A (LDH-A), Glucose transporter 1 (GLUT-1), Glucose transporter 3 (GLUT-3),
C-X-C chemokine receptor type 4 (CXCR4) and stromal cell-derived factor-1 (SDF-
1) and p53. The other subunit of HIF, HIF-1β is the aryl hydrocarbon receptor nuclear
translocator (ARNT) plays an important role in activation of pancreatic β cells for
secreting insulin by stimulation of glucose. Hyperglycemia leads suppression ofHIF-
1β; and disturbs insulin secretion from pancreatic islet cells. HIF-1α is an essential
factor for expression of HIF-1β hence for maintaining beta cell function. In normoxic
condition, glucose alone is not enough to activate the HIF-1α signaling; but normal
concentration of glucose is needed for HIF-1α protein expression and activation
as a response to hypoxia. The dysfunction of HIF-1α transactivation is one of the
reason of inhibition of angiogenesis and related target gene expressions. It may be
linked with impaired wound healing in diabetic patients. Hyperglycemia increases
oxidative stress and production of ROS which affect HIF-1α signaling. Especially
superoxide radicals (O2¯) degrades HIF-1α by activating hydroxylation of prolines
and also increasing ubiquitin-proteasome activity. In addition to degradation, O2¯
also causes suppression of HIF-1α formation [56].

Vascular lesions and other associated problems are important complications of
diabetes. Diabetic vasculopathy is characterized by loss of hypoxia-dependent angio-
genesis and, actually, dysfunction of HIF pathway in vascular beds of many tissues
such as skin, nerves, brain, skeletal muscle, heart, kidney [50].

There is a strong correlation between diabetes and cardiovascular diseases such as
atherosclerosis, hypertension, peripheral vascular diseases, stroke, delayed wound
healing and also cardiomyopathy [9, 50]. These complications are mostly linked
with defects in responses against hypoxia in the vascular tissues. The production of
VEGF that is an angiogenic growth factor decreases in diabetes. Impaired HIF-1α
transactivation is responsible for decreased VEGF expression in hypoxic diabetic
tissues [50].

Although VEGF synthesis is mainly promoted by hypoxia, it can be stimulated
by several factors such as gender, smoking, hyper- and hypoglycemia, hypercholes-
terolemia, hypoxia, and stress. In diabetics, chronic hyperglycemia leads to dysregu-
lation of HIF-1α and VEGF expression in the micro-vascular endothelial cells (ECs).
In addition of oxygen, insulin, insulin-like growth factor-I (IGF-I), IGF-II and AGEs
can affect HIF pathway at different steps of this pathway. The patients with diabetes
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have increased levels of IGF-1. IGF-I promotes HIF-1α expression, then VEGF
production increases. It has been reported that IGF-1 stimulated HIF-1α activation
leads to increased VEGF expression. VEGF regulates angiogenesis, it is important
in development of vascular complication of diabetes [25].

The other important microvascular complication of diabetes is diabetic
retinopathy. HIF-1 target genes are necessary for vascular stability, healthy retinal
function, and development. Retina has physiologically very low levels of oxygen.
Hyperglycemia leads to decrease oxygen levels in the retina in early stage of diabetes.
Hypoxia causes increased oxidative stress, inflammation, loss of pericytes in the
retina. On the other hand, HIF-1α function is suppressed in diabetes. The inactivity
of HIF-1α signaling provides augmented hypoxic damage [13].

In addition to hypoxia, IGF-1 induced inappropriate activation of HIF-1α can
provide pathophysiology of diabetic retinopathy. The inappropriate and exaggerated
activation of HIF-1α leads to upregulation of VEGF in the retinal cells [25].

Development of diabetic cardiomyopathy is independent to the vascular complica-
tions of diabetes. Diabetic cardiomyopathy is characterized by inhibition of glycol-
ysis in myocardial cells, loss of capillaries, increased lipid accumulation, fibrotic
tissue changes, advanced glycation end products (AGEs) formation, apoptosis, and
mitochondrial dysfunction in themyocardium. In diabetic condition,myocardial cells
use glucose fatty acids rather than glucose for their metabolism. It is resulted from
the decreased GLUT-1 transporter expression and decreased hexokinase II enzyme.
Their genes are regulated by HIF-1 signaling [9].

Diabetic cardiomyopathy is associated with high glucose content of myocardial
cells, increased oxidative stress, abnormal stimulation of neuroendocrine system,
chronic inflammatory status, and myocardial apoptosis. HIF-1α affects thymic cells
and hence T cells. Researcher argued that HIF-1α in the T-cells play a central
role for protection from myocardial cell damage. They showed that T cell specific
deficiency of HIF-1α caused severe damage the myocardium of diabetic mice.
HIF-1α is expressed in lymphocytes under the hypoxic and hyperglycemic condi-
tions. Hyperglycemia decreases HIF-1α expression and function and changes the
expression profile of HIF-1α. Hyperglycemia promotes expression of cellular adhe-
sion molecules of monocytes and leads to increased adherence of monocytes on
the endothelial cells. Hyperglycemia also increases the endothelial permeability.
Increased endothelial permeability generates to accelerated lipid deposition and
macrophage recruitment in the endothelium [32].

Diabetic individuals have two-to-fourfold increased risk of cardiovascular disease.
The cardiovascular diseases are usually associated with development of atheroscle-
rosis. Atherosclerosis is a chronic inflammatory disease. The increased inflam-
mation and accelerated atherosclerosis are observed in diabetic patients. Hyper-
glycemia, chronic inflammatory status, and hypoxia affect vascular tissue, espe-
cially the endothelium. All of these factors contribute to endothelial damage and
dysfunction. Endothelial dysfunction is the first step of pathophysiological mecha-
nism of atherosclerosis. Endothelial dysfunction is characterized by the loss of the
physiological functions and properties of endothelium. Endothelial tissues have a
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tendency for vasodilatation, its surface exhibits antiadhesive and antiaggregant prop-
erties. Endothelial cells synthesis and secretesmany substances such as endothelin-1,
tromboxanA2, nitric oxide (NO), prostacyclin etc. Hyperglycemia induces apoptotic
signal pathways including β-1integrin signaling, p38MAPK, JNK (cJun-N-terminal
protein kinase) in the endothelial cells. Hence, hyperglycemia generates apoptotic
death of endothelial cells. Diabetic endothelium tissues have a tendency for vaso-
constriction and thrombus formation. Vasoconstriction occurs disturbances of blood
flow, then disturbed blood flow stress leads to endoplasmic reticulum stress in the
endothelial cells [4].

EPC are derived bone marrow; they are localized bone marrow and blood. They
can differentiate to mature endothelial cell and promote both the new vessels forma-
tion and the endothelial repair.Hypoxia is the strongest stimulus forEPCmobilization
and differentiation. In addition of hypoxia, release of proangiogenic factors such as
VEGF, SDF-1α, angiopoietin 1, hepatocyte growth factor (HGF), platelet derived
growth factor (PDGF), monocyte chemotactic protein-(MCP-) 1, and macrophage
inflammatory protein-(MIP-) 1 promote EPC migration and differentiation [27].

The capacity of circulatingEPCpool is a new indicator for evaluation of cardiovas-
cular health. Diabetic individuals have decreased capacity of this pool comparedwith
healthy subjects. On the other hand, their EPCs also have functional disruption that is
characterized by decreased proliferation capacity, shortened survival time, decreased
adhesion and migration. For this reason; diabetic patients have disturbed hypoxic
response and limited neovascularization in ischemic conditions. The dysfunction and
decreased level of EPC are associated with macro- and microvascular complications,
cardiomyopathy, nephropathy, neuropathy of diabetes [4].

The dysregulation of HIF under the hyperglycemic conditions seems to be respon-
sible for reduced collateral vessels formation induced by coronary ischemia in
diabetics. VEGF and its receptor level decrease in diabetics. Increased ROS levels are
linked with deficiency of angiogenesis. No is the most important endothelial medi-
ator, and endothelial dysfuntion is mostly linked with deficiency of NO by reduced
eNOS, eNOS coupling and increased oxidative stress. The tetrahydrobiopterin (BH4)
I a precursor for synthesis ofNO.Hyperglycemia causes reducedBH4 level by oxida-
tion. Thereby; eNOS activity and NO production decrease in diabetic conditions.
Endothelial cells have a tendency for vasoconstriction by increased endothelin-1 and
Angiotensin II expression in the patients with diabetes [21].

Hyperglycemia is associated with increased ROS production. Especially O2¯
leads to reduced NO bioavailability which causes inhibition of HIF-1α. Hyper-
glycemia generates increased endothelial permeability, increased expression of adhe-
sion molecules, decreased NO synthesis, tendency for thrombosis and vasoconstric-
tion in the endothelium. This process is mediated by increased ROS production,
formation of AGEs, activation of protein kinase C pathway in diabetes [14].

Hyperglycemia is associated with decreased HIF-1α expression in the myocardial
cells. Researchers showed that impaired HIF-1α signaling leads to loss of protective
mechanisms in the myocardium. They demonstrated that upregulation of HIF-1α by
treatment caused high level ofVEGFand eNOS, thenNO increased and the infarction
area size decreased [55].
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HIF-1β (ARNT)mainlymediates beta-cells function in the pancreas. Gunton et al.
in 2005 firstly showed that decreased ARNT levels in the pancreatic beta cells from
diabetic patients [18].

On the other hand,HIF-1βplays a crucial role togetherwithHIF-1α in the response
to ischemia of myocardial cells. HIF-1β is essential for glucose metabolism in the
many tissues including endothelium. The disruption of endothelial ARNT affects
negatively blood vessel formation. ARNT is also an important cardiac metabolic
mediator, it plays roles in regulation of cardiac function. It is observed that decreased
ARNT levels in myocardial cells is linked with heart failure and increased mortality
in diabetes. Interestingly the liver cells have decreased ARNT levels in diabetic
patients. Decreased ARNT levels are associated with impaired insulin-stimulated
glucose uptake in the endothelial cells and skeletalmuscle cells. Experimental studies
were demonstrated that ablation of liver specific ARNT caused exhibition of proper-
ties of type 2 diabetes such as increased lipogenic gene expression, increased hepatic
gluconeogenesis, and decreased serum beta-hydroxybutyrate levels. Insulin resis-
tance may be linked with downregulation of ARNT in the hepatocytes of diabetic
individuals [48].

The inflammatory response in the pathogenesis of atherosclerosis is generated by
interactions between plasma lipoproteins, monocytes/macrophages, T lymphocytes,
endothelial cells, and smooth muscle cells as well as the extracellular matrix of the
arteries. Macrophages are the most important cells in pathogenesis of atheroscle-
rosis and play crucial roles in the generation of foam cells which produce inflamma-
tory mediators. M1 and M2 macrophages present in the atherosclerotic plaques.
M1 macrophages play an important role in the development of plaque, on the
other hand, M2 macrophages help to regression of inflammation. Hyperglycemia
and advanced glycation end products (AGEs) effect macrophages polarization
[12, 26, 29, 30, 33, 39].

Hypoxia in Diabetic Nephropathy Pathogenesis

Diabetic nephropathy is one of the most common complication of diabetes. It gener-
ally progresses to end stage renal failure.HIF-1α dysregulation is one of the important
mechanisms in pathophysiology of diabetic nephropathy. Kidneys are important for
the regulation of body fluid composition. Although the blood supply of kidney is less
than 1% of the total blood supply, oxygen consumption by the kidneys account for
more than 10%of total oxygen intake. Na-KATP ases in the cortical proximal tubules
depletes 80% of renal oxygen and function as the oxygen sensors of the body. Na-K
ATP ase are also important for regulation of erythropoietin synthesis. Hyperglycemia
with glomerular hyperfiltration, osmotic diuresis, and increased glucose reabsorption
via sodium glucose transporters increase oxygen needs of kidney tissue.

Researchers shown that cobalt chloride (CoCl2) can be useful for prevention of
hypoxia related complications in diabetes. Cobalt (Co) is a transition metal that is
able to activate HIF-1α signaling similar to hypoxia. CoCl2 leads to inhibition of
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Fe+2 dependent prolyl hydroxylase domain proteins and also blocks the binding
of HIF-1α to von Hippel-Lindau protein (pVHL), so the degradation of HIF-1α is
inhibited via Co. Some studies shown that CoCl2 might be play protective role in
diabetic nephropathy by blocking degradation of HIF. There are two main important
mechanisms in pathophysiology of diabetic nephropathy: first; hyperglycemia leads
to renal hypoxia by increasing oxygen consumption and mitochondrial dysfunc-
tion, second: submaximal HIF activation. It is demonstrated that activation of HIF
signaling prevents diabetic nephropathy [1, 19, 38].

Chronic hyperglycemia activates inflammatory and hypoxic signaling pathways
in the endothelial cells of glomeruli. The activation of HIF-1α leads to VEGF gene
activation, and then VEGF levels increase in this area. VEGF binds to its receptors
that are localized on the endothelial cell membrane, and increases permeability of
glomerular capillaries and glomerular filtration membranes. This process causes to
loss of protein and development of proteinuria. The result will be increased inflam-
matory activity, migration of mononuclear phagocytes and other immune cells into
glomeruli. They produce many inflammatory substances such as cytokines, TGF-
β. Increased TGF-β induces collagen synthesis, increases thickening of glomerular
capillary basement membrane and promotes accumulation and synthesis of extra-
cellular matrix. All of these events lead to development of glomerulosclerosis and
diabetic nephropathy [58].

The about 40% of diabetic patients have diabetic nephropathy, but only less than
10% of these patients develop chronic renal failure. The patients with diabetes cannot
use glucose for their cellular metabolism an ATP production by oxidation in mito-
chondria. They generate a shift in the glucose metabolism. Generally, glucose is
metabolized by five different ways: pentose phosphate pathways, AGEs pathway,
sorbitol pathway, polyol pathway, and hexosamine pathway. At the end of these
pathways toxic glucose metabolites such as lactate, sorbitol, diacylglycerol (DAG)
and methylglyoxal (MG) are generated and accumulated. These toxic end products
can contribute to diabetic nephropathy pathogenesis. Otto Warburg firstly described
“Warburg effect” in tumor cells. Warburg observed that tumor cells produced ATP
by oxygen independent way, and their intracellular lactate levels increased after this
process. The both mitochondrial dysfunction and the Warburg effect play pivotal
roles in the development of diabetic nephropathy [63].

Diabetes leads to hypoxia in the kidneys. The different cells in the kidneys give
different responses to hypoxia. In the mesangial cells hyperglycemia stimulates HIF
activity by different mechanisms such as ADAM 17 [40]. ADAM 17 upregulation is
mediated by HIF-1α and also epidermal growth factor receptor (EGFR)/ADAM 17
signaling. EGF induce upregulation of TGF-β [31].

Glomerulosclerosis and proteinuria are common findings of the diabetic
nephropathy. Tubular cells have high metabolic activity with numerous mitochon-
dria. Hyperglycemia contributes to oxidative stress. Increased oxidative stress affects
mitochondria, oxygen consumption increases and decreases mitochondrial respira-
tion in the tubular cells. Normal hypoxia-inducedHIF activation cannot occur in these
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cells. Hypoxic damage starts in tubular cells, then tubulointerstitial fibrosis, albumin-
uria generate further damage. In glomerular cells exaggerated HIF activation causes
glomerulosclerosis [40].

Hyperglycemia upregulates sodiumglucose cotransporters (SGLTs) and increases
reabsorption of sodium and glucose in the tubular cells. Increased activity of SGLT
enhances oxygen consumptionwith quabain sensitive oxygen utilization. This mech-
anism increases the oxygen demand. On the other hand, hyperglycemia promotes
glomerular hyperfiltration. The Pasteur effect refers to the adaptive responses
to hypoxic conditions and is characterized by decreased oxidative phosphory-
lation and increased anaerobic glycolytic pathways activation for production of
ATP. The kidneys prefer anaerobic glycolysis accomplished by the Pasteur effect
under normoxic and hyperglycemic conditions and kidneys use other alternative
glycolytic pathways such as AGEs, hexosamine pathways. HIF pathways mediates
the glycolytic switch by regulation of glycolytic transporters and enzymes [49].AGEs
activate HIF-1α mainly with a lesser extent for HIF-2. Upregulation and normal
function of HIF-1α are critical for prevention of renal complications in diabetes
[5, 38].

Hypoxia begins the process of endoplasmic reticulum (ER) stress and dysfunc-
tion. ER stress causes disturbances of protein synthesis and accumulation of unfolded
proteins in the cells. Hypoxia-induced ER stress plays important roles in the patho-
physiology of diabetic retinopathy which causes damage of podocytes and apoptosis
of tubular cells [35].

Hyperglycemia, accumulation ofAGEs, oxidative stress and cytokines all mediate
kidney injury in the diabetic patients. Hyperglycemia, Angiotensinogen II, protein
kinase C, TGF-β, ROS and inflammation are key mediators of the activation of
HIF signaling by oxygen-independent way. HIF-1 also regulates genes of proteins
that play important roles in oxidative stress, regulation of glucose and matrix
metabolisms. Researchers demonstrated that HIF-1 mediates matrix accumulation,
renal hypertrophy, andAGEs formationby increasedglucose uptake in the glomerular
mesangial cells. Under the hyperglycemic conditions renalmedullar and tubular cells
upregulate GLUT-1 expression [37].

Increased inflammatory status also affects microvascular endothelial cells and
stimulates procoagulation cascade. Hyperglycemia generates increased expression
of HIF-1α and PTEN (phosphatase and tensin homolog). The microangiopathy is
characterized by basement membrane thickness and thrombosis in the capillaries.
The microangiopathy that is resulted from hyperglycemia and hypoxia causes nerve
degeneration in diabetes. The endoneurinal capillaries and epineurinal vessels are
disrupted by hyperglycemia and hypoxia. The impaired blood supply of nerve tissues
occurs development of neuropathy [28].

Induction ofATP dependent potassium (K-ATP) channels are key regulators of the
cellular metabolism. Blockage of K-ATP channels regulate glucose uptake, insulin
secretion and sensitivity and are important regulators of the hypoxic responses. We
found that activation of K-ATP is protective in ischemic injury models. Blockage of
K-ATP channels diminishes HIF-1α mediated cytoprotection and inflammation in
kidney tissue [59, 62]. Similar to K-ATP channels, N-methyl-d-aspartate (NMDA)
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receptors are shown to be therapeutic target to decrease diabetic nephropathy and
other complications of diabetes. They are a class of cation-selective ionotropic
receptors with a high intrinsic Ca2+ permeability with multiple subunits multiple
subunits (NR1,NR2A-B-C-D,NR3A-3B etc.). These receptorsmodulate renal blood
flow, glomerular and tubular functions. Depending on the site of action, agonist
potencies of effector endogenous diacidic molecules show diversity. For example,
l-glutamate, l-aspartate function in the tubular site but they are relatively weak
agonists for podocyte NMDA receptor. NMDA receptors are important for regu-
lation of erythropoietin secretion and functions in kidney. In addition to conven-
tional drug therapies, new promising drug treatments are defined as ACE inhibitors,
Angiotensinogen receptor blockers, dipeptidyl peptidase (DPP-4), sodium-glucose
co-transporter (SGLT)-2 inhibitors, includes the blockage of NMDA receptors and
different inflammatory pathways and markers [41, 44, 60]. Diversity of functions
of NMDA receptors could limit their usage in diabetic nephropathy. Blockage of
NMDA receptors inhibits erythropoietin mediated protection in spinal cord trauma
[61]. The mechanisms that involved in the pathogenesis of diabetic nephropathy are
summarized in Fig. 8.2.

Fig. 8.2 Pathophysiology of diabetic nephropathy
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Role of Vascular Insufficiency and Hypoxia in Delayed
Wound Healing Process of Diabetic Patients

Impaired wound healing is one of the important problems in diabetic patients.
It usually presents as diabetic foot ulceration. Underlying pathogenic mechanism
of delayed healing is still unclear. In physiological conditions; the wound healing
process is characterized by inflammation, migration and proliferation of fibroblasts
and keratinocytes, new vessel formation, matrix synthesis and deposition, epithe-
lization and remodeling. In diabetic conditions; this process is disturbed, new vessel
formation decreases, proliferation and migration of cells reduce, and epithelization
cannot be generated. Hypoxia is occurred by decreases in blood supply and increases
of oxygen consumption during the wound healing period in the affected area. HIF-1
stimulates new vessel formation (angiogenesis) via activating the transcription of
angiogenic factors such as VEGF, angiopoietin 2, fibroblast growth factor (FGF)
2, and increased recruitment of endothelial progenitor cells (EPC) in the damaged
area. Especially EPC recruitment in wound area is mostly important for neovascular-
ization. HIF-1α stimulates keratinocytes migration, type I collagen and fibronectin
synthesis in addition to EPC accumulation. HIF-1α affects myeloid cells; then it
leads to increased bactericidal activity in them. Myeloid cells produce antimicrobial
peptides, proteases, TNF-α, NO and other defensive molecules at the high levels
under the HIF effect. HIF-1α causes increased expression of glucose transporters 1
and 3 (GLUT-1, GLUT-3) and activation of glycolytic enzyme that is lactate dehy-
drogenase. Researchers shown that severe hypoxia and low levels of HIF-1α in the
diabetic wound. HIF-1α signaling is dysregulated by hyperglycemia. Hyperglycemia
leads to accumulation of dicarbonyl metabolite methylglyoxal (MGO) in the cells.
MGO inhibits HIF-1α dependent gene activation. Diabetes leads to increased chronic
inflammatory status and levels of ROS. Increased ROS dysregulates HIF-1 signaling.
Researchers shown that applying of antioxidant treatment such as α-tocopherol
restores decreased HIF-1 activity [8].

Hyperglycemia induced HIF dysregulation plays main role in development of
diabetic foot ulcers and delayed wound healing. There are multilevel interac-
tions between HIF signaling pathway and hyperglycemia. Hyperglycemia promotes
pVHL-dependent ubiquitination of HIF-1; hence it leads to HIF destabilization.
During the wound-healing process HIF stabilization is very important factor for
regulation of repair and healing process [6].

Under the increased blood glucose levels or oxidative stress; glucose and its
degradation products such as glyoxal, methylglyoxal, 3-deoxyglucosone react non-
enzymatically with amino group of proteins to produce a Schiff base [43].

Schiff base is labile, then it converts to the more stable Amadori products. Only
a small part of Amadori-products forms AGEs via irreversible chemical reactions.
AGEs are different than other Amadori-products because of their irreversible nature
[45].

AGEs are generated by the Maillard reaction. The high levels of AGEs stimulate
their receptor expression in the cells. Increased AGEs cause increased oxidative
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stress and inflammation in the vascular beds. Endothelial dysfunction, procoagulant
state, atherosclerosis formation are generated by increased AGEs that promote target
gene expression. Serum levels of AGEs are an important marker for evaluation of
endothelial dysfunction in the patients with diabetes. The high levels of AGEs are
associated with left ventricular diastolic dysfunction and vascular stiffness in Type I
diabetes. On the other hand, AGE intake with foods is the other important source of
AGE. If meats or fatty foods are heated or baked at a high temperature, the browning
reaction generates in the foods. The browning reaction is the same AGE reaction.
Finally, the AGE content of these foods increases. There is a strong correlation
between amount of AGE intake by diet and serum AGE levels [43]. For this reason,
diet management is very important point for prevention and treatment of vascular
complication in diabetics.

Hyperglycemia stimulates glycation of various structural and functional proteins
including plasma proteins, extracellular matrix proteins (ECM), albumin, LDL,
fibrinogen, immunoglobulins, complements and collagen. The non-enzymatic modi-
fication of these proteinsmay lead tomany pathophysiological changes such as accel-
eration of atherosclerosis, glomerular dysfunction, decreased nitric oxide synthesis,
reducedfibrinolysis, activation of platelet adhesion, increased oxidative stress, distur-
bances of immune system regulation, alteration of extracellular matrix composition,
and endothelial dysfunction. AGEs play very important roles in the pathogenesis
of diabetic complications such as atherosclerosis, retinopathy, cataract, neuropathy,
nephropathy and cardiomyopathy. Glycation of eye lens protein is responsible for
development of diabetic cataract, which is a cause of blindness. The accumulation
of ECM protein in the glomerular mesangial and tubulointerstitial area is specific
pathological features of diabetic nephropathy. The increased AGEs formation lead
to imbalance between the synthesis and degradation of ECM components, thereby;
causes the pathologic accumulation of collagens, fibronectins, and laminins [47].

The plasma levels of ischemia-modified albumin (Wu et al.), glycated albumin
(GA), fructosamine, and AGEs are important indicators for vascular event prediction
in diabetic patients [17].

Chronic subclinical inflammation is an important risk factors for development
of many complications of diabetes, including neuropathy, nephropathy, cardiomy-
opathy, macro-vasculopathy, micro-vasculopathy and foot ulcers. RAGE is localized
in many cells and tissues including lung, liver, vascular endothelium, monocytes,
dendritic cells, and neurons. The diabetic patient tends to have increased serumAGEs
that activate pro-inflammatory cells. However increased activation of inflammatory
cells stimulate chronic subclinical inflammation.Many tissues undergo inflammatory
damage because of AGE-induced diffuse chronic subclinical inflammation. AGEs
accrue extensive tissue damage and also organ dysfunction. In addition to the damage
that they cause, AGEs lead to inhibition of the repair process after these damages
have occured. There is a vicious cycle between chronic subclinical inflammation
and oxidative stress; each of them stimulates other. The immune system regulation
disrupts in diabetic patients, they cannot generate the appropriate response against
diabetic wound or infections [24].
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Chapter 9
Cellular and Molecular Mechanisms
Contributing to Cardiac Hypertrophy
in Obesity and Obesity-Related
Hypertension
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Abstract Obesity, defined as a harmful accumulation of body fat, increases the
risk of cardiac hypertrophy, which leads to heart failure (HF). Obesity often coex-
ists with hypertension, a condition that aggravates cardiac hypertrophy and accel-
erates the progression of HF. The cellular and molecular mechanisms involved in
cardiac hypertrophy during obesity, and those that explain synergic effect of obesity
and hypertension on cardiac hypertrophy are still an issue of investigation. So far,
evidence suggests that obesity promotes cellular events related to insulin resistance,
neurohormonal over-activation, oxidative stress, chronic inflammation and perturba-
tion of cellular signaling, which are some of the processes involved in the onset of
cardiac hypertrophy and hypertension, and indeed the exacerbation of these events
appears to explain, in part, the worsening of cardiac hypertrophy when obesity is
accompanied by hypertension. In this chapter, we analyze data that may help to
clarify the participation of the complex interconnecting mechanisms that are evoked
by obesity and hypertension, when allied together to induce cardiac hypertrophy.
Better understanding of thesemechanismswill allowus to have an improvedmanage-
ment of obesity and obesity-related hypertension, as well as to achievemore effective
prophylactic therapies and opportune diagnosis of these clinical conditions.
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Introduction

Over the last three decades, the prevalence of obesity has increased dramatically
worldwide, leading to a parallel increase in the rates of its comorbidities, such
as insulin resistance (IR), diabetes mellitus type 2 (DMT2), hypertension and
dyslipidemia, which are important risk factors for cardiovascular disease (CVD),
the main cause of death globally. Accordingly, obesity is considered by the World
Health Organization (WHO) as one of the “major public health problems of the 21st
century” [1, 2].

Obesity causes hemodynamic and non-hemodynamic abnormalities that
contribute to the development of a cardiomyopathy independently of hypertension.
Obesity cardiomyopathy is commonly characterized by an early subclinical left
ventricular (LV) dysfunction that is followed by a late LV hypertrophy (LVH), both
of which are important risks factors for heart failure (HF). Nonetheless, obesity often
coexist with hypertension, an issue that is clinically relevant because the concomitant
presence of hypertension and obesity enhances the prevalence and severity of LVH
and accelerates its progression to HF [2–7].

The mechanisms underlying LVH in obesity and those involved in the wors-
ening of LVH in obesity-related hypertension are still being unraveled. Clinical and
experimental evidence suggest that increased fat accumulation favors a pathologic
environment associated to increased neurohormonal stimulation, IR, oxidative stress
(OS), and inflammation, conditions that underwrite the onset of hypertension and
LVH, implying that obesity, hypertension and LVH share the same pathogenic mech-
anisms [2–6, 8, 9]. On the other hand, current studies suggest that LVH in obesity
is linked to the stimulation of a web of signaling pathways that initiate the genetic
program of cardiac hypertrophy at nucleus, and the exacerbation of these signaling
cascades have been recently associatedwith the aggravation of cardiac hypertrophy in
obesity-related hypertension [2, 10–12]. In this chapter we will discuss the cellular
and molecular mechanisms that could contribute to the development of LVH and
hypertension in obesity, and the way they could interact to intensify cardiac illness.

Cardiac Disease in Obesity and Obesity-Related
Hypertension

Obesity is a non-communicable disease, characterized by an increase in the body
weight due to excessive fat accumulation. According to the WHO, the prevalence of
obesity in world´s adult population has nearly tripled since 1975. In 2016, 39% of
adults aged 18 years and over (39% ofmen and 40% of women) were overweight and
13% (11% of men and 15% of women) were obese. At present, obesity is recognized
as one of the major public health problems worldwide due to its negative impact
in people´s health, the many comorbidities that accompanies it, and the economic
costs linked to prevention and treatment of the disease [1]. Clinical evidence has
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demonstrated that obesity leads to alterations in the geometry and function of the
heart, and predisposes to HF, the leading global cause of death and disability in obese
and diabetic patients. Moreover, it has been established that obesity contributes to
the onset of several chronic diseases, among them, systemic hypertension, which
increases morbidity and mortality by worsening cardiac remodeling and accelerating
the progression of HF and thus, amplifying CV risk [2–6]. This issue is clinically
relevant given the high prevalence of hypertension in obese subjects. Epidemiolog-
ical data suggest that 60–70% of hypertension in adults is directly attributable to
adiposity. Indeed, the high prevalence of hypertension among patients with obesity
accounts for 78% of incident hypertension in men and 64% of incident hyperten-
sion in women, and the prevalence increase with severity of obesity. Accordingly,
obese people have a 3.5 fold increased likelihood of having hypertension and it has
been estimated that the increased risk of developing hypertension is 20–30% for
every 5% increment in weight gain [13]. The synergistic effect between obesity and
hypertension on cardiac disease has been established by studies showing that preva-
lence of LVH in normotensive obese subjects reaches 13% whereas in hypertensive
individuals with morbid obesity ranges over 75%. Similarly, in a cohort of hyperten-
sive patients the prevalence of LVH was 12% for normal weight individuals, 25%
for overweight individuals and 48% for obese individuals [14]. In addition, there is
evidence that hypertension or higher systolic blood pressures, even if they are not
in the hypertensive range, are associated with a greater extent of LVH and cardiac
dysfunction [2, 5]. Notably, it has been reported in population studies, that future
weight gain is significantly higher in patients with hypertension than in normoten-
sive individuals, suggesting that hypertension per se contributes to increase obesity,
implying a further link between obesity and hypertension [15]. Thus, considering
the role of obesity and hypertension in the development of LVH and HF, as well
as the frequent overlapping of these diseases and their synergistic effects on cardiac
illness, it is important to establish the molecular mechanisms underlying the synergic
relation of the two conditions.

Pathogenesis of Hypertension in Obesity

The mechanisms linking obesity with hypertension and cardiac disease have not yet
been conclusively defined. As mentioned above, obesity, and in particular the exces-
sive visceral fat distribution, predispose to hemodynamic and non-hemodynamic
conditions that lead to changes in the structure and function of the heart, and
contribute to the onset of hypertension, which in turn exacerbates cardiac damage
and increases the risk of HF [2–6, 9]. Some of the non-hemodynamic factors involved
in the development of cardiac disease and hypertension in obesity are dyslipidemia,
OS, increased production of pro-inflammatory cytokines, macrophage infiltration,
lipotoxicity, increased epicardial fat deposition, and increased activation of renin-
angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS)
(Fig. 9.1) [2–6]. All these factors are strongly associated to IR, an early event thought
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Fig. 9.1 Pathogenicmechanisms leading to hypertension, LVHandHF in obesity. The diagram
shows that obesity results in a constellation of inter-related pathologic events that lead to hyperten-
sion, LVH, cardiac dysfunction and thus to HF. These cellular events include hemodynamic factors
associated to increased volume and pressure load, and non-hemodynamic alterations linked to
neurohormonal over-activation (mediated by SNS and RAAS), insulin resistance, oxidative stress,
lipotoxicity and inflammation. LVH = left ventricular hypertrophy. HF = heart failure. SNS =
sympathetic nervous system. RAAS = renin-angiotensin-aldosterone system

to be caused by obesity. Indeed, accumulated clinical and experimental evidence indi-
cates that IR plays an important role in the development of obesity-related hyperten-
sion [16], and it has been reported that IR in vascular beds precedes the development
of hypertension in spontaneous hypertensive rats [17, 18]. These studies point to IR
as a key early event in the development of hypertension.

It has been established that metabolic alterations derived from IR, and overactiva-
tion of RAAS and SNS in vascular system lead to activation of signaling pathways,
which underlay the development of an endothelial dysfunction and arterial stiffness
that precede the onset of hypertension [4, 6]. In addition, overactivation of RAAS and
SNS are also involved in the obesity-related hemodynamic changes that contribute to
hypertension development. In this sense, obesity has been associatedwith an increase
in central and total blood volume and a mild systemic vascular resistance, conditions
that favor an augmentation of stroke volume and thus a high cardiac output. This
high cardiac output has been attributed to the amplifiedmetabolic demand that results
from increased fat mass, and has been involved in the raise of systemic blood pres-
sure. The effects that overactivation of RAAS and SNS have on heart, kidneys and
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vascular system, result in increased cardiac output, exacerbation of volume expan-
sion and raised vascular tone, enhancing hemodynamic changes that lead to elevation
of blood pressure, and thus to the onset of hypertension. This hemodynamic profile is
different from that occurring in lean individuals with essential hypertension, which is
characterized by high peripheral resistance and low circulating intravascular volume
[3, 5, 6, 19]. In addition, the systemic vascular resistance tends to be higher in
hypertensive than in normotensive obese individuals, but it is lower than in lean
hypertensive patients with equivalent blood pressure values [5, 19, 20]. Therefore, it
has been considered that hypertensive obese patients exhibit an inappropriate lower
systemic vascular resistance face to augmented cardiac output.

Pathogenesis of Cardiac Disease in Obesity
and Obesity-Related Hypertension

Similarly to vascular tissue, in the heart, obesity causes a complex and inter-
connected network of cellular events that share IR as a core and include OS,
inflammation, apoptosis, fibrosis, abnormal remodeling, impaired Ca2+ handling
and metabolic unbalance (Fig. 9.1). These events contribute to the onset of a subclin-
ical early cardiac dysfunction followed by a late LVH, leading over time towards HF
[2]. Additionally, the increase in central and total blood volume caused by obesity
leads the heart to operate at unnecessarily high filling pressures, and produces a
form of volume overload, implicated in the development of an eccentric LVH. Yet,
obesity is commonly accompanied by a mixed eccentric/concentric LVH, suggesting
that besides LV preload, there are other factors contributing to LVH. In this sense, it
is well stablished that concentric LVH is linked to an increase in LV afterload due to
pressure overload. Therefore, it has been proposed that concentric LVH in obesity
may be a consequence of the elevation of systemic blood pressure that results
from the increase in blood volume. Similarly, the lack of the normal decrease in
systolic and diastolic blood pressure during sleep and obstructive sleep apnea, both
associated with an increase in SNS, contribute to hypertension and concentric LVH
in obesity. Notably, high systolic blood pressure values in obesity, even if they are
not at the hypertensive range, have been strongly associated with the extent of LVH,
underscoring the importance of afterload as a determinant of cardiac hypertrophy
severity. Consequently, there are compiling reasons to believe that concomitant
presence of hypertension and obesity, affects the heart structure more adversely
than either condition alone, by increasing LV afterload and LV preload [2, 3, 5, 8, 9,
19–21]. Furthermore, it has been shown that IR and sympathetic overdrive are higher
in hypertensive obese patients than in lean hypertensive or normotensive obese
subjects [21], suggesting that exacerbation of these factors may also contribute to the
greater heart damage induced by the combined presence of obesity and hypertension.
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Molecular Mechanisms Contributing to Cardiac
Hypertrophy in Obesity and Obesity-Related Hypertension

The cellular and molecular mechanisms involved in LVH in obesity and those
contributing to LVH exacerbation when hypertension is present, are still poorly
understood. It is well stablished that LVH, defined as an abnormal increase in
LV mass, initiates in response to detrimental stimuli that evoke several patholog-
ical events, which in turn stimulate an intricate network of canonical unfavorable
signaling cascades. These signaling pathways enhance protein synthesis, induce
re-expression of fetal genes, and change the expression and function of several
proteins, leading to progressive alterations in the size, geometry, composition and
function of heart. At the cellular level these alterations are manifested by abnor-
malities in growth, contraction, Ca2+ handling, ionic flux, energy metabolism, extra-
cellular matrix arrangement, cytoskeletal structure, collagen deposition, and so on.
Most research done to date has used experimental models of different cardiomy-
opathies and in vitro studies to identify the molecular components of the signaling
cascades involved in onset and progression of LVH [2, 22, 23]. In the case of
obesity and obesity-related hypertension, these studies are just beginning, but exper-
imental evidence supports the pivotal role of increased neurohormonal stimulation,
IR, inflammation, macrophage infiltration, and OS on signaling cascades of cardiac
hypertrophy [2, 9, 24]. Moreover, recent evidence in experimental models of obesity
with hypertension suggest that these signaling cascades are exacerbated when both
diseases coexist [10–12].

Neurohormonal Stimulation

Obesity is normally accompanied by IR, a condition that favors activation of SNS.
Obesity also leads to increased activation of RAAS, which contributes to IR and
SNS activation, implying a cross-talking among these processes [4]. Activation
of SNS and RAAS promote a concentric LVH by exerting a direct effect on LV
myocardium through specific Gq/11-protein coupled receptors (GqPCRs) activated
by norepinephrine (NE) and angiotensin II (AngII), respectively. NE binds to alpha-
adrenergic receptors (αAR), while AngII binds to angiotensin receptor type 1 (AT1).
Activation of these receptors generates a cascade of intracellular signals that lead
to activation and auto-phosphorylation of protein kinase activated by the complex
Ca2+-calmodulin (CaMKII). CaMKII mediates phosphorylation of class II histone
deacetylases (HDACs) in the nucleus, inducing their translocation out of the nucleus
and relieving repression of transcription factor MEF2 to initiate the transcription of
hypertrophy genes. Stimulation of GqPCRs also results in activation of calcineurin
(CaN), a phosphatase that dephosphorylates NFAT driving its translocation to the
nucleus where it interacts with the transcription factor GATA4 to initiate the genetic
program of hypertrophy [25]. AngII also exacerbates CaMKII activity by increasing
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its oxidation, via stimulation of NADPH oxidase (Nox) that lead to an increase in
generation of reactive species of oxygen (ROS) [26]. On the other hand, AT1R can
interact with non-receptor type tyrosine kinases and receptor-type tyrosine kinases
leading to activation of MAPK (ERK/JNK) cascades involved in cardiac hyper-
trophy [27]. AT1R can also lead to IR by inducing protein degradation and/or inhi-
bition of insulin receptor substrate (IRS) and PI3K messenger [28], or to inflamma-
tion by increasing TNFα synthesis [29]. It has been reported that ATIR inhibition
decreases cardiac remodeling and IR in obese rats by normalizing ERK expression
and increasing IP3K phosphorylation [30]. Additionally, AT1R antagonist decreases
cardiac remodeling, susceptibility to ischaemic/reperfusion and TNFα synthesis in
obese rats [31]. On the other hand, auto-phosphorylation and oxidation of CaMKII
has been linked to OS exacerbation, apoptosis, inflammation, fibrosis and cardiac
hypertrophy in cardiac H9C2 cells treated with palmitate and in mice fed with a high
fat diet (HFD) [32]. Nevertheless, in this study activation of CaMKII was related to
stimulation of Toll-like receptor 4 (TLR4), ametabolic sensor of saturated fatty acids,
suggesting that CaMKII mediates a cross-talk between TLR4 and GqPCRs. Simi-
larly, enhanced activity of CaN and NFAT3 have been implicated in the development
of LVH in obese Zucker rats [33].

On the other hand, in vitro studies in neonatal cardiac cells show that enhanced
expression of G proteins-coupled receptor kinase (GRK2), by activation of AT1R
and αAR, results in cardiac hypertrophy by increasing the binding of GRK2 to PI3K,
leading to phosphorylation of protein kinase B (PKB/AKT) and subsequent inactiva-
tion of glycogen synthase kinase 3 beta (GSK3β), and thus promoting activation and
nuclear translocation of NFAT. The relevance of GRK2 in cardiac hypertrophy was
also demonstrated in GRK2 knockout mice that exhibited attenuated hypertrophy in
response to pressure overload [34]. In addition, humans and mice with HF display a
lineal correlation between GRK2 expression and cardiac hypertrophy severity [35].
Notably, increased cardiac expression of GRK2 was found in obese ob/ob and HFD-
fed mice [36, 37], and GRK2+/− mice fed with a HFD show an attenuated obese and
IR phenotype, as well as decreased cardiac hypertrophy and fibrosis [37], indicating
that GRK2 play an important role in modulating obesity-induced IR and LVH.

Insulin Resistance, Inflammation and Oxidative Stress

Obesity results in increased plasma free fatty acid (FFA) levels and enhanced produc-
tion of pro-inflammatory cytokines that favor the development of IR in the heart,
which in turn increases the production of local cytokines such as IL6 and IL1β,
leading to exacerbation of IR. Increased FFA metabolism in the heart mediated by
IR contributes to lipotoxicity and mitochondrial damage leading to increased ROS
production and thus toOS leading to enhanced IR [7]. Thus, IR, OS and inflammation
form an interactive network of cellular signals that aggravate cardiac damage.

In the heart, insulin controls energymetabolism and growth by interacting with its
receptor. This binding promotes tyrosine auto-phosphorylation in the receptor and
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in insulin receptor substrate (IRS), thereby initiating two main signal branches: one
mediated by the IP3K/AKT that regulates glucose and lipid metabolism; and another
one mediated by interaction of IP3K/AKT and RAS/MAPK to regulate transcrip-
tion of genes involved in cell growth and differentiation [38]. Insulin pathway also
imbricates with inflammatory pathways by the activation of serine kinases IKKβ and
JNK, which inactivate IRS promoting IR. Besides, insulin activates the cytokines
transcription factors NFKβ and AP1 (FOS/JUN) resulting in a depraved loop that
exacerbates inflammation and IR.Cardiac IR in obesity has been associated to blunted
activation of the insulin signaling cascade via IP3K/AKT, which seems to favor the
growth effects of insulin through MAPK pathway. Decrease action of IP3K/AKT
pathway has been linked to increased serine phosphorylation of IRS promoted by
OS, inflammation or AT1R activation [7, 28, 38].

Growing evidence supports thatmitochondrial dysfunction is associated to cardiac
diseases. Indeed, in obesity the vascular tissue and heart are characterized by
augmented mitochondrial ROS production promoting oxidative damage in proteins
which results in cardiac and endothelial cell dysfunction, leading to hypertension
and HF. Under excessive ROS production, nitric oxide (NO) produced by endothe-
lial cells and activated macrophages, serves as precursor of reactive nitrogen species
(RNS) such as the very toxic peroxynitrite (ONOO−) [39]. Under increased ROS and
RNS production, proteins, including ionic channels, transporters and components of
signaling pathways, undergo oxidative post-translational modifications (OPTMs),
including S-nitrosylation, S-glutathionilation, N-sulfonylation, nitration and disul-
fide bonds [40], which may contribute to cardiac dysfunction and LVH [41]. The
participation of OS in obesity-related cardiac hypertrophy was recently evidenced in
mice fed with a high fat-high sucrose diet, by showing that over-expression of cata-
lase activity can revert diastolic dysfunction and LVH [42]. These authors also found
that mitochondrial complexes I and II underwent OPTM associated with a decreased
activity, which in turn drove a 3-fold increase in H2O2 production, whereas ATP
synthesis dropped. Cys100 or Cys103 from complex II subunit B were proposed
as targets of reversible OPTM [42]. Thus, as the main source of ROS production,
mitochondria are also a prey of their self-activity which conduces to further oxidative
damage during obesity.

Obesity-related OS seems to modulate key proteins in cardiac signaling that may
conduce to hypertrophy. In this sense, CaMKIImayundergo oxidation atMet281/283
and S-nytrosilation at Cys290 that promote activation of the enzyme in the same way
than auto-phosphorylation [43]. During obesity, oxidation of CaMKII has emerged
as an important factor for cardiac hypertrophy, apoptosis, fibrosis, and inflammation
[32]. Another important kinase that is affected by OPTM, is cardiac liver kinase 1
(LKB1). Cardiac LKB1 is one of the main upstream kinases in the AMP-dependent
kinase (AMPK) pathway. AMPK is the major energy gauge controlling energy
production/utilization in the cell. Recently, Calamares et al. demonstrated that in
mice fed a HFD, cardiac LKB1 activity is inhibited, blunting the downstream phos-
phorylation cascaded mediated by AMPK. They suggested that inactivation of the
enzymemaybemediated byOPTMatLys96-97 [45].Moreover, this group andothers
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have proposed that diminished cardiac LKB1 activity contributes to the development
of hypertrophy [44, 45].

Hypertrophied adipose cells undergo macrophage infiltration and increase
adipokine secretion leading to a chronic inflammatory stage, characterized by the
presence of TNF-α, IL-1β and IL-6, which in turn promotes ROS and RNS produc-
tion [46] that target blood vessels structures, causing endothelial dysfunction and thus
hypertension [39]. On the other hand, exacerbation of the inflammatory stage in the
myocardiumbyOShas been reported. Evidence of thiswas provided fromobesemice
lacking fibronectin type III domain containing 5 (FNDC5), the precursor protein of
the obesity protecting hormone irisin, showing that in the heart of themutant animals,
obesity induced by aHFD causes more severe hypertrophy, as well as amajor inflam-
matory state and OS. The lack of FNDC5 also promoted an increase in inflammatory
signaling cascade JAK2/STAT3 [47]. These results further clarify the synergic partic-
ipation of OS and inflammation in obesity-related cardiac hypertrophy. This inter-
connection may be explained, in part, by augmentation of the JAK2/STAT3 cascade
that control cytokines synthesis and, in consequence, OS. Actually, in obese Zucker
rats, Chen et al. found that activation and expression of STAT3 was elevated, along
with augmented IL6 production. They also proved that IL6 stimulatesMERK5/ERK5
pathway that mediate hypertrophy gene expression [33].

Exacerbation of Cardiac Hypertrophy in Obesity-Related
Hypertension

Given the clinical relevance of hypertension in obesity over the last years, investiga-
tions focused on the molecular mechanisms that lead to LVH aggravation in obesity-
related hypertension are emerging. Phillip-Couderc et al. performed a cardiac tran-
scriptome analysis in obese dogs fed with a HFD that developed hypertension before
the onset of LVH [48]. In this study the authors found that, in the absence of LVH,
obesity-related hypertension is already accompanied by cardiac changes in expres-
sion of genes related to extracellular matrix remodeling, energymetabolism, ion flux,
cell proliferation, stress response, signal transduction, hormones and, cytoskeletal,
nuclear and sarcolemma structure, suggesting that obesity-related hypertension
produces early functional alterations in the heart that precede the structural changes
associated with remodeling. Unfortunately, this study does not allow to elucidate the
genetic changes that are specifically induced by obesity. Holzem et al. used amice fed
with a HFD to evaluate the effects of obesity and pressure overload induced by aortic
constriction, on cardiac hypertrophy. After 10 weeks on HFD the control animals did
not develop hypertension neither LVH, whereas those with aortic constriction had
an increase in systolic blood pressure, LV mass and cell size, that were accompanied
by over-activation of the JNK cascade, indicating the importance of hypertension to
prompt hypertrophy in obesity [10]. Reedy et al. observed that, after 20 weeks of a
HFD,mice exhibitedLVHwith only a slightly increase in systolic bloodpressure. The
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treatment of HFD-fed mice with AngII caused a significant increase in systolic blood
pressure that was associated with a greater LVH. Hypertensive HDF-fed animals also
showed the highest level of inflammatory cytokines, IL6, ILβ1, macrophage CD68
marker, and fibrosis marker TGFβ, among others. Similarly, hypertensive HFD-fed
mice exhibited a major increase in AKT activation and expression of glycolytic
enzymes [11]. These results support the synergic effect of obesity and hypertension
on cardiac metabolic and structure remodeling.

Conclusions

Obesity and hypertension converge in the disruption of key cellular and metabolic
processes, such as mitochondrial dysfunction, OS, inflammation and cellular
signaling, hence disturbances originated during obesity may be the critical point
that directs the development of hypertension and then, both conditions favor the
creation of a complex network of cellular events that trigger signaling cascades for
hypertrophy gene transcription. In particular, OS derived from obesity, appears as a
critical point in the control and prevention of further oxidative damage, which could
consequently prevent the formation of ametabolic environment that facilitates further
cardiac injury. Attention should be paid on deeply unraveling the molecular causes
involved in this synergy adjustment between obesity and hypertension in order to
improve the prevention, early diagnosis and treatment of obese patients.
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Chapter 10
Role of Epicardial Adipose Tissue
in Heart Failure: From Basic to Clinical
Perspectives

Hao Zhang, Mahmoud Gheblawi, Jiu-Chang Zhong, and Gavin Y. Oudit

Abstract Obesity, which is highly associated with insulin resistance (IR), systemic
inflammation, metabolic disorders and cardiovascular diseases (CVD) including
hypertension, hyperlipidemia, coronary artery disease (CAD) and ultimately heart
failure (HF), is an epidemic problemwith growing population. Fatty acidmetabolism
consisting of anabolism and catabolism is crucial in ensuring constant energy
supply to almost all vital organs in physiological milieu, and it is well maintained
under exquisite regulatory mechanisms dependent on dynamic external and intrinsic
factors. More importantly, localized adipose tissues, such as epicardial adipose
tissue (EAT) and perivascular adipose tissue (PVAT), also exert regulatory roles
as an endocrine and paracrine gland on the heart and whole-body vasculatures
via the proximal secretion of hormones, adipokines, cytokines and microRNAs.
Notably, emerging evidences confirming the flip-flop protective effects of EAT on
failing hearts and PVAT on vascular tone have questioned the empirically-believed
negative relation between regional adiposity (mainly visceral) and cardiovascular
events, though the mechanistic underpinning remains largely unknown. This chapter
provides an overview of adipose tissue physiology and EAT-mediated pathophys-
iological progression to heart failure with preserved ejection fraction (HFpEF) in
obesity, interprets the current findings of possible interplays from pre-clinical and
clinical models. Furthermore, we highlight the heuristic translational insights on
early diagnosis, intervention and therapeutic options to balance the physiological
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and pathological equilibrium of EAT averting unfavorable cardiovascular insults in
the context of obesity.

Keywords Heart failure · Epicardial adipose tissue · Obesity · Metabolic
syndrome · Insulin resistance · Inflammation · Renin-angiotensin system ·
Adipocytokine · Apelin · Human explanted hearts

Introduction

In contemporary society, obesity strikingly impinges on the public health with over
500 M patients diagnosed as of 2013, which projected to rise in the forthcoming
decades imposing enormous socio-economic burden including medical costs and
poor labour resource [1]. Meanwhile, cardiovascular disease is another epidemi-
ology attributed to coronary artery diseases, stroke, hypertension and heart failure,
ranked as the leading cause of deaths globally [1–3]. Obesity is a eutrophic genetic
disease characterized by pathologically excessive adipose tissue accumulation in the
bodywhich is chronically induced by heterogeneous factors, such as over-rich calorie
diet and sedentary lifestyle, and complicated by the systemic metabolic syndrome,
namely, type 2 diabetes mellitus, insulin resistance, dyslipidemia [4]. Recently, the
site-specific properties beyond simply being an energy reservoir of adipose tissue
have drawnmuch interest, and given the close anatomic proximity to the omnivorous
heart, any perturbation of EAT or PVAT profile would promptly trigger pathogenic
adipokines secretion adversely jeopardizing coronary arteries and myocardium. Not
surprisingly, paralleled correlations between the regional adipose distribution (e.g.
volume and thickness) and detrimental CVD events (i.e. atrial fibrillation, atheroscle-
rosis and left ventricular diastolic dysfunction), possibly due to enhanced inflamma-
tion, disturbed adipocytokines and lipotoxicity, have been demonstrated by copious
literatures [5–9]. Specifically, obesity confers stronger prediction to heart failure
with preserved ejection fraction (HFpEF, EF ≥ 50%) versus heart failure with
reduced ejection fraction (HFrEF,EF<50%) especially in females [10–12].However,
controversial evidences exist in a few studies claiming the cardio-protective effects
like plaque stability; thus improving prognosis from obese individuals with CVD,
which is the so-called “obesity paradox” awaiting further elucidation underlying
the epigenetic shift [13–15]. Despite the emerging appreciation of adipose tissue as
a cardiometabolic risk factor and a modifier routinely assessed by modern imaging
techniques (i.e. 2D transthoracic echocardiography and cardiac magnetic resonance
imaging), why, how and to what extent should we tackle this intractable illness still
remain poorly understood. Moreover, the pursuit of investigation is partially held
back by the disparate adiposity pattern between murine models and human beings.
Therefore, in this review, we set to cover the biological role of adipose tissue in rela-
tion to obesity, to illustrate the central importance of maintaining normal epicardial
adipic profiles, to emphasize the ambivalent EAT-derived effects on failing hearts and
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to explore any possible mechanisms (e.g. ACE2/Apelin axis) that could potentially
illuminate the pathway searching for therapeutic hope.

Obesity and Developmental Physiology of Adipose Tissue

Obesity, or adiposity, is an ailing condition in which exceptional high fats or lipids
accumulate within body. It is advisedly diagnosed using the age-independent body
mass index (BMI) with a combination of descriptive anthropometry (i.e. waist
circumference and waist-to-hip ratio) in clinical practices (Fig. 10.1A), which avoids
the gender-related difference of fatness distribution [14, 16, 17]. To state, the splice
of the beige tissue, mainly composed of subcutaneous adipose tissue (SAT), tends
to deposit primarily around the gluteal-femoral part in female vis a vis the archetyp-
ical accumulation of visceral fats (VAT) in male’s upper body (Fig. 10.1B) [18,
19]. In addition, the favorable side effects on female verse harmfulness on male
also help to partition the sexual dimorphism of fat proportions, presumably resulted
from dividing lipolytic actions as well as distinct pro-inflammatory profiles [14,
20]. Biologically, our bodies have evolved two heterotypes of adipose tissue—white
(WAT) and brown adipose tissue (BAT)—to ensure functional diversities as we grow.
For example, WAT is responsible for energy storage, thermal insulation, internal
organ protection and excessive-metabolite buffering via expansion and proliferation
despite just one large lipid droplet and sparse mitochondria are encircled within
the parenchymal cells, whilst BAT is indispensably providing non-shievering heat
to control body temperature by interacting with mitochondrial uncoupling protein-
1 (UCP1) [21, 22]. Both SAT and VAT fall into the broad categorization of WAT
beingmoremetabolically active. Intriguingly,multiple lines of evidences indicate the
WAT-to-BAT turnover can reverse from WAT-dominant throughout development to
BAT-differentiation under physiological (cold exposure) and pharmacological (e.g.
activating β adrenergic receptor and peroxisome proliferator-activated receptor λ)
stimulations [22–25]. Inviting though bariatric insights are perceived to fine-tune
the adipose tissue phenotypic plasticity, minimal is yet unraveled in human trails. In
terms of the adipotic constituents, adipocyte is literally recognized as the featured
cellular type storing fatty acids (FFAs) in the form of triglyceride (TG), which only
accounts for a small compositional proportion compared with the sizeable remnants
including pre-adipocytes, macrophages, neutrophils and stem cells [26, 27]. Simulta-
neously, adipocytes are capable of secreting over fifty cytokines and peptides collec-
tively known as adipocytokines in (patho-)physiological status [14, 20, 28]. It is the
cellulous and promiscuous nature of adipose tissue that dynamically orchestrates
energy supply, hormonal secretosome (via endocrine, paracrine and autocrine) and
inflammatory regulations (i.e. superseding M1 macrophagic phenotype in times of
morbidly fluctuating lipids) [29, 30].

As for cardiovascular system, WAT is present as three distinct subtypes: the EAT,
the PVAT and the pericardial adipose tissue (PAT). Lately, the serendipitous role of
ectopic fat depot like EAT has drawnmuch attention especially in cardiometabolism,
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B         Gender-dimorphism of fat distribution

- Major type: SAT
- Location: Gluteal-femoral
- Cardio-protective
- Metabolic diversity
- Physiological adipokines

- Major type: VAT
- Location: Intra-abdominal
- Increased CVD risks
- Metabolic inflexibility
- Pathological adipokines

A

Fig. 10.1 A Obesity classification for adults from WHO guidelines, based on BMI and additional
physical parameters. WHO: world health organization; BMI: body mass index. B “Apple-shaped”
versus “Pear-shaped” adipose tissue distribution between men and women. In females, adipose
tissue appears to accumulate more in the lower body, mainly subcutaneous adipose tissue around the
gluteal-femoral area, while inmales fat accumulates in the visceral area. The gender-specific fatness
distribution is believed to correlate with different systemic and cardiovascular effects. Females are
benefiting from the lower-body white adipose tissue with metabolic cardioprotection and salu-
brious secretosome, while intra-abdominal adipogenesis brings myriads of fateful cardiovascular
consequences on males
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given the constantly high-energydemandof heartwhich ismet dominantly (~60%)by
β-oxidation of the esterified fatty acids. This process is facilitated via EAT by virtue
of its neighboring anatomic location and seamless contact with the myocardium [30,
31]. However, higher reliance on fatty acid metabolism in the setting of preceding
cardiac pathologies, statistically about 80% in CAD and 90% in diabetes, sensi-
tizes the failing heart and exacerbates the progression to diastolic HF [31]. During
remodeling, the EAT could potentially alleviate lipotoxicity by buffering the surplus
metabolite. On the other hand, contradictory findings as to the counteractive effects
of epicardial adipogenesis on the myocardial dysfunctionality, presumably triggered
by impaired EAT quality or limited buffering capacity under chronic overnutri-
tion, complicate the whole edifice of understanding towards the localized interplay
[32, 33]. Accordingly, future studies on balancing the seesaw of EAT are certainly
warranted to ameliorate or even recuperate the cardiac health.

Physiological Role of EAT

Anatomical Biology

The first of the three WATs present in the cardiovasculature is the EAT constituting
the upper layer of the myocardium’s epithelium, the epicardium, which is located
between the visceral pericardium and the myocardium (Fig. 10.2A) [34]. Further-
more, the PAT is located above the serous pericardium on the surface of the fibrous
pericardium (Fig. 10.2A) [34]. Lastly, it is the PVAT that encompasses many of the
greater and lesser vessels within the body such as the aorta and efferent and afferent
renal arteries [35–37].

EAT Versus PAT: Distinct Distribution and Function

The EAT constitutes 20% of the weight of healthy adult human hearts and arises from
the same splanchnopleuric mesodermal BAT lineage as mesenteric and omental fat
cells [35–38]. PAT, on the other hand, arises from the primitive thoracic mesenchyme
and consists of the adipose tissue enveloping the pericardium which may extend
over 80% of the pericardial surface and compose of up to 20–50% of the cardiac
mass [36]. The EAT is supplied nutrients by the coronary arteries and their vasa
vasorum comprising a part of both of their adventitia indicating EAT’s contiguity
with both the myocardium and the coronary arteries while the PAT is supplied by the
internal thoracic artery and is not in contiguity with the myocardium [35, 36, 38–41].
The EAT begins at the branching of the coronary arteries from the aortic root and
traces around the atrioventricular grooves and then down following interventricular
grooves and coronary branches, both on and within the myocardium until reaching
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Fig. 10.2 The role of epicardial adipose tissue in cardiac (patho-)physiology. A In the human
heart, EAT is located in the atrioventricular and interventricular grooves, surrounding the significant
branches of coronary arteries, both left and right ventricles, atria and the apex (a). The blow-up above
in (a) delineates the relative anatomic position between epicardial and pericardial adipose tissues,
each covering epicardium and fibrous pericardium respectively; meanwhile, the sketch below in (a)
depicts the cross-sectional perivascular contour beneath EAT. B Due to the anatomical closeness
between EAT/PVAT and myocardium, they may function more than a local fatty acids reservoir,
which readily ensures adequate energy supply to cardiomyocytes in stress conditions, such as CAD
and ischemia. The physiological nature of EAT/PVAT could turn into pathological upon adipose
tissue inflammation. It is macrophage polarizing to proinflammatory CD 11c+ M1-macrophages in
EAT/PVAT that contributes to the pathogenesis of CAD, localized inflammation and lipotoxicity,
which inevitably leads to HF. AT: adipose tissue; EAT: epicardial adipose tissue; EC: endothelial
cell; VSMC: vascular smooth muscle cell; Ang (1–7): angiotensin 1–7; IL: interleukin; iNOS:
inducible nitric oxide synthase; CD 11c+ M1-macrophages: classically activated inflammatory
phenotype of macrophages; MasR: Mas receptor; TGs: triacylglycerols; TNF-α: tumor necrosis
factor-α. Reproduced with permission from Patel et al. [29]
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the apex of the heart [37, 41, 42]. The EAT’s mechanical function is the reduction
of torsional strain along interventricular grooves and at the base of the coronary
arteries in addition to limiting frictional strain between the exterior surface of the
coronaries with the serous pericardium [38, 43]. Additionally, the EAT plays an
imperative role in maintaining physiological metabolism and homeostasis of the
heart [38], because it consists of adipocytes, preadipocytes, fibroblasts,macrophages,
endothelial cells, microvasculature, and ganglia [27, 38, 44, 45]. Most adipocytes in
EAT are preadipocytes and are generally smaller in cell size compared to visceral
fat elsewhere in the body as there is limited room to expand within the pericardial
sac before impairing cardiac function [29, 37, 38, 41, 46]. The constant demand for
energy by the heart keeps lipid storage, and thereby cell size, at a minimum in EAT
[37, 38, 41, 45, 46].

Metabolic Profile of EAT

The heart’s primary energy source comes from β-oxidation of esterified fatty acids
which accounts for 50–70% of its energy consumption [29, 31, 47]. FFAs are trans-
ported from the blood into the EAT employing the cluster of differentiation 36
(CD36), a plasma membrane-associated protein which is responsible for the FFAs
uptake by the heart [38, 47, 48]. Here, FFAs are deposited as myocardial TG until
later being degraded back into FFAs and released as cardiac metabolic requirements
demand [38, 47, 48].

Myocardial metabolism further favours FFAs utilization over glucose in times of
diabetes, exercise, limited food intake, and obesity [38, 41]. Likewise, the EAT does
not readily uptake glucose innately as other adipose tissues do, as observed in its
reduced amount of both insulin receptors and glucose transporters [49]. A probable
cause for EAT’s lack of insulin bioactivity could be the latter’s anti-lipolytic effects
mediated primarily through downstream AMPK activation which runs contrary to
EAT’s role as an energy depot for the myocardium, despite the lack of clear eluci-
dation as to the communication means between the EAT and myocardium [29, 36,
50]. However, we can infer that the energy for cardiac metabolism primarily orig-
inates from this source because of the fact that WAT lipolysis in addition to FFA
synthesis and release is highest in EAT [41]. Furthermore, the EAT not only serves
as a temporary TG depot but exhibits cardioprotective buffering mechanisms during
hyperlipidemia preventing ectopic dyslipidemia within the myocardium by storing
FFAs in addition to its hypothesized action in secreting FFAs back into the circulation
against their concentration gradients [30, 38, 41, 47, 51].
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Secretosome of EAT

The EAT containing miscellaneous components is a large secretosome all releasing
an array of adipokines, cytokines and hormones eventuating in autocrine along with
myocardial endocrine and paracrine signaling due to the absence of an anatomical
barrier between them [30, 36, 38, 52]. Secretions may also result in paracrine and
endocrine effects upon the coronary arteries either through direct diffusion across
their adventitia, media, and intima or that of their vasa vorsum which are equally
engulfed in EAT [38, 53].

The adipocytes from the EAT release adipokines such as adiponectin, apelin, and
leptin in addition to cytokines such as tumor growth factor-β (TGF-β) and monocyte
chemoattractant protein-1 (MCP-1) [52]. Among them, the anti-oxidant adipokine
adiponectin is responsible for promoting glucose uptake, insulin sensitivity and lipid
catabolism [46, 52, 54]. The protein hormone also inhibits eNOS-related vasodi-
lation, platelet aggregation, thrombosis and macrophage activation [46, 52]. While
it can be produced by EAT adipocytes, cardiomyocytes as well as vascular stromal
cells [52], the apelin secreted from the adipocytes leads to the vasodilation of arteries,
improved cardiac contractility, output, and recovery from ischemia while decreasing
oxidative stress, cardiac infarct size and fibrosis [55–57]. As a circulating hormone,
leptin affects body weight, food intake, fat mass, and metabolism either through
direct action on tissues or through neuroendocrine signaling and is found in levels
proportional to insulin [27, 52]. As for cytokines, MCP-1 is a cytokine released
by EAT adipocytes at a much higher rate than SAT usually in response to oxida-
tive stress, cytokines or hormonal factors, and functions in attracting monocytes
to infiltrate the EAT and mature into resident macrophages in addition to recruit-
ment of T-lymphocytes [30, 52, 58]. The cytokines released by EAT such as IL-
10, IL-6, TGF-β, tumor necrosis factor-α (TNF-α) are quite potent to the extent
that only 10% released need binding to a receptor to elicit a response and serve
functions as both inflammatory and anti-inflammatory mediators of the immune
system [45, 52, 59]. Likewise, these cytokines and adipokines secreted by the EAT
are capable of crossing the tunicas of the coronary arteries and their vasa vasorum
leading to endothelial dysfunction, smooth muscle proliferation, and destabilization
of atherosclerotic plaques [30, 43].

Pathological Role of EAT in HF with Obesity

Two Subtypes of HF: HFpEF Versus HFrEF

HFpEF is a sign of diastolic impairment in which the LV can no longer fill appro-
priately due to either physical restriction from a tightening pericardial space to both
hypertrophic and fibrotic factors which limit the LV’s relaxation and filling capabil-
ities [60]. Patients express preserved LV ejection fractions (≥50%) with decreased
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cardiac output and impaired LV global longitudinal strain (GLS) [10, 61]. HFrEF, on
the other hand, is amarker of systolic dysfunction (with underlying diastolic dysfunc-
tion)wherein LVpumping (EF < 50%) is diminished primarily due to cardiac dilation
arising from morbidities such as aortic stenosis, hypertension, chronic hypertrophy,
CAD or myocardial infarction (MI) [10, 30, 60]. The synopsis is that an overworked
LV weakens over time and ceases to expel sufficient amounts of the end-diastolic
volume resulting in reduced ejection fractions and pulmonary tension [62]. In cases
of MI, blood supply is cut off to parts of the ventricular (mainly LV) which leads
to the spread of necrosis factors as well as deposition of fibrotic tissue reducing the
contractility capabilities of the myocardium [30, 63].

Association Between HFpEF and Obesity

HFpEF is the primary form of HF associated with obesity and is marked by dias-
tolic dysfunction of the LV and constriction of available space within the pericardial
sac limiting the extent of cardiac remodeling [29, 30, 36]. The expansion of the
EAT preadipocytes limits the amount of space within the pericardial sac available
for the LV to relax into during diastole leading to restrictive cardiomyopathy [29,
37, 38, 46]. Concurrently the burden of the increased weight of the expanded EAT
connected to the myocardium forces the LV to work harder in ejecting blood during
systole triggering in hypertrophic remodeling [36, 38]. Obesity-related EAT expan-
sion, therefore, results in diastolic dysfunction marked by cardiac hypertrophy and
restrictive cardiomyopathy, indicative of HFpEF [30, 38, 64]. The EAT is hypoth-
esized to be capable of transporting FFAs across concentration gradients whereby
exerting cardioprotective effects during instances of hyperlipidemia [38, 51]. This
function, however, is compromised with the onset of obesity and HFpEF in which
there is a marked expansion of EAT (Fig. 10.3) losing the cardioprotective ability in
regulating FFAs levels [38, 39, 51].

Metabolic and Secretosome Alterations of EAT in Obese
Patients with HF

Excess adiposity can induce inflammation at both organ and systemic levels, and this
is no exception for the interplay between EAT expansion and the myocardial injury
[52]. Increased adipokines and cytokines from the EAT, which may release more
than 50 kinds adipocytokineswhen in a pathological state, and invadingmacrophages
dysregulate the myocardium’s naturally flexible metabolic energy source preference
of 50–70% from FFAs to sole FFAs utilization through induced IR [14, 27–29, 47].
The increased usage of FFAsmediated by theEATalso leads to the buildup of reactive
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oxygen species (ROS) and dyslipidemia in the myocardium resulting in fibrosis and
MI [49].

Obesity leads to elevated levels of leptin and resistin which are typically low in
non-obese persons who have to counteract higher levels of adiponectin instead [52].
The anti-oxidant adipokine adiponectin which confers insulin sensitivity, declines
with the development of obesity as hypoxia-induced apoptosis and mitochondrial
ROS production elevate [39, 46, 52, 65]. Elevated EAT secretion of leptin and resistin
increases IL-6, TNF-α, and interferon gamma (IFNγ) cytokines aswell as chemokine
MCP-1 levels which stimulates inflammation in obese patients by promoting mono-
cyte invasion and maturation in addition to attracting T-leukocytes. Both in turn
release further pro-inflammatory factors elevating myocardial IR, inflammation and
lipotoxicity (Fig. 10.2B) [38, 52].

EAT-Mediated Inflammation in Obese Patients with HF

Macrophages stimulated by EAT’s adipokine and chemokine factors undergo polar-
ization into theM1 classic pro-inflammatory phenotype [30, 66]. Thesemacrophages
express CD11c+ and release IL-6, IL-1B, TNF-α and MCP-1 which further recruit
and retain M1 macrophages capable of nitric oxide (NO) production, through the
iNOS pathway, further inflaming the organ (Fig. 10.2B) [66]. M1 macrophage self-
recruitment resembles a feed-forward regulation mechanism by which inflamed
EAT falsely identifies inflammation due to elevated resistin and leptin levels, which
leads to macrophage recruitment and maturation which go on to release further pro-
inflammatory factors as well as hormones such as the cardiac remodeling angiotensin
II (Ang II) [38, 54, 66, 67]. The alternative non-inflammatory M2 phenotype is stim-
ulated by IL-10, amongst other factors, and marked by the CD206+ antigen in extra-
cellular matrix (ECM) depositionwhich has overall beneficial and therapeutic effects
in the EAT (Fig. 10.2B) [54, 66]. TheM2 phenotype likewise increases insulin sensi-
tivity through TGF-β as well as sequestering the proliferation of EAT preadipocytes
[29, 54, 68].

Translational Approaches: From Basic to Clinical Insights

Limitations of Model Organisms

The spread and eventual encompassing of the myocardium with EAT is not seen
in other mammals as compared to human hearts [29, 37, 41]. Marchington et al.
conducted significant histological and enzymatic activity studies on EAT from
various mammals, both model organisms and not [41]. They discovered that none
of their experimental specimens had enough EAT which resulted in pooling samples
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from different specimens for each species to have an adequate amount to perform
analysis on. While the human myocardium and coronary arteries are enveloped and
impregnated by the EAT, other mammals including mice, hardly have any EAT, to
beginwith [37, 41].However, themousemodel is extensively used in cardiac research
despite the EAT is primarily focused around the atrioventricular groves and defined
more proximally to the aorta, whereas in humans the EAT spreads as a continuous
body structure from the point of coronary branching from the aortic root to the apex
of the heart [30, 38, 41, 42].

A possible reason for the reduced EAT in mice is their elevated metabolic rate.
The normal murine heartbeat is between 500–700 beats per minute while the human
heart beats in comparison at a significantly lower rate [69, 70]. As by the square-
cube law, where the volume increases at a faster rate to that of the surface area,
a mouse’s body size demands more cardiac work to sustain metabolic levels in
order to regulate body temperature, whereas larger animals do not need to sustain
elevated rates of metabolism to thermoregulate once they reach their ideal body
temperature [71]. This decreased cardiac output thereby allows for EAT build-up for
times of elevated activity or stresswhen sudden energy expenditurewould be required
[38]. Similarly, it has been observed that EAT adipocytes contain UCP-1 signifying
that when larger mammals are in need to thermoregulate their entire bodies in cold
temperatures, thermogenesis of the EAT can occur to maintain high cardiac function
while the peripheries catch up [35, 38]. Exposure to the cold causes activation of
cardiac natriuretic peptides which function in converting white adipocytes into a
beige phenotype whereby they increase in mass through replication with smaller size
and exhibit thermogenesis through the UCP-1 pathway [38, 72]. This observation is
synonymous with Marchington et al.’s that EAT seems to be most prevalent in larger
mammals and specifically amongst the carnivorous like obese monkey [41].

Human Explanted Hearts: An Optimal Alternative

Taking this all into account the use of recipient explanted human heart tissue is a
sound alternative allowing the interpretation of laboratory observations in a more
clinically relevant and translational setting where the ideal animal models (primates)
would be too costly and unethical to run for every experimentation. The usage of
human explanted heart tissue would allow for the comparison of effects seen in pre-
clinical models to human tissue, helping elucidate what mechanisms are conserved
between species. In the case of obesity and HF, usage of explanted hearts allows us
to compare the extent of EAT between different HF subtypes. The EAT appears to
be quite enlarged in obese-HFpEF patients as compared to obese-HFrEF, and the
latter also seem to have less EAT than the non-failing control hearts from obese
donors (NFC-obese) but similar to the ones from NFC non-obese donors (Fig. 10.3).
It is not evidentially clear as to why the EAT expansion is markedly increased in
HFpEF cases; however, it should be noted that HFrEF depicts a more advanced form
of HF where cardiac remodeling can no longer counter myocardial insult resulting
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in dilation [29]. Another noteworthy point is that despite the EAT in HFrEF not
appearing to be as enlarged as in HFpEF, it is just as inflamed and insulin resistant
(Fig. 10.3) [29].

Therapeutic Targets: ACE2/Apelin Pathway

A more predictive marker of HF incident occurring is chronic inflammation in
conjunction with metabolic syndrome (MetS) as Suzuki et al. demonstrated [73].
Patients with elevated levels of both IL-6 and C-reactive protein as well as elevated
markers of MetS (IR, BMI, waist circumference) had worse outcomes and a higher
incidence of HF [73]. IR and inflammation are critical markers of the MetS relating
to HF, which coincidentally occur almost simultaneously in the EAT [36, 45]. The
prevention of HF incidents in obese patients should start through the reduction of
EAT’s chronic inflammation and IR which can be treated with therapeutics targeted
at alterations in either the renin-angiotensin (RAS) or the apelin system [45, 54, 73].

The RAS is the primary hormonal system involved in the pathogenesis of obesity
with relationship to the heart through cardiac remodeling [29]. The RAS has both
endocrine and paracrine effects and exists as an independent system at the local
level in various tissues [74, 75]. Here, angiotensinogen is cleaved by renin into Ang
I which is further degraded by angiotensin-converting-enzyme (ACE) into Ang II
acting primarily upon the Ang II type 1 Receptor (AT1R), and this is referred to as
the ACE/Ang II/AT1R axis [74, 75]. Ang II is also cleaved by ACE2 into Ang 1–7
which acts upon the Mas receptor (MasR), as a counter-regulatory arm of the RAS
[74, 75]. In addition, ACE2 can also convert Ang I into Ang 1–9 which is further
cleaved by either the neutral endopeptidase Neprilysin (NEP) or ACE, and both of
them are capable of converting it into Ang 1–7 [74, 75]. The two regulatory axes of
the RAS confer different effects on the myocardial tissue. The ACE/Ang II/AT1R
axis is primarily functional in short term recovery of cardiac output through increased
contractility and vasoconstriction and is a potential therapeutic for vasodilatory shock
[74–76]. HF arising from obesity is demarked by increased IR and chronic inflamma-
tion of both themyocardium and the EAT in addition tomaladaptive and pathological
cardiac remodeling of the ventricles [75]. Upregulated cardiac Ang II levels attempts
to remodel in order to maintain regular heart function despite the restrictive nature of
HFpEF [29, 63, 77]. Genetic deletion of ACE2 further worsens an obese model as a
result of the vasodilatory, anti-inflammatory and blunted insulin-positive effects [54,
75]. Addition of ACE2 to elevate local Ang 1–7 levels in the heart has been shown
to ameliorate the effects of chronic Ang II stimulation and is a potential therapeutic
target for IR and HF [63, 78].

Apelin is a 77-amino prepropeptide adipokine secreted in the heart and its
knockout leads to IR and HF [57, 79]. Apelin is degraded into three main
isoforms: Pyr-apelin-13, apelin-17, and apelin-36. Each has a conserved 12-member
C-terminuswhich confers receptor binding activity, with Pyr-apelin-13 and apelin-17



186 H. Zhang et al.

being themost biologically active [57].Apelin has been shown to ameliorate hypoxia-
induced apoptosis, mitochondrial ROS generation as well as improve insulin sensi-
tivity and glucose utilization in a diet-induced-obesity model [65, 80]. The naturally
occurring apelin analogues are short-lived in the body (<4 min) as their C-terminal
phenylalanine is cleaved off by ACE2 while NEP acts on the conserved “RPRL”
motif resulting in conformational changes that can alter binding affinity to the apelin
receptor (APJ receptor) [56, 57].

In obese animalmodels, apelin has been shown to ameliorate ischemia/reperfusion
(I/R) injury through ROS mediation, resulting in the reduction of myocardial apop-
tosis and injury as well as reduced mitochondrial damage [65]. Mice fed a high-fat
diet displayed signs of cardiac dysfunction exhibiting reduced ejection fractions and
fractional shortenings as well as elevated levels of serum insulin and apelin levels
in adipose tissue [65, 81]. Aged apelin mutant mice developed progressive impair-
ment of myocardial contractility along with systolic dysfunction, and loss of apelin
contributed to HF in response to both pressure-overload and Ang II infusion [82, 83].
Conversely, mice hearts on a regular diet and given an apelin-13 infusion fared much
better off than regular diet only hearts, and a similar observation was noted between
high-fat diet hearts and high-fat diet hearts with apelin-13 infusion [65]. Moreover,
apelin has direct effects on the propagation of action potential and contractility in
cardiomyocytes, and the mechanisms involved in the inotropic effects may be asso-
ciated with increasedmyofilament sensitivity to Ca2+ [84]. Infusion with apelin leads
to reduced caspase-3 activity, a biomarker of myocardial infarction, and increased
anti-apoptotic protein Bcl-2 expression, which were secondarily verified by staining
for infarcted areas [65]. This concludes that the ACE2/Apelin signaling is a potential
therapeutic avenue requiring more research. Current work is looking at developing
analogues of apelin limiting its susceptibility to biodegradation by ACE2 and NEP
[55, 56, 78, 85].

Conclusion

Elucidating the specific subtypes of HFpEF can further our understanding as to
why EAT expands in this phenotype as compared to HFrEF. Iacobellis et al. have
demonstrated that EAT increases proportionally to LV hypertrophy and indepen-
dently to BMI while others have shown that elevated levels of abdominal VAT (as
measured by waist circumference) indicate increased EAT in addition to increased
LV size (Table 10.1) [86–88]. The Paulus and Tschöpe’s hypothesis outlines a course
of pathology for HFpEF in which comorbidities such as obesity, MetS and IR
lead to elevated adiposity which in turn leads to systemic inflammation. And this
results in coronary microvasculature endothelial dysfunction spreading into adja-
cent myocardium and causing elevated hypertrophy and fibrosis due to decreased
levels of protein kinase G (PKG), cyclic guanosine monophosphate content (cGMP)
and NO bioavailability [89]. The inflammation although does not have to be system-
ically occurring as it is present at the locale of the expanding EAT which favorably
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allows inflammatory and paracrine factors to traverse past the smooth muscle cells
of the media and onto the endothelium [54, 89]. Kremen et al. were able to show
that an expanded EAT in obese patients undergoing cardiac surgery was able to
confer systemic IR through elevation of resistin and leptin [90]. Upon operation,
MCP-1 levels elevated first in the EAT indicating recruitment of monocytes and
other immune cells followed by elevations of TNF-α and IL-6. Resistin and leptin
levels increased significantly enough in patients despite adiponectin levels remaining
relatively stable [52, 90]. The elevation of leptin, resistin, IL-6, and TNF-α along
with the hyperglycemia indicates that the EAT conferred some IR [90]. In addition,
the elevated hypertrophy and fibrosis by both myocytes and fibroblasts demands
increased energy from the EAT, furthering its expansion and eventual engulfment of
the heart’s epicardium (Fig. 10.3).

Meanwhile, confirmation of HFrEF is through the dilation of the LV, atrophy
of myocytes and fibrosis [91]. Wherein there is less energy demanded by the
myocardium leading to the lack of EAT expansion even with the comorbidity of
obesity. As the current mechanisms of communication between the EAT and the
myocardium have not been elucidated, as previously mentioned, we cannot discern
this expansion of the original hypothesis with absolute certainty [38]. A seminal
study exploring the relationship between EAT adipocyte and cardiomyocyte rates
of apoptosis and proliferation in combination with endothelial dysfunction in NFC,
HFpEF, and HFrEF would be required.

With reduced cardiovascular mortality risks, patients diagnosed with HF have
a better prognosis if they are obese as compared to their lean counterparts, which
is known as the “obesity paradox” [92, 93]. The obesity and HFpEF paradox is a
U-shaped relationship where extremely obese, and those underweight both experi-
ence worse outcomes than patients who are overweight to mildly obese indicating
that the underlying subtypes of HFpEF may differ in their pathology [94]. Differ-
ences in HF outcomes are primarily from variations in BMI measurements in addi-
tion to varied definitions of obesity based on ethnicity [5, 92, 95]. For example,
African-American women and men seem to be more susceptible to HFpEF then
their counterparts as measured by BMI (Table 10.1) [5, 96]. However, those in the
PREVEND cohort primarily consisting of Dutch participants had BMI associated
with higher risk of HFpEF and HFrEF (Table 10.1) [5, 96]. Different ethnicities and
different cohorts of people vary in their susceptibility to different HF subtypes as
does the relationship between the anthropometric measurement and HF subtypes.
These variations have prompted the application of lower cut-off points to ascribe
both overweightness and obesity in Asian populations that differ from both tradi-
tional and the WHO’s guidelines (Fig. 10.1A) [95, 97]. The general trend, however,
is that obesity, diabetes mellitus and IR all tend to correlate with the prognosis of
HFpEF over HFrEF (Table 10.1).
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Chapter 11
Epicardial Adipose Tissue
in the Progression and Calcification
of the Coronary Artery Disease

María Luna-Luna, Alejandro Zentella-Dehesa, and Óscar Pérez-Méndez

Abstract The relationship between obesity and coronary artery disease (CAD)
may be mediated by epicardial adipose tissue (EAT). EAT volume correlates with
abdominal visceral adipose tissue and as a consequence EAT is increased in patients
with obesity. The presence of EAT adjacent to the coronary atherosclerotic lesions
suggests a paracrine participation of this tissue in the progression and calcification
of the atheroma. EAT expresses cardioprotective adipocytokines and anti-calcifying
factors, such as adiponectin and osteoprotegerin among others, whose expression
declines in the setting of a hypertrophy of the EAT and CAD. In contrast, pro-
inflammatory and pro-calcifying molecules such as TNF-alpha, and osteopontin,
as well as some microRNAs, are expressed in a higher amount in patients with
CAD than in control subjects. Therefore, the quantification of the EAT emerges as a
potential and useful determination for evaluating the CAD risk. However, the under-
standing of the complexity of the secretory pattern of EAT is still under investigation;
the knowledge derived from future studies in this field will provide new potential
pharmacological targets to prevent and treat the CAD.
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Introduction

The adipose tissue is a type of lax connective tissue composed of cells such as
adipocytes, mesenchymal, fibroblasts, macrophages, endothelial cells and nerves. In
addition, the extracellular matrix of adipose tissue contains collagen I, III, V and VI,
fibronectin, hyluronan and thrombospondin-1 [1–5].

Nowadays, adipose tissue has been classified in three functional categories: brown,
white and beige. The brown adipose tissue is specialized in thermogenesis; white
adipose tissue is devoted to the storage of triglycerides, while beige adipose tissue
has both functions. The white adipose tissue can be classified in subcutaneous and
visceral; the former is found under skin (dermis) and the latter is surrounding organs.

In this way, obesity is mainly related with the increase of the abdominal visceral
adipose tissue (aVAT) and represents a coronary artery disease (CAD) risk [6].
Obesity is characterized by a systemic inflammation associated to an altered secretion
of pro-inflammatory adipocytokines and the decrease of anti-inflammatory and anti-
atherogenic adipocytokines by the aVAT. For many years, the hypertrophy of aVAT
has been considered one of the main risk factors of atherosclerosis, the main etiology
of CAD; however, there are eutrophic patients with high risk of CAD, whereas not
all the patients with obesity develop CAD. These apparent paradoxmay be explained
by the epicardial adipose tissue (EAT); even if aVAT volume positively correlates
with EAT, there are subjects with normal or even low aVAT but elevated EAT volume
who are at high risk of CAD. In fact, several studies have associated the EAT volume
with CAD severity and coronary arterial calcium (CAC) score in both, obese and
euthrophic subjects. Considering that the topology of CAD coincides with EAT, this
particular adipose tissue could play a more important role in the etiology of CAD
than the aVAT because of its contiguity to coronary arteries.

Here, we provide the information supporting the idea that EAT may participate
as a paracrine organ, and as a source of proteins, mesenchymal cells and probably
microRNAs, which as a whole, promote the calcification of atherosclerotic plaque.
We first briefly describe the types of adipose tissue known and the relation between
the aVAT and EAT volumes. We also mention some studies about the association of
EAT with atherosclerosis and coronary artery calcification. Finally, we further focus
on proteins, mesenchymal stem cell and microRNA that could be released from EAT
and regulate the calcification of the atherosclerotic plaque.

Types of Adipose Tissue

As abovementioned, the adipose tissue has been classified as brown, beige andwhite.
Brown adipose tissue (BAT) is abundant in perinatal period and a small quantity is
maintained in adults mainly in the neck, paravertebral and supraclavicular regions
(Fig. 11.1) [7]. This tissue has multilocular adipocytes containing a large amount
of mitochondria in their cytoplasm. BAT is regulated by sympathetic nerves and its
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Fig. 11.1 Deposits of adipose tissue. The pericardial and epicaridal adipose tissues are two different
fat deposits in the heart. The former is situated within the pericardium, whereas the latter is localized
adjacent to the myocardium. In terms of obesity, the abdominal visceral adipose tissue has been
widely associated with coronary artery disease (CAD), however, there are eutrophic patients with
high risk of CAD. In this way, due to contiguity with coronary arteries, the epicardial adipose tissue
could be a source of adipocytokines more important than abdominal visceral adipose tissue

main function is thermogenesis. This characteristic of BAT is mediated by several
molecules which induce the expression and activity of UCP-1 (uncoupling protein-1)
[8]. Briefly, UCP-1 is localized in the inner mitochondria membrane and uncouples
the proton gradient of respiratory chain producing heat. The substrates for this process
are the endogenous and exogenous fatty acids released in response to the sympathetic
nervous system signaling via adrenergic β3 receptors.

In the past decades, it was believed that just the brown adipose tissue had this
thermogenic capacity; however, the “browning” of the white adipose tissue has been
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of special interest for many research groups. In fact, beige adipose tissue is charac-
terized for adipocytes morphologically similar to white adipocytes but, under certain
stimulus, acquires the phenotype of brown adipocytes (multilocular, high mitochon-
drial content of UCP-1 and thermogenic activity) [9, 10]. The most common stimuli
that induce browning are cold exposure, β3-adrenergic activators, thiazolidinediones,
the presence of some peptides and hormones. Two theories have been proposed to
explain the origin of beige adipose tissue; the first, it is de novo differentiation of
precursor cells resident within of white adipose tissue. The second theory is the trans-
differentiation of mature white adipocytes into brown-like cells (beige adipocytes)
and vice versa, in response to the above-mentioned stimuli [11–13]. These adipocytes
have been found mainly within subcutaneous adipose tissue [12] and their impact in
the metabolism is being extensively studied.

Finally, the white adipose tissue is composed of unilocular adipocytes [14, 15]
and it is subclassified in two types: subcutaneous and visceral. The subcutaneous
adipose tissue (SAT) is mainly localized in femorogluteal regions, back and anterior
abdominal wall and it represents over 80% of total body fat and its main func-
tion is storage of triglycerides [16, 17]. In contrast to SAT, visceral adipose tissue
(VAT) has a ubiquitous location and it is divided in 4 subcategories; (1) intraperi-
toneal, also known as abdominal; comprises the omental and mesenteric adipose
deposits, surrounding the stomach, and intestines, respectively; (2) retroperitoneal
that surrounds the kidneys; (3) gonadal, covering uterus/ovaries or epididymis/testis;
and (4) cardiac. Two different deposits constitute the cardiac adipose tissue: the peri-
cardial situated within the pericardium, and epicardial that is localized adjacent to
the myocardium (Fig. 11.1) [14, 18, 19].

The embryological origin of all types of adipose tissue is still controversial but it
has been accepted that the BAT derives from paraxial mesoderm, VAT from lateral
plate mesoderm and the SAT from lateral plate mesoderm as well as neural crest
stem cells. (Fig. 11.2) [20–22]. In addition, it has been suggested that different
VAT deposits could have, on their turn, different embryological origins. Therefore,
each deposit of VAT could be considered as a mini-organ that fulfill independent
functions [20].

In general, SAT is primarily involved in the storage of triglycerides, it is less
metabolically active, and it contains smaller adipocytes than aVAT [16]. Jové et al.
demonstrated that the expression of genes relatedwith adipogenesis and formation of
lipid droplets in SAT is higher than in aVAT [23]. These evidences are in agreement
with the triglycerides storage capacity of the SAT.

When SAT capacity of triglycerides storage is saturated, the excess of fatty acids
begins to be accumulated in ectopic deposits such as VAT, among others, inducing
metabolic alterations [14]. In this way, several studies have associated the expansion
of aVAT with an increased incidence of obesity, insulin resistance, type 2 diabetes
mellitus and CAD [24–28].
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Fig. 11.2 Embryological origin of adipose tissues. Brown adipose tissue derives from paraxial
mesoderm, whilst visceral adipose tissue from lateral plate of the mesoderm. The embryological
origin of subcutaneous adipose tissue is still under debate, but it has been accepted that this adipose
tissue derives from lateral mesoderm as well as from the stem cells belonging to the neural crest

Obesity and Epicardial Adipose Tissue

Epidemiological studies have demonstrated that obesity is a main cardiovascular risk
factor [29]. Nowadays, it is widely accepted that the contribution of aVAT to CAD is
more important than that of the subcutaneous adipose tissue. Obesity is traditionally
defined by a BMI >30 kg/m2, commonly associated with an excess of adiposity and
characterized by structural and metabolic abnormalities of aVAT. On the setting of
obesity, visceral adiposopathy is accompanied by an increase in the cellular size
(hypertrophy), the production of pro-inflammatory adipocitokines such as TNF-
α, MCP-1, IL-6, IL-8, PAI-1, chemerin, visfatin, resistin, lipocalin-2 and leptin.
Concurrently, hypertrophic adipocytes secrete low levels of anti-atherogenic and
anti-inflammamatory adipokines such as adiponectin, adrenomedulin and omentin-1
[14]. The chronic systemic inflammation, characteristic of obesity, has been one of
the most important mechanisms that links obesity to CAD [14]. However, chronic
inflammation in obesity does not explain why only certain arteries, not all, develop
atherosclerosis, or why only some atherosclerotic plaques become calcified. The
topology of atherosclerosis suggests a local participant that modifies the microenvi-
ronment of coronary arteries and promotes the progression and calcification of the
atherosclerotic plaque. In this context, coronary atherosclerotic lesions are usually
adjacent to epicardial adipose tissue (EAT) independently of the presence or absence



200 M. Luna-Luna et al.

of obesity [14, 30]. Therefore, EAT, but not aVAT, may be one of the most impor-
tant local factors that promotes the progression and calcification of atherosclerotic
plaque.

General Characteristics of Epicardial Adipose Tissue

Epicardial adipose tissue (EAT) has the same embryologic origin that omental and
mesenteric adipose tissue; all of them derive from the lateral mesoderm, particularly
from the splanchnopleuric mesoderm [18, 31–33]. EAT is localized between the
myocardium and visceral pericardium [14, 18, 19] and it is mainly distributed around
the coronary arteries, over the left ventricle apex, right ventricle lateral wall, and the
atrioventricular and interventricular grooves (Fig. 11.1) [14, 18, 32–36]. EAT is
vascularized by branches of the coronary arteries [18, 37, 38] and it is considered as
the true deposit of visceral adipose tissue of the heart [35].

EAT is composed of adipocytes, smaller than subcutaneous and than other visceral
adipose tissues [14, 39]. The smallmean size of adipocytes in EAThas been attributed
to a greater number of pre-adipocytes than that of other adipose tissues [32, 40]. EAT
possesses a high capacity for storing and releasing FFA; therefore, this tissue might
function as both, a buffer protecting the heart against the lipotoxicity of high levels
of free fatty acids (FFA), and as a source of FFA for energy production, [14, 40, 41].
This dual behavior is important because the main source of energy in the heart is the
β-oxidation of FFA [33, 40, 41]. For this reason, EAT is rich in saturated fatty acids
such as myristic (14:0), palmitic (16:0) and stearic (18:0) acids whereas unsaturated
fatty acids such as palmitoleic (16:1, �9), oleic (18:1, �9), linoleic (18:2, �9,12) and
α-linolenic acids (18:3, �9,12,15) are scarce in EAT [14, 40].

Recently, the thermogenic potential of EAT has received increased attention; the
expression of thermogenic genes such as PR domain containing-16 (PRDM-16),
PPAR-γ coactivator 1-α (PGC1α), and UCP-1 are expressed at higher levels in EAT
than in other deposits of lipids from patients with and without severe CAD [34, 36,
42]. These results strongly suggest that EAT could act similarly to brown adipose
tissue, protecting the myocardium and coronary arteries against hypothermia.

EAT is a source of adipocytokines and its secretor profile may be modified
in metabolic diseases (such as obesity and diabetes) becoming a tissue poten-
tially harmful. Under such conditions, EAT favors inflammatory processes, insulin
resistance, atherosclerosis progression and probably calcification of atheromatous
plaques.

EAT and Coronary Artery Disease

Several studies have associated the EAT with coronary artery disease (CAD) [43–
46]. Silagui et al. demonstrated that the extent of EAT was higher in patients with
CAD than in controls, and that the extent of the tissue correlated with the coronary
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stenosis [43]. These results were further supported by a meta-analysis [47] showing
that both, EAT thickness and volume, were higher in CAD patients compared with
non-CAD subjects. In addition, patients with coronary plaque had an increased EAT
volume compared with patients without plaque [47]. On the other hand, McKenney
et al. demonstrated in a pig model of CAD that resection of EAT located in direct
contiguity with coronary arteries decreased the evolution of atherosclerosis, thus
supporting the role of EAT in the progression of the disease [48].

Inflammation is the major player in the onset and progression of the atheroscle-
rotic plaque [14]. In this context, the analysis of transcriptome and secretome of
EAT obtained from patients with CAD showed an adiposopathy characterized for an
increased pro-inflammatory profile; several studies have demonstrated an increased
expression of pro-inflammatory cytokines such asTNF-α, IL-6,MCP-1, IL-1β, PAI-1
in EAT from CAD patients [49–51].

It has been suggested that the lipopolysaccharides (LPS) may be recognized by
TLR’s onEAT inducing the expression of inflammatory cytokines byNF-κBpathway
[52]. Thus, Baker et al. established that the systemic levels of LPS and the protein
content of NF-κB, IKKβ, IKKγ and JNK1/2 in EAT from CAD patients is higher
than that from non-CAD patients [53]. These data suggest that the innate immunity
could have an important participation by stimulating EAT to a pro-inflammatory
profile thus enhancing the local development of atherosclerosis in coronary arteries.

In addition to inflammatorymediators, the levels of expression of the cardioprotec-
tive adipocytokine, adiponectin, are lower, whereas two pro-atherogenic adipokines,
leptin and visfatin are higher in EAT from patients with CAD compared with non-
CAD subjects [50, 54, 55]. Furthermore, secretory type II phospholipase A2 (also
known as sPLA2-II) was increased in EAT from CAD patients [56]; the presence
of this enzyme suggests a contribution of EAT to the progression of CAD by reten-
tion of low-density lipoproteins (LDL) in the subendothelial space promoting the
accumulation of lipids within atherosclerotic plaques.

In vitro studies have demonstrated that omentin-1 is able to promote an M2
macrophage phenotype and thus, this adipokine may limit the formation of foam
cells [57]. In agreement with the potential pro-atherogenic role of EAT, omentin-1 is
expressed at lower levels in EAT from CAD compared with non-CAD subjects and
its expression is inversely associated with the presence of the disease [58].

The gene expression of PGC-1α and UCP-1 in EAT from patients with CAD and
type 2 diabetes mellitus (DM2) is lower compared with both, CAD non-DM2 and
non-CAD patients [59]. Moreover, the expression level of PGC-1α decreases with
the number of injured coronary arteries. Also, a positive correlation between PGC-1α
and UCP-1 in EAT suggests that PGC-1α could be a protective factor [59] for its role
in the browning program [60].

All the previous evidences, support the active role of EAT in the etiology and
progression of atherosclerosis, and open the possibility that EAT also contributes to
other aspects of the disease, such as the plaque calcification.
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EAT and Atherosclerotic Plaque Calcification

Coronary artery calcium (CAC) score is a well-known surrogate of atherosclerosis
[61]. The calcification of atherosclerotic plaques might start in the second decade
of life, concurrently with the formation of fatty streak, and represents up to 20%
of plaque volume [62, 63]. Moreover, the deposits of calcium are frequent in older
patients and in advanced lesions [64]. CAC scores may be useful in improving the
algorithms used to evaluate the risk ofCAD [62, 63].However, themagnitude ofCAC
score is independent of the classical risk factors of atherosclerosis, such as dyslipi-
demia (excluding hypoalphalipoproteinemia), hypertension and obesity [64]. These
observations strongly suggest that calcification of the atherosclerotic plaque and the
etiology of the lipid laden of atheroma, are two concurrent aspects of atherosclerosis,
but driven by different, and probably independent factors.

There is important evidence indicating that EAT plays an active role in the calcium
deposits within the atheroma. Several studies have demonstrated that EAT volume
measured by 64-multidetector computed tomography is higher in patients with coro-
nary artery calcification [65–68]. Djaberi et al. found that EAT volume tends to
increase with CAC score (r = 0.33, p = 0.002) and the average of EAT volume
is higher in patients with a CAC score > 10 than in patients with CAC score ≤ 10
[66]. Data from the CAESAR study indicate that the prevalence of CAC> 0 increases
with theEAT thickness and volumemeasured by echocardiography andmultidetector
computed tomography, respectively [67]. Recently, Iwasaki et al. demonstrated that
the presence of CAC increases in patients with high EATvolume. This study included
three groups of CAD patients classified according to tertiles of EAT volume; low-
tertile (36–123 mL), mid-tertile (124–165 mL) and high-tertile (166–489 mL). The
prevalence of CAC > 0 and CAC > 100 was higher in the high-tertile (83.9% and
59.2%, respectively), and CAC> 400 gradually increased as EAT volume augmented
[68]. The CAC score increased 3.7% per each additional 10 mL of EAT volume [69]
whereas in diabetic patients for same 10 mL of volume increase, the CAC score
augmented by 13% and the probability of CAC progression went up to 12% [69].

The relationship between EAT and CAC is evident, however, the mechanisms
responsible of calcium deposits in coronary arteries are still unknown. The actual
evidence suggests that calcification is a process similar to the bone formation, which
implicates the presence of several proteins, such as osteopontin, TNF-α, osteoprote-
gerin and BMPs that are produced by EAT, as well as microRNAs and different cell
types; such pro-calcifying factors are detailed below.

Osteopontin

Several studies have demonstrated an increment of osteopontin (OPN) expression
in arteries affected by atherosclerotic plaques, mainly associated with macrophages
and foam cells [70, 71]. Studies in mice that over-expressed OPN and fed with
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atherogenic diet have demonstrated that this protein increases the atherosclerotic
lesion size [72]. These results are consistent with other experiment using OPN-/-
APOE-/- double knockout mice, in which the inflammation was attenuated and the
extension of the atherosclerotic lesion was also lower compared with APOE-/- single
knockout mice [73]. Besides its pro-inflammatory role, OPN has been associated
with calcification of the atherosclerotic plaque; Hirota et al. demonstrated that the
level of expression of OPN mRNA increases with the progression of atherosclerosis
and it is higher in calcified atherosclerotic plaques. These observations suggest a
pro-calcifying role of OPN [71]. This property of OPN seems to be dependent of
its degree of phosphorylation: previous studies have demonstrated that recombinant
phosphorylated OPN induced a lower degree of mineralization of human smooth
muscle cells than the non-phosphorylated protein [74, 75].

It is important to emphasize that OPN may undergo different posttranscriptional
and posttranslational modifications that may affect the functionality of this protein.
Such modifications include alternative splicings, different protease cleavages, phos-
phorylation and glicosylation [76] (Fig. 11.3). In fact, OPN is released for many
cellular types such as osteoblasts, macrophages, lymphocytes T and B and omental
adipocytes [77–80]. However, the predominant isoform of OPN released by each
tissue is unknown. We recently demonstrated that EAT from CAD patients is able to
express levels of OPN mRNA higher than EAT from controls [81]. However, there
was not a significant correlation between the expression of mRNA of OPN and the
CAC score (unpublished data). The lack of correlation may be explained by two
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3141 95 116
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Isoform e (300 aa)
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Fig. 11.3 Schematic representation of the different isoformsof osteopontin (OPN).OPNhas several
sites of phosphorylation (phosphoserine represented in black and phosphothreonine in blue) and
glycosylation (indicated in red). In addition, OPN contains an RGD domain (green), which interacts
with different integrins. The SVVYGLR domain (yellow) is a target for thrombin cleavage. The
existence of the isoform “e” has not been experimentally confirmed



204 M. Luna-Luna et al.

factors; the isoform of the secreted OPN, and the time of evolution of the calcifica-
tion process that is widely variable among the patients. Nevertheless, to control the
period of calcification, long-term follow-up studies are needed.

TNF-α

Besides the direct role ofOPNon the artery calcification process, this protein is able to
stimulate the secretion of TNF-α [82]. In terms of calcification, TNF-α promotes the
arterymineralization by inducing the expression of pro-calcifying genes such as ALP
(alkaline phosphatase) andBMP-2 (bone morphogenetic protein-2) in vascular cells.
BMP-2 released from endothelial cells could act on adjacent vascular smooth muscle
cells (VSMC) inducing their transdifferentiation towards an osteoblastic genotype
[83–85]. In addition, TNF-α is able to stimulate the mineralization of VSMC by
inducing the expression of the transcriptional factor Runx2 [83]. In the same context,
Lee et al. demonstrated that TNF-α in VSMC promoted the expression of Msx2, a
transcription factor involved in the proliferation and differentiation of osteoblasts.
The Msx2 effects are mediated by the NF-κB pathway, stimulating the expression of
ALP [86].

TNF-α also inhibits the expression of the anti-calcifying gene,MGP (matrix Gla
protein) [87]. In agreement with these observations, TNF-α induces the formation
of calcified nodules in cultured myofibroblasts [88] as well as in human VSMC
[84]. Interestingly, an apoptotic process was associated to the calcified nodules in
human VSMC [89]. The inhibition of apoptosis in this model showed a reduction
of the calcification process [89]. Therefore, VSCM-derived apoptotic bodies also
accumulate calcium [89, 90] supporting the idea that the apoptosis precedes the
calcification.

Osteoprotegerin

In terms of apoptosis, TNF-related apoptosis inducing ligand (TRAIL) secreted by
T lymphocytes [91–93] may interact with DR5 (death receptor 5) on VSMC [93]
promoting apoptosis and the consequent mineralization of the apoptotic bodies. In
this context, osteoprotegerin (OPG) may play an anti-calcifying role by interacting
with TRAIL and avoiding the previously mentioned apoptotic process [14].

Bennett et al. demonstrated that the size of the atheroma as well as the area of
calcification of the lesions were higher in APOE-/- OPG-/- double knockout mice
than in APOE-/-OPG+/+ mice [94]. Moreover, in LDLR-/- mice treated with athero-
genic diet, the administration of recombinant OPG reduced the calcification size of
atherosclerotic plaque [95] supporting the anti-calcifying role of this protein.

OPG is expressed in healthy blood vessels and its expression decreases with
the presence and progression of atherosclerosis whilst the expression of receptor
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activator of NF-κB ligand (RANKL) increases [96]. OPG is a decoy receptor that
binds to RANKL thus preventing the interaction between RANK and RANKL [97].
The interaction RANKL-RANK activates NF-κB pathway and the transcription of
pro-calcifying genes in VSMC, such as BMP-4 (bone morphogenetic protein- 4) and
ALP [98, 99]which induce osteogenic differentiation ofVSMC. In addition, RANKL
is a pro-inflammatory molecule that stimulates the recruitment of monocytes to the
subendothelial space; monocytes further differentiate into macrophages and secrete
several pro-inflammatory cytokines that could act as pro-calcifying factors such as
TNF-α and IL-6. These cytokines exacerbate the atherogenic process and promote
the calcification [83] by upregulating pro-calcifying genes such as Pit1, ALP, BMP-2
and Runx2, and by inhibiting anti-calcifying genes as MGP [83, 100]. Therefore, a
deficiency of OPG promotes the calcification in atherosclerotic plaques.

BMPs

BMP-2 has been identified in calcified atherosclerotic plaques and it is considered
as a potent osteogenic factor [101, 102]. BMP-2 is able to induce the osteogenic
conversion of VSMC in vitro and in vivo [101–104]. The administration of LDN-
193189, an inhibitor of BMP-2, prevented vascular calcification in LDLR-/- KOmice
fed with high fat diet [105]. In accordance, BMP-2 transgenic/APOE-/- KO mice
showed an accelerated calcification compared with APOE-/ KOmice [106]. BMP-2
up-regulates the expression of type III sodium-dependent Pi cotransporter-1 (Pit-1)
increasing the uptake of phosphate and promoting the vascular calcification inVSMC
[107]. In addition, BMP-2 inhibits the expression of the anti-calcifying protein,MGP
[108].MGP antagonizes BMP’s (BMP-2 andBMP-4) by direct protein–protein inter-
action; it has been demonstrated that MGP over-expression reduced not only the
BMPs activity but also the size, inflammation and calcification of atherosclerotic
plaque [109]. Thus, the imbalance between these two proteins could promote an
active calcifying process on the atherosclerotic plaque [108].

Concerning BMP-4, this protein promotes the progression of atherosclerosis by
inhibiting the expression of ABCA1 and ABCG1 transporters [110]. BMP-4 expres-
sion is increased in calcified atherosclerotic plaques [111, 112]. In vitro, BMP-4
induces the calcification of VSMC [113] and the transdifferentiation of VSMC into
osteoblastic lineage [114].Data fromour laboratory demonstrate that EAT fromCAD
patients expresses more BMP-2 and BMP-4 mRNA compared with control subjects
(unpublished data). However, the role of BMP-4 is still unknown and warrants future
studies to elucidate its mechanism of action.
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Mesenchymal Stem Cells

Mesenchymal stem cells (MSC) may differentiate in several cellular types as chon-
drocytes, osteoblasts and adipocytes. The main sources of MSC are bone marrow,
umbilical cordon and adipose tissue. It has been demonstrated that MSC from bone
marrowcontribute to calcificationof atherosclerotic plaque [115]. These cellsmigrate
from bone marrow to the lesion area in response to TGF-β1 released from the
injured arteries [116]. Once the MSC have reached the lesion area, they differen-
tiate to osteogenic linage, contributing to vascular calcification [115]. The role of
MSC from other sources such as adipose tissue and its relationship with calcification
of atherosclerotic plaque is still unknown. However, Chau et al. demonstrated that
stromal vascular fraction (composed of several cell types, includingMSC) from EAT
is able to differentiate to osteoblasts [20], suggesting a possible role in the vascular
calcification. Then, in the setting of CAD, MSC from EAT could be mobilized to
coronary arteries; once in the arteries, the localmicroenvironment probably promotes
its osteogenic differentiation. More studies are needed in this field.

microRNAs

The microRNAs regulate the activity of about 50% of the genes and participate in
several processes such as cellular proliferation, differentiation, migration and apop-
tosis. MicroRNAsmay regulate the arterial remodeling, angiogenesis and participate
in the progression and calcification of the atherosclerotic plaque [117]. Below, we
briefly mention some microRNAs and their potential role on atheroma calcification.

Xia et al. demonstrated that miR-3960 and miR-2861 induced the transdifferen-
tiation of VSMC to osteogenic lineage by decreasing the protein level of its targets,
Hoxa2 and HDAC5, respectively, and by increasing the expression of Runx2 [118].
Sudo et al. determined thatmiR-29 down-regulates the expression of elastin and stim-
ulated the Ca2+ deposits in inorganic phosphate-treated VSMC [119]. In addition,
the suppression of elastin promotes the osteoblastic transdifferentiation of VSMC,
likely by activation of mTOR pathway [119]. Other pro-calcifying microRNA is
miR-223; the over-expression of this microRNA induces the proliferation andmigra-
tion of VSMC. Also, miR-223 reduces the production of Mef2c (myocyte enhancer
factor 2c) and RhoB, both proteins involved in differentiation and the contractility
of VSMC, promoting a secretory phenotype. Moreover, miRNA-223 stimulates the
degradation of nuclear factor IA (NFIA), an inhibitor of calcification [120].

In terms of anti-calcifying microRNAs, the over-expression of miR-29b-3p in
VSMC inhibits the expression of matrix metalloproteinase 2 (MMP2). MMP2 is
characterized for stimulating calcification of VSMC in vitro and in vivo in different
experimental models [121]. Accordingly, miR-29b-3p is down-regulated in vascular
calcification [121]. Qiao et al. demonstrated that miR-205 inhibits the osteogenic
differentiation in VSMC when interacts with its gene targets, Runx 2 and Smad
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1. Moreover, this microRNA also regulates Runx2 in mesenchymal cells [122]. A
decreased expression of miR-297a promotes the vascular calcification by fibroblast
growth factor-23 (FGF-23) [123]. Osteogenic transdifferentiation of VSMC also
was evaluated by Liao et al. and demonstrated that miR-133a inhibits this process
for interacting with Runx2 [124].

miR-125b is another microRNA that inhibits the osteogenic transdifferentiation
of VSMC and decreases the activity of ALP by interact with osteoblast transcription
factor SP7 (osterix) [125]. Therefore, this miRNA may also contribute to the onset
and progression of vascular calcification.

Additionally, miR-221 and miR-222 seem to participate in the intracellular
balance of inorganic phosphate (Pi) and inorganic pyrophosphate (PPi) in VSMC
under calcifying conditions [126]. Recent studies demonstrated that the transfec-
tion of VSMC with both microRNAs increases the Enpp1 mRNA expression whilst
decreases the expression of Pit-1 [126]. The resulting imbalance between Pi and PPi
could promote the calcification of VSMC.

miR-30b andmiR-30c both bind to Runx2 and trigger its down-regulation. There-
fore, the activity of ALP is inhibited. In addition BMP-2 decreases the expression
of miR-30b and miR-30c increasing the levels of Runx2 in VSMC and promoting
osteoblastic transdifferentiation [127, 128]. Finally, the diminution of the expression
of miR-204 increases the levels of Runx2 and ALP in VSMC and promotes the
calcification of these cells [129].

All these studies demonstrate the importance of the miRNAs in the regulation of
the osteoblastic transdifferentiation and calcification of VSMC. Recently, adipose
tissue has been identified as a source of microRNAs via exosomal release [130].
In this way, it is possible that EAT may contribute also to the release of exosomes
loaded with these microRNA.

Final Remarks

The relationship between obesity and cardiovascular risk is likely mediated, at least
in part, by EAT. There are important evidences that point out to this adipose tissue
as gland that secretes different pro-inflammatory molecules as well as pro- and anti-
calcifying factors that contributes all together in a paracrinemanner to the progression
and calcification of the coronary atheroma.

Therefore, the quantification of the EAT emerges as a potential, more personalized
and useful determination for evaluating the CAD risk. Unraveling the complexity of
the secretory pattern of EAT in the setting of obesity is a task to be accomplished in
the next years; these data will provide new potential, more specific pharmacological
targets to fight against the atherosclerosis burden.
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Chapter 12
Obesity and Coronary Artery Disease:
Evaluation and Treatment

Marie-Eve Piché, Marie-Philippe Morin, and Paul Poirier

Abstract Individuals who are obese are more likely to develop cardiovascular
disease (CVD) and manifestations of CVD, particularly coronary artery disease
(CAD), angina, myocardial infarction, heart failure and sudden cardiac death.
Susceptibility to obesity-related cardiovascular complications is not onlymediatedby
overall body fatness, but is largely dependent upon individual differences in regional
body fat distribution. Presence of CVD assessment can be challenging in obese
patient. Baseline electrocardiogram may be influenced by obesity (false positive for
inferior myocardial infarction, microvoltage, nonspecific ST-T changes) and obese
patients may have impaired maximal exercise testing capacity (dyspnea, mechanical
limitations, left ventricular diastolic dysfunction). Thus, other modalities may be of
interest in the evaluation of clinically significant CAD in this population like nuclear
medicine approaches, stress echocardiography using either physiological (treadmill
exercise) or pharmacological stress (dobutamine) and stress cardiac magnetic reso-
nance imaging. Coronary artery calcium screening can be use as well as computed
tomography coronary angiography. At the end, coronary angiography is still consid-
ered the gold standard test for identifying the presence and extent of atherosclerotic
CAD. The appropriate choice of test to assess CAD depends on local expertise,
relative strengths and weaknesses of each modality as well as individual patient
characteristics, pretest likelihood of CAD and finally the risk/benefit ratio of using
a given modality.
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Contribution of Obesity to Coronary Artery Disease

Large prospective studies have documented obesity as being an independent predictor
of coronary artery disease (CAD) [1, 2]. This relationship was stronger in younger
individuals. Post-mortem examination of arteries from young individuals who died
from accidental injuries documented that obesity accelerates the progression of
atherosclerosis decades before the appearance of clinical manifestations. Individuals
with obesity are more likely to develop cardiovascular disease (CVD) and mani-
festations of CVD, such as CAD, angina, myocardial infarction (MI), heart failure
and sudden cardiac death [1–4]. Obesity is also associated with a more rapid coro-
nary artery calcification (CAC) process, a risk marker of coronary atherosclerosis
[5]. Susceptibility to obesity co-existing cardiovascular complications is not only
mediated by global adiposity, but is largely dependent upon individual differences
in regional body fat distribution [6–9]. Studies using imaging techniques have iden-
tified excess abdominal visceral adipose tissue as a key driver of the cardiovascular
risk and a predictor of CVD development over time [10–13].

Non-invasive Evaluation of Coronary Artery Disease

Electrocardiogram

Obesity is associated with a wide variety of ECG abnormalities; some being clini-
cally relevent (Table 12.1).Most of these reflects structural changes related to obesity
including: (1) displacement of the heart by the diaphragm elevation, (2) increased
cardiac workload with associated cardiac hypertrophy and, (3) global fat accumula-
tion as well as cardiac fat infiltration [4]. The position of the R wave may change,
various arrhythmias may develop, or the QT interval may be prolonged. Nonspe-
cific T wave flattening in the inferior and lateral leads (attributed to the horizontal
displacement of the heart) are frequent [14, 15]. An increase incidence of false-
positive criteria for inferior myocardial infarction in obese individuals due to the
elevation of the diaphragm has been reported [16]. In obesity, the ECG signals and
criteria of left ventricular hypertrophy are less informative and accurate due to the
accumulation of epicardial and subcutaneous adipose tissue [14].

Since obesity may influence surface ECG (false positive for inferior myocardial
infarction, microvoltage, nonspecific ST-T changes) and in light that obese patients
may have impaired maximal exercise testing capacity, other modalities to assess the
presence of significant atherosclerosis may be of interest in the evaluation of CAD
in this population.
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Table 12.1 ECG changes
that may occur in obese
individuals

Clinically significant

↑Heart rate
↑QRS interval

↑QTc interval
False-positive criteria for inferior myocardial infarction

Less clinically significant

↑PR interval

↑QRS voltage

↑QT dispersion

↑SAECG (late potentials)

↑ST-T abnormalities

↑ST depression

Left axis deviation

Flattening of the T wave (inferolateral leads)

Left atrial abnormalities

Invasive and Non-invasive Coronary Artery Disease
Assessment

Treadmill Stress Test

Electrocardiographic exercise capacity testing is complex and limited in patients
with obesity as from baseline, resting ECG abnormalities might limit interpretation.
Obese patients also have a reduced ability to exercise as defined by low functional
aerobic capacity during exercise treadmill testing. Patients with obesity are not able
to achieve the minimal heart rate threshold (80–85% of the age-predicted heart rate)
for a valid test result [17, 18] as the chronotropic response to exercise is altered, with
peak heart rate, heart rate recovery and chronotropic index being lower in patients
with obesity [17]. Nevertheless, both the standard Bruce and the ramped Bruce
treadmill protocols achieve valid test results in most obese patients [19]. Excessive
exercise blood pressure response is common and predicts long-term development of
sustained hypertension and adverse cardiovascular outcomes [20, 21].
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Nuclear Medicine

Single Photon Emission Tomography (SPECT)

Single-photon emission computed tomography (SPECT) myocardial perfusion
imaging is commonly used in obese patients. Single-photon emission computed
tomography can be used with exercise, vasodilator drugs (dipyridamole), and dobu-
tamine stress [22, 23]. In obesity, SPECT diagnostic accuracy is limited by subop-
timal image quality resulting from attenuation artefacts by the diaphragm or breast,
and adecreased signal to noise ratio. Theuse of hybridSPECT/computed tomography
(CT) equipment, adoption of novel detectors and cameras, and image processing
including CT-based attenuation correction algorithms allow a reduction of attenua-
tion artefacts. Two-day protocols with larger tracer doses are recommended in obese
patients who are 250–350 lb (113–160 kg). Accuracy and image quality increase
with SPECT, when using 99 m-technetium-labelled radiotracers [24–26]. Disadvan-
tages of SPECT include the reduced ability to detect triple-vessel or left-main stem
coronary artery disease, and residual uncorrected attenuation.

Positron Emission Tomography (PET)—Rubidium

Positron emission tomography (PET) computed tomography rubidium is faster than
SPECT, produces less radiation exposure, superior imaging quality and accuracy, and
a reduced need for more invasive examinations [27]. Positron emission tomography
myocardial imaging has demonstrated higher accuracy than SPECT for the detec-
tion of CAD, and its superiority was maintained in obese patients. In a meta-analysis
(1442 patients), the mean sensitivity and specificity of PET myocardial imaging for
CAD detection was 92% and 85% respectively [28]. It is important to emphasize
that a normal PET myocardial perfusion imaging indicate a low risk annual cardio-
vascular events (<1% cardiovascular events, cardiovascular death, and non-fatal MI)
in all categories of obese patients [29]. Additionally, PET myocardial imaging allow
to quantify absolute coronary blood flow, adding to the diagnostic and prognostic
capabilities beyond solely relative perfusion imaging, especially in the detection of
triple-vessel and left-main CAD. Consequenetly, PETmyocardial imaging represent
the nuclear imaging technique of choice for patients with obesity.

Stress Echocardiography

Stress echocardiography using either exercise or pharmacological (usually dobu-
tamine) stress is widely available, relatively inexpensive, well tolerated, has no
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weight limits and does not involve use of radiation. Overall, stress echocardiog-
raphy has comparable accuracy to SPECT imaging for detection of CAD [30] but
is highly operator-dependent and can be limited in the presence of poor acoustic
window related to obesity. The sensitivity of stress echocardiographymight be further
enhanced by the addition of myocardial contrast agents [31]. In a prospective study
of overweight and obese patients who underwent pharmacological stress echocardio-
graphy and coronary angiography, contrast imaging improved sensitivity and speci-
ficity of the test (82 vs. 70% and 78 vs. 67%, respectively with and without contrast)
[32]. If severe technical limitations exist, transesophageal echocardiography with
dobutamine might be useful [33, 34].

Stress Cardiac Magnetic Resonance

Stress cardiac magnetic resonance (CMR) allows assessment of ventricular func-
tion, regional wall motion abnormalities, rest and stress perfusion, and viability
within a single examination. Ischemia on stress testing using CMR perfusion and
dobutamine stress CMR is an independent predictor of cardiac events [35, 36] and
inducible ischemia in a population with obesity (average body mass index [BMI] of
34 kg/m2) has been reported as an independent predictor of major adverse cardiac
events (MACE), and predict adverse cardiovascular events at 5 years follow-up,
with over 89% of patients achieving good diagnostic image quality [37]. Absence of
inducible ischemia was associated with a low annual rate of 0.6% for major adverse
cardiac events in patients with obesity as it is the case in nonobese patients [35, 37].
Table weight limit, bore diameter, and claustrophobia may limit the feasibility of
CMR in patients with obesity [38]. These limitations have been mostly overcome by
the recent development of large-bore systems and open magnetic resonance imaging
systems.

Computed Tomography Calcium Score-Coronary Artery
Calcium Score

Coronary artery calcium (CAC) screening can enhance risk prediction in asymp-
tomatic individuals. Obesity is associated with elevated CAC, a marker of coronary
atherosclerosis that is predictive of cardiovascular events [39–42] and obesity appears
to be a risk factor for more rapid progression of CAC over time [5]. The presence of
extensive coronary calcification (CAC score) offers an inexpensive and reproducible
technique to determine the presence and extent of calcified coronary artery plaque.
Despite advances in CT scanners, obesity and high levels of coronary calcifications
continue to limit the diagnostic accuracy and value of cardiac CT [43]. Nowadays,
CT equipment have table weight limits of 350–450 lb (160–204 kg) in order to avoid
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equipment damage and examinations are additionally limited by gantry/bore diam-
eter [44]. Coronary calcification score is highly sensitive for diagnosis of obstructive
CAD as the negative predictive value is high. A systematic review of 28 studies and
3674 patients showed a sensitivity of 98% and specificity of 82% for obstructive
CAD [45]. This led to the widely accepted conclusion that a normal CAC score
reliably rules-out significant CAD and further invasive workup can be delayed.

Cardiac Computed Tomography Coronary Angiography

Computed tomography coronary angiography is emerging as an alternative approach
for the quantification of both coronary calcified and non-calcified plaque [46–
48]. This approach may be particularly useful in specific subsets of patients with
obesity with unknown CAD and equivocal or uninterpretable stress tests or in
case of discrepancies between clinical presentation and stress test results. Coro-
nary artery calcium score allows risk stratification and plaque burden assessment
whilst CT coronary angiography allows evaluation of luminal stenosis, plaque char-
acterisation/quantification. Computed tomography coronary angiography requires
the administration of intravenous contrast to visualize the non-calcified plaque and
estimate the severity of luminal stenosis. Reported registry showed that symptomatic
obese patients were more likely than non-obese patients to have CAD at CT coronary
angiography [49]. Imai et al. studied 553 patients who underwent serial CT coronary
angiography and observed that the risk of non-calcified plaques increased as abdom-
inal visceral adiposity increased, with the highest quartile conferring the greatest risk,
regardless of underlying CAD risk factors [50]. Technical challenges with CT coro-
nary angiography plaque analysis included reproducibility, time-consuming analysis,
and lack of biologic correlation. Despite proper preparation, artifacts and noisy scans
are frequent, mainly caused by cardiac and respiratory motion and reduced signal to
noise ratio. In addition, low vessel opacificationmay occur when injecting contrast in
patients with obesity, due to differences in distribution of blood volume in peripheral
venous and central circulation [51]. The rate of non-evaluable segments is also higher
in patients with obesity. In order to improve image quality, medications such as beta-
blockers for heart rate control and nitroglycerin for coronary dilatation may be used
during the procedure. Others limitations include decreased accuracy in patients with
extensive calcified plaque and exposure to radiation and contrast. In case where there
is significant calcification, functional imaging is suggested. Nevertheless, sensitivity
and negative predictive values are invariably high even in patients with obesity. New
techniques of dual source CT and iterative image reconstruction are being developed
that will improve image quality in obese patients.
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Invasive Evaluation of Coronary Artery Disease

Coronary Angiography

Coronary angiography is the gold standard test for establishing the coronary anatomy
and identifying the presence and extent of CAD. Individuals with obesity may
suffered from several limitations and complications when comes the times to be
evaluated in the catheterization laboratory. As compared to overweight patients
(BMI 25–30 mg/m2), patients with severe obesity from theMichigan Cardiovascular
Consortium registry who undergone coronary angiography suffered significantly
higher rates of vascular complications, contrast-induced nephropathy, nephropathy
requiring dialysis and death, despite being younger and having a lower incidence of
acute MI, cardiogenic shock and a lesser need for emergent intervention [52]. Coro-
nary angiography difficulties included suboptimal radiographic coronary artery visu-
alization that may prevent detection of significant angiographic lesions and stenosis,
and potentially result in a greater risk of complications during percutaneous coronary
interventions. Moreover, vascular access for the procedure may be difficult. Radial
access is preferred in the obese population, because of fewer vascular complications,
especially bleeding and hematomas [53–56]. If the femoral approach is used, vascular
access closure devices should be used to accelerate ambulation [57]. Patients with
obesitymay requiremore radiation during coronary angiography to achieve adequate
image quality, resulting in higher radiation exposure to both patient and staff [58].
The poor fluoroscopic image visualization associated with obesity often warrants
multiple contrast agent injections, with increased risk of renal complications such
as contrast-induced nephropathy. In addition to problems regarding vascular access
and radiographic imaging, the engineering parameters and physical limitations of
the angiographic table may limit obese patients’ ability to undergo this procedure
and to achieve the normal variety of angiographic views.

Intravascular Ultrasound (IVUS)

Intravascular ultrasound (IVUS) provides complementary diagnostic information
about the coronary artery wall, which cannot be obtained by coronary angiography
alone. Several intravascular imaging techniques such as intravascular ultrasound
(IVUS), virtual histology IVUS (VH-IVUS), and optical coherence tomography
(OCT) allow assessment of plaque burden, plaque morphology and response to
therapy. Intravascular ultrasonography in interventional cardiology is an adjunctive
procedure to coronary angiogram; as such, any contraindication to coronary angiog-
raphy applies to IVUS as well. In general, the risks and complications associated
with these procedures include those associated with all catheterization procedures.

The diagnosis of CAD in the obese population presents specific challenges; non-
invasive testing is evolving rapidly to accommodate patients with obesity. Many
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non-invasive tests can detect anatomic coronary changes, impairedmyocardial perfu-
sion, or consequences of impaired perfusion such as abnormalmyocardial contractile
function. Non-invasive tests provide prognostic information that can improve cardio-
vascular risk stratification, further guiding subsequent testing and interventions. The
choice of the optimal imaging modality depends on local expertise and availability,
the relative strengths and weaknesses of each modality, as well as pretest probability
of CAD. The dramatic rise in the proportion of young patients with obesity invokes
the need for more agressive primary prevention and more upstream interventions, as
well as better treatment of obesity.

Clinical Management and Treatment of Coronary Artery
Disease in Obesity

Percutaneous Revascularization

Short-Term Outcomes After Percutaneous Coronary Interventions

Data from the CathPCI Registry showed that severe obesity was independently asso-
ciated with a greater in-hospital mortality rate (OR, 1.14) and a lower in-hospital
bleeding rate (OR, 0.80) after percutaneous coronary intervention [59]. In a large
study (227,042 patients) including 37.2% obese and 7.4% severely obese patients,
severe obesity increased the risk of contrast-induced nephropathy, nephropathy-
requiring dialysis, and vascular complications compared to overweight patients
[52]. The British Cardiovascular Intervention Society Registry reported adverse in
hospital-outcomes and mortality of 345,192 patients undergoing percutaneous coro-
nary interventions [60]. At 30 days post-percutaneous coronary interventions, lower
mortality was seen with BMI 25–30 kg/m2 (OR 0.86) and with BMI > 30 kg/m2 (OR
0.90). At 1-year post-percutaneous coronary interventions, and up to 5 years, BMI
> 25 kg/m2 was an independent predictor of greater survival compared to normal
weight patients; OR 0.70 at 1 year and 0.78 at 5 years independently of the clinical
presentation (unstable angina, NSTEMI or STEMI) [60]. The APPROCH registry
reported mortality about 30,258 patients who had percutaneous coronary interven-
tions and shows that the 6-month mortality was lower in patients who were in the
overweight or obese category compared to normal BMI patients [61].

Long-Term Outcomes After Percutaneous Coronary Interventions

A recent meta-analysis of 865,774 patients undergoing percutaneous coronary inter-
ventions shows aU-shape association across all BMI category for all causesmortality
and risk of major cardiovascular events after percutaneous revascularization [62].
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This obesity paradox seems to disappear when severe obesity is taken into consider-
ation [61, 63]. In the APPROCH study, the 5 and 10 years mortality rates following
percutaneous coronary interventions in patients with severe obesity with high risk
coronary anatomy was increased compared to normal BMI patients [61].

Surgical Revascularization

Perioperative Mortality

Obesity has been inconsistently associated with an increased in-hospital mortality
following coronary artery bypass graft (CABG) surgery.An analysis from the Society
of Thoracic Surgeons’ database (559,004 patients who underwent isolated CABG
between 1997 and 2000) [64] showed an increased risk of in-hospital mortality
in patients with moderate obesity (BMI = 35–39.9 kg/m2) as well as with severe
obesity (BMI > 40 kg/m2). These results contrasted with others studies that found
comparable postoperative mortality in patients with obesity following CABG [65,
66]. In a meta-analysis, in-hospital mortality after CABG was reported even less
in the obese population [67]. In a retrospective multicentre study [68], the 30-day
postoperative mortality was highest in extreme BMI groups (BMI < 20 kg/m2; 4.0%,
BMI > 40 kg/m2; 3.8%) and lowest near a BMI of 30 kg/m2 (3.1%), suggesting
a “U-shaped” relationship [69]. Evidence is still conflicting regarding long-term
mortality [67]. A meta-analysis found a reduction in long-term mortality (5 years)
in the overweight and obese populations [67] which was confirmed by the latest
meta-analysis [62]. On the contrary, a retrospective study showed that obesity was
associated with a higher long-term mortality after CABG [70].

Several studies have reported greater postoperative complications after CABG
with obesity, such as renal failure [71], respiratory failure, arrhythmias and greater
intraoperative transfusion rate [4, 72, 73]. Postoperative cerebrovascular events, MI,
and postoperative bleeding do not appear to be increased in patients with obesity [72,
73]. A greater incidence of postoperative atrial fibrillation was seen in obese vs non-
obese patients [74]. In a large cohort study of patientswho underwent isolatedCABG,
higher waist circumference was associated with an increased risk of postoperative
atrial fibrillation, prolonged mechanical ventilation and reintubation, renal failure,
sternal wound infections, longer intensive care unit and hospital stays,independently
of BMI [75]. The large, poorly vascularized panniculus associated with dysglycemia
in the obese patients may predispose to postoperative wound infections [61, 76].
Obesity has also been identified as a risk factor for superficial wound infection and
saphenous vein harvest site infection [65].
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Antiplatelet Therapy

Individuals with obesity display increased levels of coagulation factors, impaired
fibrinolysis, increased platelet activity and higher platelet activationmarkers [77, 78].
While not fully understood, adipose tissue produces multiple bioactive substances
and hormones such as leptin, adiponectin, TNF-a, interleukin-6, all of which may
directly or indirectly influence coagulation and platelet function [78, 79]. Aspirin
is the cornerstone of antiplatelet therapy for CAD but obesity is a risk factor for
a reduced aspirin pharmacodynamic response [80]. Obesity-related inflammatory
state, endothelial dysfunction and metabolic endotoxemia enhance a number of
mechanisms that increase platelet reactivity and platelet turnover and decrease aspirin
bioavailability, all contributing to a poor aspirin response [81, 82]. Studies inves-
tigating platelet reactivity in patients after acute coronary syndrome treated with
thienopyridines, a class of selective irreversible ADP receptor/P2Y12 inhibitors,
identified obesity as an important modulator of response to both clopidogrel [83,
84] and prasugrel [85, 86]. Obese patients without metabolic syndrome had a
better response to thienopyridines (i.e. clopidogrel and prasugrel) compared with
obese patients with metabolic syndrome and similar response to non-obese patients,
suggesting metabolic conditions being better correlate of platelet inhibition than
BMI [78, 87]. Conversely to thienopyridines, no correlation was reported between
BMI and platelet activity with ticagrelor; obese patients do not express significantly
higher level of platelet reactivity while ticagrelor seems to induce significantly higher
platelet inhibition than prasugrel in obese patients [78, 88]. While studies suggest
that obesity may promote platelet activation and blunt effects of anti-platelet medi-
cations, clinical observations have pointed to an “obesity paradox”, namely that
obese patients may have better post-acute coronary syndrome outcomes and may
have a lower risk of re-infarction or death. However, data involving platelet assays is
often conflicting and involved sample sizes too small to draw definitive conclusions
about clinical outcomes and to make recommendations about dosing adjustment of
antiplatelets therapy in obesity [78].

Benefits of Weight Loss on Coronary Artery Disease

The general goals of weight loss and weight management are at a minimum, to
prevent further weight gain and preferentially to reduce body weight while main-
taining a lower long term body weight. Patients should have their BMI and waist
circumference measured not only for the initial assessment of the degree of over-
weight and obesity but also as a guide to evaluate the efficacy of weight loss
treatment [88]. An elevated waist circumference ≥102 cm in Caucasian men and
≥88 cm in Caucasian women bring a higher risk of cardiovascular disease [89].
This target is lower for others ethnic group like the Asian population [90]. The
2013 ACC/AHA guidelines recommend a sustained weight loss of 3–5% to result
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in a clinically meaningful reduction in triglycerides, blood glucose, HBAIC and the
risk of developing type 2 diabetes. Greater amount of weight loss is recommended to
improve HDL, LDL, blood pressure and to decrease oral hypoglycemic medications,
insulin and antihypertensive medications [91]. Obesity management and treatment
include lifestyle modification as diet, exercise and counselling, pharmacotherapy
and bariatric surgery. In order to achieve weight reduction, ACC/AHA recom-
mend a comprehensive high-intensity lifestyle modification. This include behavioral
interventions (self-monitoring of food intake and physical activity), regular coun-
selling (≥14 sessions over a 6-month period by a trained interventionist), physical
activity (≥150 min/week of aerobic exercise) and a calorie-restricted diet (1200–
1500 kcal/day for women and 1500–1800 kcal/day for men or a 500–750 kcal
deficit/day) [91]. No diet is proved to be superior to another to achieve long term
weight reduction [91, 92] as adherence to the diet seems to be the main factor asso-
ciated with success [93]. Mediterranean diet decreases major cardiovascular events
(MACE) in patients with high cardiovascular risk and is an interesting option for this
population [94]. For weight loss maintenance, long-term behavioral interventions,
monthly face to face or phone contact with the interventionist, continuation of the
restricted-calorie diet and a higher level of physical activity (≥200–300 min/week)
are recommended [91]. The weight maintenance phase could be particularly chal-
lenging for patients because of the long term change of hunger hormones (increase
of ghrelin and decrease of GLP-1) [95] and decreased basal metabolic rate [96].

Noweight loss studies have shown reductionof cardiovascular disease ormortality
through lifestylemodification. LOOKAHEADwas one of the biggest trial and failed
to show any reduction of major adverse cardiac events or cardiovascular mortality
after 9.6 years [97]. Participants in the intervention group lost 8.6 versus 0.7% in the
control group in the first year but experimentweight regain thereafter and at 9.6 years,
there was only a 2.5% of weight loss difference between groups. On the other hand,
the intervention group had a significant improvement of some cardiovascular risk
factor (HBAIC, lipid profile, etc.). Pharmacotherapy is recommended as adjunct to
lifestyle modification in patients with BMI ≥ 27 kg/m2 with comorbidities or BMI
≥ 30 kg/m2. Three medications are available in Canada for weight loss: Liraglutide,
Naltrexone-Bupropion and Orlistat. In United States, few other medications are also
available: phentermine and phentermine-topiramate [91]. These medications can
achieve an average of 5–10% weight loss, but interindividual variability exists and
some people are low whereas others are high responders [91]. Liraglutide has been
shown to reduce the major adverse cardiac events and cardiovascular death in the
LEADER trial but this was in a type 2 diabetes population who were using the
1.8 mg dosing [98]. Lorcaserin appears to be safe regarding cardiovascular disease
but no benefits regarding cardiovascular mortality or cardiovascular disease was
demonstrated [99]. It has been withdrawn from the market due to noncardiovasular
safety concern. The cardiovascular safety of the others medications has not been
established yet. Some interim analysis of the LIGHT trial shows that Naltrexone-
Bupropion has a cardiovascular safety but no solid conclusion can be draw of this
trial that was terminated early due to public release of the interim data by the sponsor
[100].
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Bariatric surgery is also part of the ACC/AHA recommendations for patients
with BMI ≥ 35 kg/m2 with comorbidities or BMI ≥ 40 kg/m2 [91]. Weight
loss, remission of comorbidities and weight loss maintenance varies regarding the
type of the procedures (gastric banding < sleeve gastrectomy<Roux-y-gastric bypass
< biliopancreatic diversion with duodenal switch) [101]. Bariatric surgery is supe-
rior to intensive medical treatment to decrease HBAIC or to resolve type 2 diabetes
[102]. A retrospective study of 20,235 surgical and non surgical patient [103] docu-
ments that bariatric surgery was associated to a lower incidence of macrovascualar
disease (defined as first occurrence of CAD or cerebrovascular events) mainly driven
by a lower incidence of CAD (defined by acute MI, unstable angina, percutaneous
coronary intervention, or CABG [103]. The SOS study which is a non-randomized
prospective controlled study demonstrated a reduction of cardiovascular death in the
bariatric surgery group compared to the control group [104]. There is no randomized
control trial regarding the effects of bariatric surgery on major adverse cardiac event
incidence.

Conclusions

Obesity is a serious medical condition both at the individual and population level and
promotes numbers of health-related medical conditions like systemic hypertension,
dyslipidemia, sleep apnea, type 2 diabetes and other CVD. Overweight, obesity and
severe obesity are all an independent risk factor of CVD including CAD. However,
assessment of CADmay be challenging as well as the medical management of these
Patients in order to reduce the progression/impact of CAD.

References

1. Rabkin SW, Mathewson FA, Hsu PH (1977) Relation of body weight to development of
ischemic heart disease in a cohort of young North American men after a 26 year observation
period: the Manitoba Study. Am J Cardiol 39:452–458

2. Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk
factor for cardiovascular disease: a 26-year follow-up of participants in the FraminghamHeart
Study. Circulation 67:968–977

3. Plourde B, Sarrazin JF, Nault I, Poirier P (2014) Sudden cardiac death and obesity. Expert
Rev Cardiovasc Ther 12:1099–1110

4. Poirier P,GilesTD,BrayGAet al (2006)Obesity and cardiovascular disease: pathophysiology,
evaluation, and effect of weight loss: an update of the 1997 American Heart Association
Scientific Statement onObesity andHeart Disease from theObesity Committee of the Council
on Nutrition, Physical Activity, and Metabolism. Circulation 113:898–918

5. Kronmal RA, McClelland RL, Detrano R et al (2007) Risk factors for the progression of
coronary artery calcification in asymptomatic subjects: results from the Multi-Ethnic Study
of Atherosclerosis (MESA). Circulation 115:2722–2730



12 Obesity and Coronary Artery Disease 229

6. Sam S, Haffner S, Davidson MH et al (2008) Relationship of abdominal visceral and subcu-
taneous adipose tissue with lipoprotein particle number and size in type 2 diabetes. Diabetes
57:2022–2027

7. Kragelund C, Hassager C, Hildebrandt P, Torp-Pedersen C, Kober L, Group Ts (2005) Impact
of obesity on long-termprognosis following acutemyocardial infarction. Int J Cardiol 98:123–
131

8. Yusuf S, Hawken S, Ounpuu S et al (2004) Effect of potentially modifiable risk factors
associatedwithmyocardial infarction in 52 countries (the INTERHEART study): case-control
study. Lancet 364:937–952

9. Neeland IJ, Poirier P, Despres JP (2018) Cardiovascular and metabolic heterogeneity of
obesity: clinical challenges and implications for management. Circulation 137:1391–1406

10. Abraham TM, Pedley A, Massaro JM, Hoffmann U, Fox CS (2015) Association between
visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors.
Circulation 132:1639–1647

11. Liu J, Fox CS, Hickson DA et al (2010) Impact of abdominal visceral and subcutaneous
adipose tissue on cardiometabolic risk factors: the Jackson Heart Study. J Clin Endocrinol
Metab 95:5419–5426

12. Fox CS,Massaro JM, Hoffmann U et al (2007) Abdominal visceral and subcutaneous adipose
tissue compartments: association with metabolic risk factors in the Framingham Heart Study.
Circulation 116:39–48

13. Preis SR, Massaro JM, Robins SJ et al (2010) Abdominal subcutaneous and visceral adipose
tissue and insulin resistance in the Framingham heart study. Obesity (Silver Spring) 18:2191–
2198

14. Alpert MA, Terry BE, Cohen MV, Fan TM, Painter JA, Massey CV (2000) The electrocar-
diogram in morbid obesity. Am J Cardiol 85(908–10):A10

15. Eisenstein I, Edelstein J, Sarma R, Sanmarco M, Selvester RH (1982) The electrocardiogram
in obesity. J Electrocardiol 15:115–118

16. Starr JW,Wagner GS, Behar VS,Walston A 2nd, Greenfield JC Jr (1974) Vectorcardiographic
criteria for the diagnosis of inferior myocardial infarction. Circulation 49:829–836

17. Gondoni LA, Titon AM, Nibbio F, Augello G, Caetani G, Liuzzi A (2009) Heart rate behavior
during an exercise stress test in obese patients. Nutr Metab Cardiovasc Dis 19:170–176

18. Lear SA, Brozic A, Myers JN, Ignaszewski A (1999) Exercise stress testing. An overview of
current guidelines. Sports Med 27:285–312

19. Bires AM, Lawson D, Wasser TE, Raber-Baer D (2013) Comparison of Bruce treadmill
exercise test protocols: is ramped Bruce equal or superior to standard Bruce in producing
clinically valid studies for patients presenting for evaluation of cardiac ischemia or arrhythmia
with body mass index equal to or greater than 30? J Nucl Med Technol 41:274–278

20. Chrysohoou C, Skoumas J, Georgiopoulos G et al (2017) Exercise capacity and haemo-
dynamic response among 12,327 individuals with cardio-metabolic risk factors undergoing
treadmill exercise. Eur J Prev Cardiol 24:1627–1636

21. Schultz MG, Otahal P, Cleland VJ, Blizzard L, Marwick TH, Sharman JE (2013) Exercise-
induced hypertension, cardiovascular events, and mortality in patients undergoing exercise
stress testing: a systematic review and meta-analysis. Am J Hypertens 26:357–366

22. Wackers FJ (1991) Myocardial perfusion imaging in ischemic heart disease anno 1990. Curr
Opin Cardiol 6:590–601

23. Iskandrian AS, Heo J, Askenase A, Segal BL, Helfant RH (1987) Thallium imaging with
single photon emission computed tomography. Am Heart J 114:852–865

24. Korbee RS, Boiten HJ, Ottenhof M, Valkema R, van Domburg RT, Schinkel AF (2013) What
is the value of stress (99m)Tc-tetrofosmin myocardial perfusion imaging for the assessment
of very long-term outcome in obese patients? J Nucl Cardiol 20:227–233

25. Ferraro S, Perrone-Filardi P, Desiderio A et al (1996) Left ventricular systolic and diastolic
function in severe obesity: a radionuclide study. Cardiology 87:347–353

26. FreedmanN, Schechter D, KleinM,Marciano R, RozenmanY, Chisin R (2000) SPECT atten-
uation artifacts in normal and overweight persons: insights from a retrospective comparison



230 M.-E. Piché et al.

of Rb-82 positron emission tomography and TI-201 SPECT myocardial perfusion imaging.
Clin Nucl Med 25:1019–1023

27. Yoshinaga K, Chow BJ, Williams K et al (2006) What is the prognostic value of myocardial
perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol
48:1029–1039

28. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur SR, Reddy P, Carlos RC (2008) Diag-
nostic performance of positron emission tomography in the detection of coronary artery
disease: a meta-analysis. Acad Radiol 15:444–451

29. Chow BJ, Dorbala S, Di Carli MF et al (2014) Prognostic value of PET myocardial perfusion
imaging in obese patients. JACC Cardiovasc Imaging 7:278–287

30. Fleischmann KE, Hunink MG, Kuntz KM, Douglas PS (1998) Exercise echocardiography or
exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA 280:913–
920

31. Shah BN, Senior R (2016) Stress echocardiography in patients with morbid obesity. Echo Res
Pract 3:R13–R18

32. Hu SJ, Liu SX, Katus HA, LueddeM (2007) The value of contrast dobutamine stress echocar-
diography on detecting coronary artery disease in overweight and obese patients. Can JCardiol
23:885–889

33. Madu EC (2000) Transesophageal dobutamine stress echocardiography in the evaluation of
myocardial ischemia in morbidly obese subjects. Chest 117:657–661

34. Legault S, SenechalM, Bergeron S et al (2010) Usefulness of an accelerated transoesophageal
stress echocardiography in the preoperative evaluation of high risk severely obese subjects
awaiting bariatric surgery. Cardiovasc Ultrasound 8:30

35. Jahnke C, Nagel E, Gebker R et al (2007) Prognostic value of cardiac magnetic resonance
stress tests: adenosine stress perfusion anddobutamine stresswallmotion imaging.Circulation
115:1769–1776

36. Lipinski MJ, McVey CM, Berger JS, Kramer CM, Salerno M (2013) Prognostic value of
stress cardiac magnetic resonance imaging in patients with known or suspected coronary
artery disease: a systematic review and meta-analysis. J Am Coll Cardiol 62:826–838

37. Shah RV, Heydari B, Coelho-Filho O et al (2014) Vasodilator stress perfusion CMR imaging
is feasible and prognostic in obese patients. JACC Cardiovasc Imaging 7:462–472

38. Lim SP, Arasaratnam P, Chow BJ, Beanlands RS, Hessian RC (2015) Obesity and the chal-
lenges of noninvasive imaging for the detection of coronary artery disease. Can J Cardiol
31:223–226

39. Greenland P, Bonow RO, Brundage BH et al (2007) ACCF/AHA 2007 clinical expert
consensus document on coronary artery calcium scoring by computed tomography in global
cardiovascular risk assessment and in evaluation of patients with chest pain: a report of
the American College of Cardiology Foundation Clinical Expert Consensus Task Force
(ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Elec-
tronBeamComputedTomography) developed in collaborationwith the Society ofAtheroscle-
rosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J
Am Coll Cardiol 49:378–402

40. Blaha MJ, Rivera JJ, Budoff MJ et al (2011) Association between obesity, high-sensitivity
C-reactive protein >/=2 mg/L, and subclinical atherosclerosis: implications of JUPITER from
the Multi-Ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol 31:1430–1438

41. Burke GL, Bertoni AG, Shea S et al (2008) The impact of obesity on cardiovascular disease
risk factors and subclinical vascular disease: the Multi-Ethnic Study of Atherosclerosis. Arch
Intern Med 168:928–935

42. Chang Y, Kim BK, Yun KE et al (2014) Metabolically-healthy obesity and coronary artery
calcification. J Am Coll Cardiol 63:2679–2686

43. Westwood M, Al M, Burgers L et al (2013) A systematic review and economic evaluation
of new-generation computed tomography scanners for imaging in coronary artery disease
and congenital heart disease: Somatom Definition Flash, Aquilion ONE, Brilliance iCT and
Discovery CT750 HD. Health Technol Assess 17:1–243



12 Obesity and Coronary Artery Disease 231

44. Uppot RN (2007) Impact of obesity on radiology. Radiol Clin North Am 45:231–246
45. Paech DC, Weston AR (2011) A systematic review of the clinical effectiveness of 64-slice or

higher computed tomography angiography as an alternative to invasive coronary angiography
in the investigation of suspected coronary artery disease. BMC Cardiovasc Disord 11:32

46. Sun J, Zhang Z, Lu B et al (2008) Identification and quantification of coronary atherosclerotic
plaques: a comparison of 64-MDCT and intravascular ultrasound. AJR Am J Roentgenol
190:748–754

47. PapadopoulouSL,Neefjes LA, SchaapMet al (2011)Detection and quantification of coronary
atherosclerotic plaque by 64-slice multidetector CT: a systematic head-to-head comparison
with intravascular ultrasound. Atherosclerosis 219:163–170

48. Voros S, Rinehart S, Qian Z et al (2011) Coronary atherosclerosis imaging by coronary CT
angiography: current status, correlation with intravascular interrogation and meta-analysis.
JACC Cardiovasc Imaging 4:537–548

49. Labounty TM, Gomez MJ, Achenbach S et al (2013) Body mass index and the prevalence,
severity, and risk of coronary artery disease: an international multicentre study of 13,874
patients. Eur Heart J Cardiovasc Imaging 14:456–463

50. Imai A, Komatsu S, Ohara T et al (2012) Visceral abdominal fat accumulation predicts the
progression of noncalcified coronary plaque. Atherosclerosis 222:524–529

51. Husmann L, Leschka S, Boehm T et al (2006) Influence of body mass index on coronary
artery opacification in 64-slice CT angiography. Rofo 178:1007–1013

52. Buschur ME, Smith D, Share D et al (2013) The burgeoning epidemic of morbid obesity in
patients undergoing percutaneous coronary intervention: insight from the Blue Cross Blue
Shield of Michigan Cardiovascular Consortium. J Am Coll Cardiol 62:685–691

53. Benamer H, Louvard Y, SanmartinM et al (2007) Amulticentre comparison of transradial and
transfemoral approaches for coronary angiography and PTCA in obese patients: the TROP
registry. EuroIntervention 3:327–332

54. Cox N, Resnic FS, Popma JJ, Simon DI, Eisenhauer AC, Rogers C (2004) Comparison
of the risk of vascular complications associated with femoral and radial access coronary
catheterization procedures in obese versus nonobese patients. Am J Cardiol 94:1174–1177

55. McNulty PH, Ettinger SM, Field JM et al (2002) Cardiac catheterization in morbidly obese
patients. Catheter Cardiovasc Interv 56:174–177

56. Hibbert B, Simard T, Wilson KR et al (2012) Transradial versus transfemoral artery approach
for coronary angiography and percutaneous coronary intervention in the extremely obese.
JACC Cardiovasc Interv 5:819–826

57. Wong P, Harding S, Walters D, Hull ML, Jang IK (2001) Vascular complications after hemo-
static puncture closure device (Angio-Seal) are not higher in overweight patients. J Invasive
Cardiol 13:623–625

58. Plourde G, Pancholy SB, Nolan J et al (2015) Radiation exposure in relation to the arterial
access site used for diagnostic coronary angiography and percutaneous coronary intervention:
a systematic review and meta-analysis. Lancet 386:2192–2203

59. Payvar S, Kim S, Rao SV et al (2013) In-hospital outcomes of percutaneous coronary inter-
ventions in extremely obese and normal-weight patients: findings from the NCDR (National
Cardiovascular Data Registry). J Am Coll Cardiol 62:692–696

60. Holroyd EW, Sirker A, Kwok CS et al (2017) The relationship of body mass index to percuta-
neous coronary intervention outcomes: does the obesity paradox exist in contemporary percu-
taneous coronary intervention cohorts? Insights from the British Cardiovascular Intervention
Society Registry. JACC Cardiovasc Interv 10:1283–1292

61. Terada T, Forhan M, Norris CM et al (2017) Differences in short- and long-term mortality
associated With BMI following coronary revascularization. J Am Heart Assoc 6

62. Ma WQ, Sun XJ, Wang Y, Han XQ, Zhu Y, Liu NF (2018) Does body mass index truly
affect mortality and cardiovascular outcomes in patients after coronary revascularization with
percutaneous coronary intervention or coronary artery bypass graft? A systematic review and
network meta-analysis. Obes Rev 19:1236–1247



232 M.-E. Piché et al.

63. Li YH, Lin GM, Lin CL, Wang JH, Han CL (2013) Relation of body mass index to mortality
among patients with percutaneous coronary intervention longer than 5 years follow-up: a
meta-analysis. Int J Cardiol 168:4315–4318

64. Prabhakar G, Haan CK, Peterson ED, Coombs LP, Cruzzavala JL, Murray GF (2002) The
risks of moderate and extreme obesity for coronary artery bypass grafting outcomes: a study
from the Society of Thoracic Surgeons’ database. Ann Thorac Surg 74:1125–1130; discussion
1130–1

65. Moulton MJ, Creswell LL, Mackey ME, Cox JL, RosenbloomM (1996) Obesity is not a risk
factor for significant adverse outcomes after cardiac surgery. Circulation 94:II87–92

66. Birkmeyer NJ, Charlesworth DC, Hernandez F et al (1998) Obesity and risk of adverse
outcomes associated with coronary artery bypass surgery. Northern New England Cardiovas-
cular Disease Study Group. Circulation 97:1689–1694

67. Oreopoulos A, Padwal R, Norris CM,Mullen JC, Pretorius V, Kalantar-ZadehK (2008) Effect
of obesity on short- and long-term mortality postcoronary revascularization: a meta-analysis.
Obesity (Silver Spring) 16:442–450

68. Prapas SN, Panagiotopoulos IA, Salama Ayyad MA et al (2010) Impact of obesity on
outcomeof patients undergoing off-pumpcoronary artery bypass grafting using aorta no-touch
technique. Interact Cardiovasc Thorac Surg 11:234–237

69. Wagner BD, Grunwald GK, Rumsfeld JS et al (2007) Relationship of body mass index with
outcomes after coronary artery bypass graft surgery. Ann Thorac Surg 84:10–16

70. Benedetto U, Danese C, Codispoti M (2014) Obesity paradox in coronary artery bypass
grafting: myth or reality? J Thorac Cardiovasc Surg 147:1517–1523

71. Virani SS, Nambi V, Lee VV et al (2009) Obesity: an independent predictor of in-hospital
postoperative renal insufficiency among patients undergoing cardiac surgery? Tex Heart Inst
J 36:540–545

72. Nolan HR, Davenport DL, Ramaiah C (2013) BMI is an independent preoperative predictor
of intraoperative transfusion and postoperative chest-tube output. Int J Angiol 22:31–36

73. Totaro P (2008) Obesity and coronary surgery: new concepts for an old problem. Expert Rev
Cardiovasc Ther 6:897–903

74. Hernandez AV, Kaw R, Pasupuleti V et al (2013) Association between obesity and postop-
erative atrial fibrillation in patients undergoing cardiac operations: a systematic review and
meta-analysis. Ann Thorac Surg 96:1104–1116

75. Chasse M, Mathieu P, Voisine P et al (2016) The underestimated belly factor: waist circum-
ference is linked to significant morbidity following isolated coronary artery bypass grafting.
Can J Cardiol 32:327–335

76. Parisian Mediastinitis Study G (1996) Risk factors for deep sternal wound infection after
sternotomy: a prospective, multicenter study. J Thorac Cardiovasc Surg 111:1200–1207

77. Unek IT, Bayraktar F, Solmaz D et al (2010) The levels of soluble CD40 ligand and C-reactive
protein in normal weight, overweight and obese people. Clin Med Res 8:89–95

78. Beavers CJ, Heron P, Smyth SS, Bain JA, Macaulay TE (2015) Obesity and antiplatelets-does
one size fit all? Thromb Res 136:712–716

79. Farb MG, Bigornia S, Mott M et al (2011) Reduced adipose tissue inflammation represents
an intermediate cardiometabolic phenotype in obesity. J Am Coll Cardiol 58:232–237

80. TamminenM,Lassila R,Westerbacka J, Vehkavaara S,Yki-JarvinenH (2003)Obesity is asso-
ciated with impaired platelet-inhibitory effect of acetylsalicylic acid in nondiabetic subjects.
Int J Obes Relat Metab Disord 27:907–911

81. Stohlawetz P, Folman CC, von dem Borne AE et al (1999) Effects of endotoxemia on
thrombopoiesis in men. Thromb Haemost 81:613–617

82. Guthikonda S, Alviar CL, Vaduganathan M et al (2008) Role of reticulated platelets and
platelet size heterogeneity on platelet activity after dual antiplatelet therapy with aspirin and
clopidogrel in patients with stable coronary artery disease. J Am Coll Cardiol 52:743–749

83. Sibbing D, von Beckerath O, Schomig A, Kastrati A, von Beckerath N (2007) Impact of body
mass index on platelet aggregation after administration of a high loading dose of 600 mg of
clopidogrel before percutaneous coronary intervention. Am J Cardiol 100:203–205



12 Obesity and Coronary Artery Disease 233

84. Cuisset T, Frere C, Quilici J et al (2009) Relationship between aspirin and clopidogrel
responses in acute coronary syndrome and clinical predictors of non response. Thromb Res
123:597–603

85. Cuisset T, Grosdidier C, Loundou AD et al (2013) Clinical implications of very low on-
treatment platelet reactivity in patients treatedwith thienopyridine: the POBA study (predictor
of bleedings with antiplatelet drugs). JACC Cardiovasc Interv 6:854–863

86. Cayla G, Cuisset T, Silvain J et al (2013) Prasugrel monitoring and bleeding in real world
patients. Am J Cardiol 111:38–44

87. Pankert M, Quilici J, Loundou AD et al (2014) Impact of obesity and the metabolic syndrome
on response to clopidogrel or prasugrel and bleeding risk in patients treated after coronary
stenting. Am J Cardiol 113:54–59

88. Deharo P, Pankert M, Bonnet G et al (2014) Body mass index has no impact on platelet
inhibition induced by ticagrelor after acute coronary syndrome, conversely to prasugrel. Int J
Cardiol 176:1200–1202

89. Emerging Risk Factors Collaboration, Wormser D, Kaptoge S et al (2011) Separate and
combined associations of body-mass index and abdominal adiposity with cardiovascular
disease: collaborative analysis of 58 prospective studies. Lancet 377:1085–1095

90. Gray LJ, Yates T, Davies MJ et al (2011) Defining obesity cut-off points for migrant South
Asians. PLoS ONE 6:e26464

91. Jensen MD, Ryan DH, Apovian CM et al (2014) 2013 AHA/ACC/TOS guideline for the
management of overweight and obesity in adults: a report of the American College of
Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity
Society. Circulation 129:S102–S138

92. Sacks FM, Bray GA, Carey VJ et al (2009) Comparison of weight-loss diets with different
compositions of fat, protein, and carbohydrates. N Engl J Med 360:859–873

93. Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ (2005) Comparison of the
Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk
reduction: a randomized trial. JAMA 293:43–53

94. Estruch R, Ros E, Salas-Salvado J et al (2018) Retraction and republication: primary preven-
tion of cardiovascular disease with a mediterranean diet. N Engl J Med 368:1279–1290. N
Engl J Med 378:2441–2442

95. Sumithran P, Prendergast LA, Delbridge E et al (2011) Long-term persistence of hormonal
adaptations to weight loss. N Engl J Med 365:1597–1604

96. Fothergill E, Guo J, Howard L et al (2016) Persistent metabolic adaptation 6 years after “The
Biggest Loser” competition. Obesity (Silver Spring) 24:1612–1619

97. Look Ahead Research Group, Wing RR, Bolin P et al (2013) Cardiovascular effects of
intensive lifestyle intervention in type 2 diabetes. N Engl J Med 369:145–154

98. Marso SP, Daniels GH, Brown-Frandsen K et al (2016) Liraglutide and cardiovascular
outcomes in type 2 diabetes. N Engl J Med 375:311–322

99. Bohula EA,Wiviott SD, Scirica BM (2019) Lorcaserin safety in overweight or obese patients.
N Engl J Med 380:100

100. Nissen SE,Wolski KE, Prcela L et al (2016) Effect of naltrexone-bupropion on major adverse
cardiovascular events in overweight and obese patients with cardiovascular risk factors: a
randomized clinical trial. JAMA 315:990–1004

101. Piche ME, Auclair A, Harvey J, Marceau S, Poirier P (2015) How to choose and use bariatric
surgery in 2015. Can J Cardiol 31:153–166

102. Schauer PR, Bhatt DL, Kirwan JP et al (2017) Bariatric surgery versus intensive medical
therapy for diabetes—5-year outcomes. N Engl J Med 376:641–651

103. Fisher DP, Johnson E, Haneuse S et al (2018) Association between bariatric surgery and
macrovascular disease outcomes in patients with type 2 diabetes and severe obesity. JAMA
320:1570–1582

104. Sjostrom L, Peltonen M, Jacobson P et al (2012) Bariatric surgery and long-term cardiovas-
cular events. JAMA 307:56–65



Chapter 13
Inflammation and Epicardial Adipose
Tissue in the Pathobiology
of Atherogenesis and Neointimal
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Intervention
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Abstract The global incidence of coronary heart diseases (CHDs) has been
increasing at an alarmin rate that demands an increasing attention to develop
more effective therapeutic interventions and preventive strategies. The basic and
applied research have significantly advanced the understanding on the molecular
pathology of CHDs and opened multiple translational avenues in the manage-
ment. Despite the significant enhancement of knowledge in the underlying patho-
physiology, atherosclerosis remains a leading cause of global death and disability
which is mainly attributed to alterations in LDL phenotype, endothelial dysfunc-
tion, inflammation and neointimal hyperplasia. Also, the integration of multidisci-
plinary elements of medical sciences, immunobiology, nutritional science, interven-
tion biology, molecular signaling, vascular cell biology, animal models and trans-
lational medicine are warranted in designing improved management strategies. The
critical discussion in this article insights into the underlying mechanisms associ-
ated with the degenerative changes and inflammatory events leading to atheroma
and subsequent CHDs. In addition, the current understanding on the influence of
high calorie diets is highlighted in relation to the molecular pathology of CHDs.
Also, the prospectus and novel opportunities are discussed regarding next genera-
tion management strategies to address the pathological challenges associated with
CHDs.
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Introduction

A recent report by American Heart Association (AHA) points that once in every
40 seconds an American experience myocardial infarction (MI). Annually, nearly
0.6 million newer cases of MI and around 200,000 recurrent heart attacks have been
reported. Also, approximately 18.2 million people over the age of 20 suffer from
coronary heart diseases (CHD) which accounts for 6.7% of the total US population
[15]. These reports are alarming and reveal the increasing demand for more effective
therapeutic interventions and preventive strategies. The past few decades witnessed
significant evolution in the understanding of CHD pathology which resulted in
the advancement of clinical approaches for its management. Atherosclerosis is the
primary cause for CHDs and the current concepts identify atherosclerosis to be
an inflammatory disorder rather than mere cholesterol storage disease, which is an
outdated concept [89]. Despite the significant enhancement of knowledge in the
underlying pathophysiology, atherosclerosis remains a leading cause of global death
and disability.

Early atheroma formation begins during childhood, but seems to aggravate with
age. The word atheroma is derived from two Greek words ‘athera’ which means
porridge and ‘oma’ which means lump. CHDs are mostly due to atheromatous
narrowing and subsequent occlusion of the lumen of coronary arteries or its branches
[52].Atherosclerosis is a degenerative disorder inwhich aging and chronic inflamma-
tory components aggravate the pathology by altering the expression status of various
regulatory and functional genes across different vascular beds. Even though most
studies have focused on the inner (intimal) and the middle (medial) vascular layers
as the target sites for atheroma formation, recent evidence revealed the implications
of the outer (adventitial) vascular layers in the pathogenesis of CHDs [2, 159].

The association of nutritional factors in the pathogenesis of CHDs are relevant,
as caloric restriction reveals promising results by lowering CHD risks. The higher
dietary cholesterol intake promotes atherosclerosis in rabbit models and is one of the
earliest clues regarding the influence of nutrition in CHDs [31]. The identification
and isolation of cholesterol from atheromatous patients marks another breakthrough
in the history of CHDs [3]. Another interesting observation supporting the nutri-
tional influence of CHDs revealed a sharp drop in the mortality rate caused by CHDs
in Northern Europe during the second World War owing to the shortage of food.
However, the mortality rate increased drastically after the war [157]. These observa-
tions suggest that the consumption of a high calorie diet is an alarming risk for the
development of CHDs.

In this chapter, we critically discussed the underlying mechanisms associated
with the degenerative changes and inflammatory events leading to atheroma and
subsequent CHDs. In addition, the current understanding on the influence of high
calorie diets is highlighted in relation to the molecular pathology of CHDs.
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Biology of Coronary Arteries

Coronary arteries that provide blood supply to themyocardiumoriginate from the root
of the aorta and form two primary coronary arteries, the right coronary artery (RCA)
and the left main coronary artery (LMCA). The RCA originates from the anterior
ascending aorta and supplies blood to the right atrium, the right ventricle, and the
sinoatrial (SA)node and the atrioventricular (AV)nodes. TheRCAbranches into right
posterior descending artery (PDA) andmarginal artery (MA).Also, theRCAsupplies
to the septum of the heart in association with the left anterior descending artery
(LAD). On the other hand, the LMCA branches off to the left anterior descending
(LAD) and left circumflex (LCX) coronary arteries. The LAD supplies blood to both
the front and the left side of the heart while the LCX is responsible for the blood
supply to the left atrium and the posterior-lateral aspect of left ventricle. In addition,
the coronary arteries give rise to small branches such as obtuse marginal artery
(OMA), diagonal arteries (DA) and septal perforator (SP) [73, 92, 112]. Figure 13.1
depicts the main branches of the coronary artery.

The wall of the coronary artery is composed of various cell types and extra-
cellular matrix (ECM) components including collagenous and elastic fibers. The
continuous and rapid movement of blood within the coronary artery provides very
limited opportunity for the blood to sufficiently nourish the vascular tissue. In addi-
tion, the increased thickness of the arterial wall hinders the easy diffusion/trafficking
of metabolites and metabolic exhausts. The small blood vessels in the arterial wall
tissue, called vasa vasorum, are responsible for nourishing the coronary artery. The
vasa vasorum are located on the outer layer to withstand the pressure due to the

Fig. 13.1 Vascular branching of coronary arteries in the heart: the coronary arteries arise from
the base of aorta and composed of two main arteries—the left main coronary artery (LMCA) and
right coronary artery (RCA). LMCA branches into left circumflex artery (LCX) and left anterior
descending (LAD). LAD gives rise to diagonal arteries (DA1 and DA2) and several minor branches.
RCA branches mainly into right posterior descending artery (PDA) and marginal artery (MA)
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blood flow. The remote location of vasa vasorum is thought to be a reason for the
increased susceptibility of arteriosclerosis. In addition, there are minute nerve fibers
called nervi vasorum which regulate the action of smooth muscle cells (SMCs) of
the medial layer. The coronary artery is made up of three layers; the outer layer is
tunica externa (adventitia), the middle layer is tunica media and the internal layer is
tunica intima, as shown in Fig. 13.2.

The tunica adventitia is made up of a connective tissue that is mainly composed
of collagen and elastic fibers, in which fibroblasts form the major cell type. The
elastic nature of these fibers allows them to withstand the pressure exerted due to the
blood flow. The vasa vasorum and nervi vasorum are found in the adventitial layer
that aid to control the lumen size by regulating the inward and the outward remod-
eling responses [153]. In addition, the adventitia acts as the site for the recruitment
of immune cells and subsequent inflammatory responses, especially in the case of
vascular damage [182].Moreover, the adventitia communicates with the surrounding
tissue to facilitate the exchange of signals to and from the coronary circulation and
forms a potential niche for the stem/progenitor cells which plays significant role in
vascular growth, repair and regeneration. The plethora of cell population including

Fig. 13.2 Histological organization and structure of coronary artery: The coronary arteries
composed of three major layers—tunica adventitia, tunica media and tunica intima. Tunica adven-
titia the outer layer constituted mainly by connective tissues and are characterized by the presence
of small blood vessels and nerves. The medial layer is mainly constituted of smooth muscle cells
(SMCs) whereas the intimal layer is constituted of endothelial cells. The internal elastic membrane
separates intima from media and the external elastic membrane separates adventitia from media
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fibroblasts, macrophages, T- and B- lymphocytes, mast cells, dendritic cells, peri-
cytes, adipocytes and progenitor cells represents diverse cellular interactions and the
homeostasis of these cellular functions is the prerequisite to maintain the vascular
integrity [95].

The tunica media of coronary artery is mainly composed of multiple layers of
SMCs (typically up to 40 layers of circumferentially or helically arranged cells)
and connective tissue composed of collagen, proteoglycans and elastic fibers [144,
175]. The average thickness of medial layer of coronary artery is ~200 μm. The
medial layer of coronary artery is equipped with lesser amount of elastic tissue and
a greater number of SMCs when compared with other elastic arteries. The medial
layer is separated from adventitia by external elastic membrane which is composed
of interrupted layers of elastin. On the other hand, the internal elastic membrane
separates media from the intima. Unmyelinated nerve axons are closely adherent to
the outer border of the elastic membrane and the depolarization of SMCs are propa-
gated throughout the media along the low-resistance gap junctions/nexus [175]. The
mature SMCs express a unique repertoire of contractile proteins including smooth
muscle myosin heavy chain (SM-MHC), alpha-smooth muscle actin (α-SMA), ion
channel components, and other mediators required for maintaining the contractile
function [117].

The tunica intima is composed of an elastic membranous lining embedded with
smooth endothelial cells, a sub-endothelial layer of connective tissue and SMCs.
The endothelium is responsible for the smooth luminal lining that prevents the adhe-
sion of platelets and leukocytes and act as a selectively permeable diffusion barrier
between the blood and the wall of coronary artery. The endothelial cells are aligned
in a longitudinal fashion relative to the artery and communicate each other by zonula
occulodens (tight junctions) and gap junctions [175]. Apart from the diffusion func-
tion, the endothelial cells exhibit metabolic and endocrine functions. The endothe-
lium secretes anti-thrombotic agent prostacyclin (PGI2), prothrombotic agent (von
Willebrand factor), fibrinolytic agents, inflammatorymediators, growth factors, nitric
oxide (NO), angiotensin II, and endothelin-1 and is the common site in the pathology
of CHDs [176]. Also, these cells bear the receptors for low-density lipoproteins
(LDL), thrombin and factor X. The endothelial cells (ECs) maintain homeostasis for
the secretion of pro/anti-thrombotic substances and for the proliferation of SMCs by
maintaining a collagenous basement membrane [145]. The histological architecture
of coronary artery is displayed in Fig. 13.2.

Coronary Interventions

The current available treatment options of coronary heart diseases (CHD) are
either: (i) Medical treatments which may include, coronary dilators such as
nitrates, antiplatelets such as aspirin and clopidogrel, beta-blockers, calcium-channel
blockers, angiotensin converting enzyme (ACE) inhibitors, ranolazine as metabolic
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modulator and statins, (ii) Percutaneous coronary intervention (PCI), or (iii) Coro-
nary artery bypass graft (CABG) surgery [20, 123]. The selection of the treatment
depends on the extent of the disease (e.g. the number of the affected vessels) the age
of the patient and the presence of associated comorbidities such as diabetes mellitus
[147]. The goal of the treatment, either the surgical (CABG) or interventional (PCI),
is to restore the blood flow to the ischemic myocardium supplied by the affected
segment, which subsequently, resolves the cardiac ischemic pain (known as angina
pectoris), avoid the loss of the cardiomyocytes due to ischemic necrosis (known as
myocardial infarction) and prevents the occurrence of the serious ischemic compli-
cations such as the cardiac dysrhythmias and heart failure. The outcome of these
procedures, either surgical or interventional, is limited by the occurrence of vascular
remodeling following intervention.

The PCI treatment consists of using a small balloon to dilate the narrowing in the
coronary artery produced by the atherosclerotic lesion (atheroma) [53]. The recoil of
the coronary artery after the balloon angioplasty has been a major challenge of this
revolutionary procedure that lead to the invention of the coronary stents. The coro-
nary stent is an expandable tube deployed into the affected segment of the coronary
artery, following the balloon angioplasty, to prevent its recoil and keep it patent [33].
The stent may be bare metal, drug eluting or biodegradable [146]. The inevitable
vessel trauma associated with the dilatation of the coronary artery, by inflating the
balloon, and implantation of the stent, leads to denudation of the vascular endothe-
lium and exposure of the rough subendothelial tissues to the blood stream [55]. The
exposed subendothelial fibrous tissue leads to activation of blood platelets, release
of the adhesion molecules and activation of the leukocytes which set the stage to a
local inflammatory reaction [55]. The resultant neointimal hyperplasia, as mentioned
above, impairs the effectiveness of the CHD treatment. It also progresses with time,
resulting in recurrence of patient’s symptomswhich call for reintervention [190]. The
surgical treatment (CABG) is also afflicted by the recurrence of the disease, either
in the native coronary arteries (due to atherosclerosis) or in the surgically implanted
venous graft(s) due to the development of NIH [18, 160]. This may require another
interventional or surgical procedure. The CAD is commonly the disease of old age,
and the physiological fitness of the patient to sustain an additional surgical interven-
tion as CABG is of major concern. On the other hand, the percutaneous coronary
intervention (PCI), although minimally invasive, is associated with several compli-
cations [154]. Based on these facts, the need for innovative strategies to mitigate
the recurrence of the atherosclerotic coronary heart disease and the development
of neointimal hyperplasia (NIH), or more optimally to prevent its occurrence all
together is obvious.

Mechanism of Atherosclerosis

Atherosclerosis occurs due to the deposition of fat and/or fibrous tissue at the intimal
layer of arteries. The subsequent accumulation of more fibrous components and
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calcium lead to the formation of atherosclerotic plaques which encroach the arte-
rial lumen impeding/blocking the blood flow and lead to tissue ischemia. In addi-
tion, the atheroma triggers the thrombus formation which occludes the artery and
offers an alternative route for tissue ischemia. Elevated serum cholesterol, LDL,
genetic factors and sedentary lifestyle have been the major risk factors for the
initiation and progression of atherosclerosis. The atheroma formation of coronary
artery results in the ischemic death of myocardial tissue leading to MI. The clinical
atherosclerosis has been classified into different subtypes based on the pathological
features suggesting that significant progress has been attained in understanding the
pathology of atherosclerosis as seen in Table 13.1 [184]. However, the translational
advancements in the management of CHDs have not been achieved. This section
focuses on the molecular pathology of atherosclerosis regarding the biochemical
and immunological alterations associated with the structure of coronary artery.

History

Being an inflammatory disorder, the atherosclerosis has a very long history of
5,000 years in which the Egyptian papyri referred that heat and redness to be the
concomitants of diseases which clearly signified inflammation. However, a classical
definition of inflammation was given by the Roman encyclopedist, Anulus Cornelius
Celsus in the first century as (Latin) rubor (redness), calor (heat), dolor (pain), and
tumor (swelling) [87]. Centuries later, Jean Lobstein in 1829 coined the term arte-
riosclerosis [99]. Decades later, the German physician/pathologist Rudolf Virchow
postulated the cellular pathologyof atherosclerosis [99].During the same timeperiod,
Carl von Rokitansky hypothesized the involvement of mechanical injury to vessel
wall, endothelial dysfunction and inflammation in the pathogenesis of atheroscle-
rosis [101]. This was proven by Mayerl et al.; after two centuries using the same
human specimen collected von Rokitansky by identifying the accumulation of T cell
population in the atherosclerotic lesion [99]. In 1910, the German chemist Windaus
characterized and identified calcified connective tissue and cholesterol the atheroscle-
rotic plaques [181]. The successful development of a rabbit atherosclerosis model
by feeding a cholesterol rich diet conducted by Anitschkow and Chaltow in 1913,
is a turning point in the history of atherosclerosis research, as these results paved
the way for the identification of classical risk factors for atherosclerosis and CHDs
[99]. The ‘response to injury hypothesis’ proposed by Ross in the late twentieth
century revealed the association of endothelial and intimal layer dysfunction and the
immunological alterations in the pathogenesis of atherosclerosis [136]. The ‘altered
lipoprotein hypothesis’ suggested the priming role of oxidized-LDL (oxLDL) in the
formation of foam cells in the intima [156]. Later, it was proven that the native LDL
is transported to intima via endothelium where it undergoes oxidation and acts as
chemoattractant for monocytes and SMCs. These cells uptake oxLDL leading to
the formation of foam cells and this concept is called ‘retention of modified LDL
hypothesis’ [111]. A large body of literature have emphasized on the association
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Table 13.1 Classification and features of atherosclerotic lesions

Classification Subtype Characteristics

Non-atherosclerotic intimal
lesions

Intimal thickening Presence of SMCs and absence of
lipids, foam cells and thrombosis

Intimal xanthoma Minimal foam cells, absence of
necrotic core, fibrous cap and
thrombosis

Progressive atherosclerotic
lesions

Pathological intimal
thickening

Increased SMCs and GAGs, lipid
accumulation and absence of
thrombosis

Fibroatheroma Presence of necrosis, foam cells,
increased lipid pool, increased
cellular debris, ECM
disorganization, with/without
calcification and absence of
thrombosis

Plaque fissure Increase in the size of necrotic
core, hemorrhage, angiogenesis,
plaque tear and absence of
thrombosis

Thin cap fibroatheroma Thin fibrous cap, infiltration of
macrophages and T cells, minimal
SMCs, increased hemorrhage and
absence of thrombosis

Thrombus-lesions Plaque rupture Disruption of fibrous cap, and
thrombosis

Plaque erosion Intense intimal thickening, and
thrombosis

Calcified nodule Eruptive calcification,
fibro-calcification, necrosis and
thrombosis

Healed lesions Healed
rupture/erosion/nodule

Increased SMCs, proteoglycans,
collagen type III and necrosis,
large sized calcification,
inflammation, minimal necrotic
core, luminal stenosis and absence
of thrombosis

of chronic inflammatory components with endothelial function, lipid metabolism,
and damage-associated molecular patterns (DAMPs)-mediated sterile inflammation
in the pathogenesis of atherosclerosis [180]. However, the exact molecular events
underlying the initiation of plaque formation are largely unknown and the history is
awaiting to add groundbreaking findings in the field of atherosclerosis research.
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Molecular Pathogenesis

LDL Modification and Initiation of Atherosclerosis

Lipoproteins function in the transport of cholesterol in the blood and the atheroscle-
rosis results due to the accumulation of lipoproteins in the arterial intima. The lipopro-
teins <70 nm diameter (HDL, IDL and LDL and remnants of VLDL and chylomi-
crons) are permeable to the endothelial barrier and enter the intimal layer from the
circulation [185]. In addition, the apoB-containing (non-HDL) lipoproteins interact
with the proteoglycans (sulphated glycosaminoglycans, sGAGs) of intimal matrix
resulting in the halting and subsequent accumulation of these lipoproteins around
the subendothelial layer of intima [12]. The accumulated lipoproteins are highly
susceptible to oxidation due to the action of oxidizing agents, proteases and lipases
at the intimal layer [113]. The oxidized phospholipids (oxPL), especially oxLDL,
and their derivatives are pro-inflammatory and pro-atherogenic as they trigger the
recruitment and the activation of leukocytes [189]. The oxPLs moieties from oxLDL
activate the endothelial cells and impair the permeability barrier. The CD14 recep-
tors of dendritic cells act as ligands for oxPL leading to inflammasome-dependent
hyperactivation of phagocytes [191].

The oxidation of LDL takes place in two phases. Initial phase represents the oxida-
tion of lipid components without or little alteration in apoB100 and such partially
oxidized LDL is referred as minimally-oxLDL (mini-oxLDL). The mini-oxLDL is
negatively charged, possess affinity to LDL-R, activates anti-apoptotic pathways and
upregulates pro-inflammatory cytokines [188]. The cytokine-mediated activation of
inflammatory cells continues the oxidation of mini-oxLDL by promoting the oxida-
tion of the remaining lipid moieties and protein components resulting in the loss of
affinity to LDL-R and leads to complete oxidation of oxLDL. The oxLDL is recog-
nized by scavenging receptors (oxLDL-R) and accelerates foam cell formation [155,
188]. In general, the circulatoryLDL is resistant to oxidation as the serum lipoproteins
are protected by the antioxidant defense and is comprised of the antioxidant vitamin,
alpha tocopherol, as a transport vehicle [68]. However, the LDL encounters several
cell/tissue derived pro-oxidants in the subendothelial space including transitionmetal
ions (iron and copper), hemin and oxidizing enzymes such as myeloperoxidase, and
lipoxygenase [121]. In addition, nitric oxide (NO) in presence of superoxide, released
during oxidative stress, triggers the oxidation of LDL [188]. Moreover, the hyper-
glycemia results in the glucose-mediated peroxidation of LDL by superoxide and
advanced glycation end products (AGEs) mediated glycation of apo-B100 by Mail-
lard reaction [69]. The common mediators and the mechanism of LDL oxidation are
displayed in Table 13.2.

The increased accumulation of oxLDL in the intima leads to its aggregation
which in turn nucleates the atherosclerotic plaque formation. The uptake of oxidized,
proteolyzed and/or lipolyzed LDL or cholesterol crystals by macrophages, DCs and
SMCs results in cytoplasmic lipid droplets leading to foam cell formation; the typical
hallmark of atherosclerosis [130]. Intracellular cholesterol crystals have also been
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Table 13.2 Mediators and mechanism of LDL oxidation

Mediators Mechanism Reference

Copper ion Free radical generation [121]

Ferric ion Free radical generation [121]

Ceruloplasmin Providing catalytically active copper ions [81]

Lipoxygenase Direct oxidation of lipid components and production of
hydroperoxides

[188]

Myeloperoxidase Generation of secondary radicals [188]

Peroxynitrate Hypochlorous acid mediated oxidation [118]

Thiols Oxidation of -SH groups [120]

Xanthine oxidase Generation of superoxide [121]

Reactive oxygen species Peroxidation of lipids [121]

reported in foam cells [150]. Similar to oxidation, the proteolysis of LDL by the
serene protease cathepsin G (CatG, also called neutrophil protease) triggers its inter-
action with the intimal matrix. In addition to neutrophils, the CatG is also expressed
in mast cells, mononuclear leukocytes and B lymphocytes (non-plasma) [23]. Inter-
estingly, CatG stimulates the degradation of LDL in blood plasma and prevents
the risk of atherosclerosis in LDL-R (LDL-receptor)-deficient mouse model [177].
Contrastingly, the information regarding the mechanism for the pro-atherogenic role
of CatG in the intima by promoting the LDL trap is unavailable and warrants further
research.

The phagocytosis of matrix-bound oxLDL by macrophages, the pinocytosis of
native LDL cholesterol by SMCs and the upregulation of the lectin-like oxLDL-
R (LOX-1) are tightly associated with the scavenging of ox-LDL from the intima
[24]. Also, the cholesterol clearance from the intima occurs via the HDL-mediated
reverse cholesterol transport. Moreover, under normal physiology the LDL-C (LDL-
cholesterol) move to the target tissue without being trapped in the intima [62]. Hence,
lowering the cholesterol burden in the intima using the strategies which prevent LDL
trap and immune system activation could help the safer exit of LDL-C prior to the
uptake by macrophages and SMCs and prevent the risk of foam cell formation.

Inflammation

The accumulation of oxLDL alters the cellular function and elicits inflammatory
responses in arterial wall which drives atherosclerosis. The early innate immune
responses are characterized by the increased population of macrophages followed
by the adaptive responsesmediated by T andB cells.Macrophage colony-stimulating
factor (M-CSF) signaling activates the macrophages to internalize the LDL leading
to foam cell formation. OxLDL at the sub-endothelial space acts as DAMPs to
activateTLR4 receptor and triggers the downstream inflammasome signaling in



13 Inflammation in Occlusive Vascular Disease 245

macrophages [142, 168]. The activation of inflammation by oxLDL upregulates
the chemokine monocyte chemoattractant factor protein-1 (MCP-1) resulting in the
recruitment ofmoremonocytes to the atherosclerotic lesion [28]. The classicalmono-
cytes (CD14+CD16−) are themajor contributors for the plaquemacrophages and play
a key role in atherogenesis [135]. The recruited monocytes undergo local prolifera-
tion and differentiation to macrophages and activates the scavenging of oxLDL via
scavenging receptors (SR) including SR-A1, SR-B2 (CD36), and LOX-1 (E1) [26].
These SRs are regulated by NF-κB which is the master switch for inflammatory
cytokines [58].

The cholesterol uptake via oxLDL is counterbalanced by ATP-binding cassette
(ABC) transporter A1 and/or G1-mediated cholesterol efflux by the macrophages
[186]. ABC transporters facilitate the incorporation of cholesterol to apolipoprotein
A1 and HDLs containing apoA1 or apoE for reverse cholesterol transport and subse-
quent metabolism in liver. The imbalance between cholesterol intake and uptake
results in foam cell formation [104]. In addition, the precipitation of cholesterol
within the cells forms crystals that trigger inflammasome activation, apoptosis and
necrosis which in turn lead to the development of atherosclerotic necrotic core. The
necrotic core characterizedwith cellular debris and lipids and is highly thrombogenic
in nature which is separated from the bloodstream by a fibrous cap. The irregularity
or the rupture of the fibrous cap initiates the intraluminal thrombus formation and
pave the ways to the development of cerebrovascular stroke and MI [104]. Interest-
ingly, the lipid accumulation has been identified to begin in circulating monocytes
to develop a foamy phenotype which subsequently migrates to the atherosclerotic
lesion and aggravates the pathology [183].

The retention of local inflammatory signals following the LDL trap triggers the
influx of more monocytes/macrophages and lymphocytes to the intimal layer [88].
The recruited CD4+ T cells, especially the T helper type 1 cells (TH1), recognize the
oxLDLas an antigen and secretes the proinflammatorymediators such as interferon-γ
(IFN-γ) and tumor necrosis factor-α (TNF-α) [44]. In addition, the IL-6 released from
the cells of arterial wall triggers acute phase response by secreting C-reactive protein
(CRP) by the liver to the systemic circulation [56]. Apart from TH1 cells, TH2 cells,
natural killer cells and CD8+ T cells have been identified from the atherosclerotic
lesions [56]. The recruitment of lymphocytes and the sustenance of cytokines persist
the localized inflammation resulting in the inefficient efferocytosis (the phagocytic
clearance of apoptotic or necrotic cells) which eventually initiates the formation
of atherosclerotic plaques with a central necrotic core of lipids and a fibrous cap
[171]. Usually, the population of TH1 cells exceeds the number of TH2 cells in
the atherosclerotic lesions. Moreover, IL-12 and IL-18 secretion by the activated
macrophages trigger the activation of T-bet and TH1-skewing in the progenitor cells
leading to their differentiation into TH1 cells and subsequent IFN-γ release [38].
This suggests that the IFN-γ-IL-12-IL18 axis of pro-inflammatory cytokine signaling
accelerates the formation of plaques. The exact role of TH2 cells in atherosclerosis
is debatable, however is considered to be athero-protective as these cells prevent
the differentiation of IFN-γ secreting TH1 cells via IL-4 signaling. Contrastingly, the
IL-4 is responsible for the upregulation of class A scavenging receptors, vascular cell
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adhesion molecule-1 (VCAM-1), MMP1 and MCP1 in macrophages which are pro-
atherogenic mediators [171]. IL-5, another cytokine released from TH2 cells, elicits
its athero-protective role by enhancing IgM secretion by B-1 cells to neutralize the
oxLDL [17]. However, Davenport et al.; reported that the TH2 cells elicit atherogenic
responses at the chronic stage of plaque formation [32]. Information regarding the
potential role of TH2 cells in the pathology of atherosclerosis is vague and warrants
further investigation.

The upregulation of IL-6 and TGF-β in the vascular lesion activates TH17 cells to
secrete IL-17 family of cytokines, especially IL-17A and IL-17F, and IL-22. IL-17
signaling activatesNF-κB,ERK1/2, CCAAT/enhancer binding proteinβ andC/EBPδ

which results in the production of pro-inflammatory cytokines including TNF, IL-
1β, and IFN-γ [171]. In addition, the immune responses triggered by oxLDL and
collagenV promote TH17 activation via IL-6 signaling.Moreover, the increasedROS
and subsequent activation of cAMP response element binding protein (CREBP) asso-
ciated with atherosclerosis induce IL-17 suggesting its role in vascular tissue inflam-
mation [165]. Neutralization of IL-17A, using antibody, prevented the expansion of
fibrous cap in the atherosclerotic lesion suggesting its role in plaque stability [50].
Contrastingly, the upregulation of IL-17 was shown to inhibit the effects of IFN-γ
along with the upregulation of athero-protective mediators such as IL-5 and IL-10
[163]. Also, the VCAM-1 inhibitory effects of IL-17 result in reduced T cell accu-
mulation within the lesion suggesting the athero-protective function of TH17 cells
[163]. Collectively, these evidences suggest that TH17 cells exhibit contrasting roles
as atherogenic and athero-protective agent depending on the inflammatory status of
the vascular tissue [164].

Treg cells are immuno-suppressors and minimize the immune responses without
antigen exposure thereby playing an athero-protective role. The sub-population of
Treg cells named natural Treg cells (nTreg cells) are characterized with the expression
of CD4, CD25 (IL-2R) and FoxP3 and secrete the anti-inflammatory cytokines IL-
10 and TGF-β [171]. Specifically, the IL-10 is released by the type 1 regulatory T
cells (TR1 cells) and TGF-β by TH3 subset of Treg cells [132]. TR1 cells significantly
decreased TH1 response and IFN-γ secretion, increased IL-10 production, inhibited
foam cell formation, activated the polarization ofM2macrophages and subsequently
prevented the plaque formation [8, 90, 96, 116]. The Treg cells exhibit a protective
role in atherosclerosis which were proven in animal models, however human data is
limited on this aspect which impedes their translational potential.

NK cells are the subset of T cells which express NK1.1, Ly49, CD4 and TCR
surface markers and secrete anti-inflammatory cytokines such as IL-4, IL-10 and
IL-13 [77]. NK cells were reported to augment the plaque formation and have been
detected in human carotid artery plaques and the atherosclerotic tissue from abdom-
inal aortic aneurysms [171]. MCP-1 and fractalkine (CX3CL1) are the key signals
for the recruitment of NK cells to the lesion site. In human patients the circulating
NK cells express CD160 and NKG2C (NK cell Group 2 isoform C) which trigger the
cytotoxicity and cytokine secretion suggesting its contribution to atherosclerosis. In
addition, NK cells were reported to promote atherosclerosis via CD4+ T cell depen-
dent mechanism [79]. The overall cellular and cytokine transit at the lesion site is
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Fig. 13.3 The immune cells and cytokine transit at the site of atherosclerotic lesion: the ox-LDL
at the intima of coronary artery recruits and activates monocytes and macrophages via MCP1 and
M-CSF signaling resulting in the increased uptake of ox-LDL to form foam cells. The secretion
of macrophages especially IL-18 and IL-12 activates TH1 cells and upregulates the secretion of
pro-inflammatory cytokines IFN-γ and TNF-α leading to inflammation. Similarly, IL-6 and TGF-β
trigger the release of another school of pro-inflammatory cytokines including IL-17A, IL-17-F and
IL-22 from TH17 cells. The persistence of inflammatory signals accelerates atherosclerosis. On the
other hand, the MCP1 signaling activates NK cells to secrete anti-inflammatory cytokines IL-4,
IL-10 and IL-13. In addition, the activation of TH2 cells and Treg cells prevents the progression of
inflammation via the inhibition of TH1 signaling. IL-5 released from TH2 cells stimulates B cells
to secrete IgM against ox-LDL

depicted in Fig. 13.3. Even though, most reports reveal the association of NK cells
with the pathology of atherosclerosis, the mechanistic studies to reveal the precise
role of NK cells are limited, which warrants further investigations.

Progression of Atherosclerosis

The formation of atheromatous lesions imparts hypoxia and subsequent hypoxic
responses including neo-angiogenesis [122]. The hypervascularity within the plaque
due to angiogenesis results in plaque rupture and leads to acute complications. In
addition, the intra-plaque hemorrhage leads to the formation of unstable plaques,
which are at the higher risk of rupture. Furthermore, the RBCs within the plaque act
as reservoirs for cholesterol and phospholipids which facilitate the expansion of the
necrotic core and foster inflammation [75]. The cells of innate immune system secrete
the proangiogenic factors including vascular endothelial growth factor (VEGF) and
basic fibroblast growth factor (bFGF) and MMPs for facilitating ECM degrada-
tion and activating the growth factors [25, 104, 124]. Apart from the lipid laden
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macrophages, metaplastic SMCs also contribute to foam cell formation. These SMCs
are believed to be migrated from the media to the growing atherosclerotic plaque in
the intima and proliferate over years leading to the deposition of ECM components
to the plaque [16].

Human pre-atherosclerotic lesions (diffused intimal thickening, DIT) are mainly
composed of SMCs, proteoglycans and elastin, however lack macrophages and
thrombus. These SMCs (synthetic phenotype) in the intimal layer are heterogeneous,
characterized by the increased content of synthetic organelles such as ER, ribosomes
and mitochondria (decreased expression of contractile proteins and increased ECM
secretion) [4, 9, 105, 161]. In addition, the synthetic SMCs express minimal level of
cholesterol esterase and ABC transporter A1 resulting in foam cell formation [71].
The ECM deposited by these SMCs plays a central role in the initiation and progres-
sion of atherosclerosis owing to the electrostatic interactions between the negatively
charged proteoglycans especially chondroitin sulfate and heparan sulfate and the
positively charged apolipoproteins especially ApoB leading to the lipid burden in
the intima [14]. In addition, the SMCs in the intima express minimal level of α-SMA
when compared with that of medial layer [149].

The continuous deposition of ECM and lipid trap leads to fibroatheroma which
are characterized by fibrous cap, necrotic core and impaired efferocytosis of SMCs
and macrophages that subsequently leads to secondary necrosis, release of DAMPs
and subsequent sterile inflammation. Eventually, the proteoglycans are replaced with
collagens mainly type 1 and 3 which are secreted by SMCs [14]. The proteomics
of lipid loaded secretome of SMCs challenged with TGF-β, PDGF, IL-1β, Ang II,
cholesterol and mechanical stretch revealed increased collagen synthesis confirming
the fibrotic potential of SMCs in the intimal layer [7]. The phenotype switch of SMCs
and their migration to intima are identified to be the key events associated with the
progression of atherosclerosis. Little is known regarding the underlying molecular
mechanism; however, offers immense translational potential.

Calcification

Vascular calcification is associated with CVDs including hypertension, congestive
heart failure, cardiac hypertrophy, and ischemia [5]. The evidence of atheroscle-
rotic calcification has a history of more than 5000 years which was documented
in an autopsy of the mummy of an Egyptian woman and also in the radiographs
of naturally mummified man discovered in the Tyrolean Alps [85, 107]. Generally,
the calcification of arteries occurs in the intimal layer, however calcium deposits
were also detected in the adventitial and medial layers [82, 86]. In the early stages
of fibroatheroma, the calcification occurs as granules in the necrotic core and adja-
cent ECM which involves macrophage- and SMC-derived calcifying microvesicles
along with the activity of osteochondrogenic cells [63, 131]. The osteochondro-
genic differentiation of SMCs are confirmed by the upregulation of pro-osteogenic
transcription factors Runt-related transcription factor 2 (RUNX2) and core binding
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factor a1 (Cbfa1), and the osteochondrogenic markers including osteocalcin, alka-
line phosphatase and type II collagen which in turn are upregulated by oxLDL and
inflammation [14, 126]. The microcalcification coalesces to form larger speckles
which form sheets in the matrix of fibroatheroma. Fibrin encapsulation on the frag-
ments of these sheets leading to the formation of calcium nodules which project to
the lumen and accelerate thrombosis [174].

The calcification of the intima occurs as a result of several mechanisms including
the nucleationof apatite crystals by the cellular debris followedby apoptosis/necrosis,
circulating nucleational components released by remodeling bone or locally by the
secretome of macrophages or SMCs, downregulation of the inhibitors of mineral-
ization and osteogenic trans-differentiation of SMCs [47]. As a protective mecha-
nism, the endothelial cells secrete matrix GLA protein whichmediates the vitamin-K
dependent inhibition of vascular calcification [27]. Even though the inflammation
triggers calcification, the advanced calcified plaques are resistant/tolerant to inflam-
mation leading to the propagation of the lesion and impaired healing [148]. This
leads to plaque rupture due to the unfavorable mechanical integrity caused by the
microscale calcium deposition and increased local stress resulting from the thinning
of fibrous cap owing to the interfacial debonding [173]. Also, the persistence of
adaptive immune responses promotes fibrosis and stabilizes the plaque. In addition,
the transdifferentiated SMCs acquire osteoblasts like phenotypes and orchestrate
regulated calcification which in turn acts a barrier to prevent the inflammation [148].

Usually, the calcification is limited to the subintimal layer and begins in the second
decade of life following the formation of fatty streaks which increases with the age
[6]. In addition, the microcalcification alters endothelial function and leads to plaque
stabilization [6]. The unstable inflammatorymicrocalcification (0.5−2μm) proceeds
tomore stable fibroticmacro-calcified (>2 to >5μm) plaques by subsiding inflamma-
tion due to the phenotype switch of TH1 to TH2 lymphocytes,M1 toM2macrophages
and SMCs to osteoblast like phenotypes [57, 115]. The TH2 and M2a macrophages
trigger TGF-β signaling to enhance fibrosis via the cytokines IL-4 and IL-13 [108].
For accelerating thewoundhealing, theM2amacrophages undergo further phenotype
shift to formMreg or M2c sub-type by the activity of Treg cells [36, 84]. The proteins
secreted by M2c macrophages include IL-10, resistin-like molecule-α (RELMα),
MMPs (MMP-9, MMP-13, MMP-2) and arginase-1, which suppress the inflamma-
tion, inactivate the myofibroblasts and promote fibrolysis [126]. The mechanism of
pathogenesis of atherosclerosis is displayed in Fig. 13.4.

Endothelial Dysfunction

Endothelial lining of the whole human body is roughly equivalent to the weight of
liver and occupies the total area of nearly 6 tennis courts [61]. Endothelium is the
major regulator of vascular wall homeostasis which physiologically maintains the
relaxed vascular tone, minimal oxidative stress regulated by releasing nitric oxide
(NO), PGI2, and endothelin-1, regulation of vascular permeability, platelet andWBC
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Fig. 13.4 The general mechanism of the development of atherosclerosis: the circulatory LDLs
diffused to the intimal layer are trapped by the GAGs of the intimal ECMmaking it available for the
oxidizing machineries leading to ox-LDL burden. The subsequent activation of macrophages and
inflammatory episodes leads to the formation of foam cells followed by the creation of necrotic core
which grows and matures to atherosclerotic plaques. The phenotypic switch of SMCs to osteogenic
and synthetic lineages leads to the calcification and infiltration of SMCs to intima, respectively. The
continuation of these cellular and biochemical events results in the increased thickness of intima
and ultimately leads to occlusion of the lumen

adhesion and control of AngII activity [152]. The atherogenic risk factors disturb
the endothelial homeostasis and affect the production of endogenous vasodilators
such as NO by the endothelial cells, upregulate the adhesion molecules such as
vascular cell adhesionmolecule-1 (VCAM-1) on endothelial cells (ECs) and binds to
circulating WBCs and chemoattractants that facilitate the entry of adhered WBCs to
the intima [30, 65]. In addition, alterations in the local hemodynamics, are sensed by
flow-dependent ion channels or surface molecules including integrins, affecting the
endothelial function. Such flow patterns disturb the atheroprotective functions of the
endothelium such as vasodilation, anti-thrombotic, and anti-inflammatory properties
[49].

Under normal conditions the ECs remain in quiescent phase, however, the patho-
logical stimuli including disturbances in blood flow and increased unidirectional
laminar shear stress result in their activation. ECs respond to the pre-atherogenic
stimuli by activating the expression of a battery of atheroprotective genes by upreg-
ulating the transcription factor Kruppel-like factor 2 (KLF2) resulting in their anti-
inflammatory and anti-thrombotic phenotype [169]. However, the persistence of
atherogenic signal and subsequent activation of NF-κB-HIF-1α axis increase the
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level of pro-inflammatory cytokines and stimulate the mechano-transducers, Yes-
associated protein (YAP) and transcriptional coactivator with PDZ-binding motif
(TAZ), resulting in the shift of ECs to pro-inflammatory phenotype [41, 178]. The
increased hypoxia and the accumulation of hemoglobin:haptoglobin complexes at
the lesion site activate the secretion ofVEGF bymacrophageswhich in turn stimulate
intra plaque angiogenesis and disturbs the endothelial integrity leading to vascular
permeability and unstable plaques [54]. In addition, the ECs at the lesion undergoes
endothelial-mesenchymal transition leading to the increased pool of mesenchymal
cells which in turn contribute to plaque instability by upregulating MMPs [40].

On encountering the DAMPs released as a result of pre-atherogenic stress,
the ECs stimulate the production of effector proteins via the activation of
NF-κB which include inducible endothelial-leukocyte adhesion molecules (ELAM)
especially E-selectin and VCAM-1, procoagulants such as tissue factor, and the
chemokines including IL-8, IL-18, and MCP-1 leading to the pro-inflammatory
endothelial phenotype [49]. VCAM-1 exhibits selective adhesion potential to
mononuclearWBCs and lymphocytes via VLA-4 receptor and aggravates the inflam-
mation [39]. OxLDL and oxidized lysophosphatidylcholine trigger the expression
of VCAM-1 paving the way for the atherogenesis and VCAM-1 is implicated as
a biomarker for endothelial dysfunction, [78]. Moreover, the continuous activation
of NF-κB results in the formation of super-enhanced (multiple enhancers bound
by an array of transcription factors to drive the expression of diverse genes asso-
ciated with cellular events such as inflammation) complex in EC genome signi-
fying an epigenetic level of regulation of proinflammatory endothelial cells in
atherogenesis [22].

The early lesions in human and animal models are characterized by the formation
of distinct geometry associated with arterial branch points and the regions of altered
hemodynamics [29, 48]. These conditions suggest the longer dwell time allowing the
LDL to permeate the endothelial lining as the disturbed flow physically damages the
endothelial integrity. The shear stress response elements (SSREs) in the promoter
region of VCAM-1 and other atheroprone genes including PDGF and eNOS regulate
the gene expression responding to the alterations in hemodynamics [49]. The KLF2
expression antagonizes NF-κB-dependent pro-inflammatory pathways and elicits the
atheroprotective effects by restoring the barrier function, metabolism, and the release
of reparative miRNAs via exosomes [10, 59, 91]. Furthermore, the KLF2-mediated
production of autocoids (paracrine molecules which act similar to local hormones)
such as NO and natriuretic-peptide C (CNP) elicits atheroprotection [11].

The vascular wall is highly susceptible to oxidative stress due to the presence
of active pro-oxidant systems including xanthine oxidase, mitochondrial respira-
tory chain, lipoxygenases, uncoupled eNOS and NADPH oxidases. The antioxidant
defense counter balances the oxidant system and the disturbances in the oxidant-
antioxidant homeostasis lead to oxidative stress [97]. Increased oxidative stress and
impaired antioxidant defense induce structural modification to LDL leading to the
formation and exposure of new antigenic epitopes to the macrophages which give
rise to clonal expansion of LDL specific T cells [106]. In addition, the oxidative
stress alters the structure and function of β2-glycoprotein which in turn triggers TH1
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cell response. Also, the hyperlipidemia impairs L-arginine-NO pathway inducing
AngII-type-1 receptor and subsequent vasoconstriction which alters the hemody-
namics [106]. The increased administration of antioxidants and regular exercise are
beneficial to improve the endothelial healing following the oxidative stress [61].

Neointimal Hyperplasia (NIH)

Coronary interventions including balloon angioplasty (with or without stenting),
endarterectomy and/or CABG have benefitted millions of CHD sufferers across the
world. However, these therapeutic interventions fail from restenosis due to neoin-
timal hyperplasia (NIH) [190]. It has been demonstrated that the development of
NIH and atherosclerosis share similar pathological mechanisms there by referring
NIH as in-stent neo-atherosclerosis. Since NIH occurs in an accelerated rate than
atherosclerosis, it has been referred as accelerated atherosclerosis [70]. In addition,
NIH exhibits a prevalence of 30%within 1 year following the coronary interventions
and still remain as the leading cause of thrombosis associated with stent/graft failure
[114, 184]. NIH refers to post-intervention remodeling of coronary artery due to the
unregulated proliferation and subsequent migration of SMCs from the medial layer
to intimal layer resulting in wall thickening and gradual occlusion of the lumen [18].
The SMCs associated with NIH switch contractile phenotype to secretory/synthetic
phenotype to release the mediators, growth factors, receptors, ECM components,
MMPs and cytokine, accelerating the progression of NIH. Since the coronary inter-
ventions and other therapeutic manipulations exert the risk of vascular injury, the
subsequent inflammatory cascade plays a significant role in the development of NIH
[190]. This section throws light to the current understanding of molecular pathogen-
esis, the association of epicardial adipose tissue (EAT), influence of high calorie diet
and translational avenues in NIH.

The accumulation of SMCs and fibroblasts with subsequent increase in the depo-
sition of ECM in the intimal layer leading to the narrowing of lumen is the major
histological hallmark of NIH. In general, the thickness of medial layer remains unal-
tered while the intimal layer expands [110]. The growth factors including PDGF,
EGF and FGF and the cytokines such as IL-6 and IL-8 are responsible for the dedif-
ferentiation of SMCs to form the synthetic phenotype, however, IGF-1 reverses the
phenotypic switch [103]. In addition, the adventitial fibroblasts transform to myofi-
broblasts and migrate through media to acquire SMC-like phenotype contributing
to NIH [137]. Furthermore, the circulating bone marrow-derived progenitor cells,
platelets and mononuclear WBCs are involved in the formation of neointima [103,
141]. However, the exact molecular mechanisms underlying the phenotype switch
of SMCs and NIH formation are unknown.

The cellular proliferation signaling includingRas–MAPKandPI3K–Akt are asso-
ciated with NIH development. Also, MAPK-mediated activation of the transcription
factors such as Elk-1 and Sap1 are believed to stimulate the proliferation, migra-
tion and dedifferentiation of SMCs. In addition, the survival of secretory SMCs are
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facilitated by insulin-dependent Akt pathway in response to the nutritional status
via mTOR signaling [109]. The cellular events associated with SMC migration such
as actin polymerization, cell–cell and cell-ECM adhesion, microtubule remodeling,
and myosin force generation are promoted by growth mediators such as VEGF,
PDGF, bFGF and TGF-β [46]. The growth factors and AngII enhance the ECM
components secreted by SMCs and facilitate the ECM deposition at the intima [109].
The inhibition of SMC migration has been achieved by controlling the activity of
MMPs using TIMP-1, -2 and -3 which in turn prevents NIH formation and enhanced
reendothelialization [138].

In addition to the cells of vascular wall, the tissues adjacent to the coronary
artery also influences the pathogenesis of atherosclerosis and NIH. For example, the
epicardial adipose tissue (EAT) has proven to be associated with the formation of
atherosclerosis and subsequent cardiac complications [1, 192]. Generally, the EAT is
directly associated with the adventitial layer of coronary artery (Pericoronary epicar-
dial adipose tissue) and pericardium (myocardial epicardial adipose tissue) which
elicit both autocrine and paracrine signaling to secrete several pro-inflammatory
mediators. Also, the EAT is composed of adipocytes, ganglia and network of nerves,
stromovascular and immune cells [100]. However, the metabolism and the inter-
actions among these cells contributing to NIH are largely unknown. However, it
has been reported that the EAT-derived mediators contribute to endothelial dysfunc-
tion by aggravating inflammation and oxidative stress which ultimately result in the
migration of SMCs [67].

Interestingly, EAT is characterized with immunopositivity of several inflamma-
tory biomarkers such as CD3 (lymphocytes), CD68 (macrophages), and that for
mast cells suggesting the inflammatory phenotype of EAT. Furthermore, the inflam-
matory cells in EAT reflect the vascular pathology and plaque instability or NIH
following coronary intervention [100]. The vasocrine secretion of EAT includes the
adipokines such as TNF-α, MCP-1, IL-6, IL-1β, resistin and others which contribute
to the inflammatory milieu and promotes NIH [128, 143]. In addition, the EAT
triggers innate immune responses via TLRs leading to the activation and nuclear
translocation of NF-κB resulting in the expression of a battery of proinflammatory
genes. Lipopolysaccharide (LPS), the classical ligand for TLR, has been found to be
increased in the systemic circulation of CHD patients, however, the origin of LPS
in these patients are largely unknown [13]. Moreover, the concomitant increase in
the expression of genes associated with oxidative stress in EAT of CHD subjects
suggest the possible interaction between the vascular tissue and EAT [139]. Similar
to LDL, the epicardial fat also affects the endothelial function as the secretory type
II phospholipase A2 (sPLA2-IIA), the key enzyme involved in the retention of LDL
in the subendothelial space, was found to be upregulated in the EAT of CHD patients
[37].

Apart from the secretion of adipokines, the EAT exerts mechanical effects to
contribute to atherosclerosis and NIH. Under physiological condition EAT attenu-
ates coronary artery torsion whereas under pathological circumstances EAT leads
to vessel expansion owing to its compressibility [125]. EAT-derived angiopoietin-
like protein (Angptl) 2, a pro-inflammatory mediator, augments NIH following the
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vascular interventions by upregulating TNF-α, IL-1β and MMP2 [170]. In addition,
EAT-derived mediators including TGF-β, leptin, and viafastin facilitate the migra-
tion and proliferation of SMCs leading to NIH [102, 127]. Accumulating evidence
from literature suggests that EAT operates diverse pathways which are linked to
the pathogenesis of NIH following the vascular injury [64]. However, the currently
available experimental models and research strategies are incomplete which warrant
further investigations for the translation to clinical arena.

High Fructose Diet and NIH/Atherosclerosis

Chronic overnutrition is a major risk factor for cardiovascular disease and is a preva-
lent complication following reparative surgery and/or coronary interventions [98].
In addition, the high sugar intake and subsequent hyperglycemia promote the forma-
tion of NIH following the vascular intervention [21]. The global consumption of
sugar-sweetened beverages, and processed foods have drastically increased in all
age groups which remain as the major source of dietary fructose [187]. Increased
consumption of fructose has been correlated with the increased body weight, hyper-
lipidemia, upregulation of circulating and tissue level pro-inflammatory cytokines,
hypertension and endothelial dysfunction [162, 187]. Methylglyoxal (MG), an inter-
mediate of fructose metabolism, has been tightly associated with atherosclerosis and
diabetes [93]. The impact of high fructose intake has raised serious concerns in CVD
research and this section outlines the association of high fructose diet and NIH.

It has been found that the ingestion of high fructose diet has negative effects on
the human health, particularly cardiovascular health [94]. High fructose diet is an
inflammatory diet that induces oxidative stress through uninhibited hepatic fructose
metabolism [140]. Fructose metabolism does not involve the glycolysis rate limiting
enzyme phosphofructokinase [140]. Unlimited fructosemetabolism continues to add
calories and overloads the mitochondria with its metabolic intermediates, resulting
in mitochondrial stress and increased reactive oxygen species [94, 167]. Moreover,
it fuels the hepatic lipogenesis [94]. High fructose intake (e.g. in corn syrup) induces
the production of the hepatic glucose, probably through promoting the transcription
of glucose 6 phosphatase gene via activating the Carbohydrate Response Element
Binding Protein (ChREBP) [72]. High fructose diet was reported to promote hepatic
insulin resistance in a differential manner, it impairs the insulin’s inhibition of hepatic
gluconeogenesis (glucose production) while maintaining the hepatic lipogenic effect
(hepatic do novo lipogenesis). This leads to hyperlipidemia, hepatic steatosis (fatty
infiltration of the liver), and hyperglycemia [72]. These metabolic derangements
result in obesity and metabolic syndrome.

Metabolic syndrome and obesity are characterized by chronic persistent inflam-
mation and high levels of the systemic proinflammatory cytokines [179]. Free fatty
acids (FFAs) which are released from the dead hypertrophied fat cells of the obese
person activate the immune cells and induce innate immunological reaction [129].
These FFAs act as ligands for TLR receptors, producing and perpetuating a chronic
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systemic inflammatory process [158]. High fructose intake alters the gut microbiome
and bypasses the liver tolerance producing a state of systemic endotoxemia [34, 35,
129]. This endotoxemia further induces generalized inflammatory response. High
fat diet results in insulin resistance via desensitizing the insulin receptors, by serine
phosphorylation of the insulin receptor substrates (IRSs) via activation of protein
kinase C (PKC) isoenzymes, producing type 2 diabetes mellitus (T2DM) [45, 80].
Obesity, T2DM, hyperlipidemia and inflammation induce neointimal hyperplasia
(NIH) and coronary artery diseases (CAD) [66, 74, 134].

Asmentioned in the above section, theEATchanges its phenotype in obese, T2DM
patients and becomes more inflammatory with M1 proinflammatory macrophage
predominance [166]. The inflammation and the oxidative stress produced by the
high fructose contribute to the NIH through promotion of medial smooth muscle cell
proliferation,migration and phenotype switching [119]. Taken together, high fructose
diet plays an important role in the development of insulin resistance, oxidative stress,
inflammation, hyperlipidemia and hypertension [42, 60], which result in intimal
dysfunction, NIH and atherosclerosis [19, 133].

The inflammatory milieu caused by obesity and metabolic syndrome, as
mentioned above plays a pivotal role in atherosclerosis and NIH. Inflammatory
cytokines diffuse from the inflammatory EAT as well as from the vascular lumen and
induce phenotypic changes of the medial vascular smooth muscle cells (VSMCs).
Subsequently these cells change from quiescent and contractile cells to migratory,
proliferative and secretory cells that migrate to the subintimal space, proliferate and
lay down the extracellular matrix component of the neointimal hyperplasia. The NIH
tissue impinges on the vascular lumen, impairing the blood flow and reducing the
tissue perfusion by the affected arterial segment of the coronary vasculature. The
representative images of coronary artery OCT (optical coherence tomography) and
coronary angiography from CHD pig model are shown in Fig. 13.5. This results in
tissue ischemia and necrosis (myocardial infarction) if the blood supply is not enough
to sustain the vital functions of the cardiomyocytes [151]. The lack of understanding
of the underlying molecular mechanisms and the influence of contributing factors
limit the development of translational strategies to prevent the NIH. Medical science
is looking forward for novel and outstanding discoveries in themanagement of CHDs
and their treatment-related complications such as NIH.

Translational Avenues and Future Directions

Recent advancements in the medical science and technology have unveiled several
pathological mechanisms underlying the atherosclerosis and NIH. The similarities in
pathological mechanism of both atherosclerosis and NIH converge to the endothelial
dysfunction and sterile inflammation suggesting the possibilities of common targets
of intervention for both. However, the lack of proper knowledge regarding the exact
underlying molecular pathogenesis limits the development of effective translational
avenues in the management of atherosclerosis and NIH. The molecular signaling
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Fig. 13.5 A representative imaging of coronary artery by optical coherence tomography (a) and
by angiography (b). Formation of neointimal hyperplasia beyond the stent struts leading to in-stent
restenosis 5-month after implanting a bare metal stent is clearly evident in Yucatan microswine,
and (b) Imaging of the coronary arteries by angiography during percutaneous coronary intervention
showing LAD and LCX

leading to the phenotypic switch among immune and non-immune cell types is still
an enigma. Several dietary and metabolic components have been associated with the
pathogenesis of atherosclerosis and NIH, however the integration of diverse molec-
ular signals triggering the upregulation of pro-atherogenic genes needs to be unveiled.
Also, the modified surgical techniques for coronary interventions promising to retain
the endothelial wall integrity is need of the hour. The knowledge regarding the alter-
ation of pathological mediators at genetic and epigenetic levels exhibits immense
translational potential, however, warrants further investigations. Stem cell and gene
therapies have opened promising translational potential; however, the clinical data on
these aspects are scarce. The regenerative strategies for coronary artery repair remain
unexplored field in translational medicine. The therapeutic exosomes in cardiology is
an emerging trend, unfortunately, the available literature mainly focuses on myocar-
dial regeneration [83, 172]. The advent of cardiovascular tissue engineering provides
abundant translational potential, even though this field of medical research is still
in infancy [43, 51, 76]. Tissue engineering-based stimuli/environmental sensitive
smart/intelligent matrices have been emerging which would form a strong basis
for next generation personalized medicine in the management of atherosclerosis and
NIH. Themedical world is looking forward to outstanding discoveries to alleviate the
sufferings of millions of CVD patients across the globe and expecting an improved
quality of life.
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Chapter 14
Therapeutic Interventions
of Endocannabinoid Signaling
in Obesity-Related Cardiovascular
Dysfunction

Vivek S. Kumawat, Siddhi Bagwe-Parab, Meena Chintamaneni,
and Ginpreet Kaur

Abstract Obesity is a major risk factor involved in the progression of cardiovas-
cular diseases. The aggravation of cardiovascular diseases is primarily linked to the
release of pro-inflammatory cytokines. The endocannabinoid system (ECS) plays an
important role in various diseases such as obesity, inflammation, Type II diabetes
mellitus (T2DM) and cardiovascular dysfunction (CVD). ECS comprises of endo-
cannabinoid receptors; cannabinoid 1 (CB1), cannabinoid 2 (CB2) and cannabinoid
enzymes which are responsible for regulation of signaling pathways involved in
obesity andCVD. The potential therapeutic interventions by drugs acting on cannabi-
noid receptors and their usage in the mitigation of obesity and CVD has been demon-
strated in various pre-clinical and clinical studies. The expression of CB1 inhibition
and CB2 activation receptors has been observed in the CVDs and obesity. Several
reports suggest that; inhibition of centrally acting CB1 receptor antagonist show a
significant reduction of obesity, atherosclerosis and modulate blood pressure. These
therapeutic agents have also been reported to be associated with unwanted side
effects. Rimonabant (SR141716/Acomplia/Zimulti), a selective CB1 inverse agonist
had shown promising anti-obesity and anti-CVD effects, but later was withdrawn due
to severe neuropsychiatric side-effects. The researchers are now exploring alternative
approaches to blockCB1 receptors by avoidingpsychotropic effects.Drugs likeTXX-
522 have been developed to exhibit good binding capacity to CB1 receptors and have
lesser brain penetration. Numerous studies have reported that, CB2 receptor agonists
prevent the onset of cardiometabolic diseases by scavenging free radicals and attenu-
ating inflammation. Fatty acid amide hydrolase (FAAH) andmonoacylglycerol lipase
(MAGL) enzymes inhibition lead to reduction in the reactive oxygen species and
regulation of apoptotic pathway, thus ameliorating the elevated biomarkers respon-
sible for obesity and CVD. The central idea of this review is to examine the mecha-
nism of action of cannabinoid receptors and to explore the therapeutic interventions
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at cellular and molecular levels with respect to their anti-obesity and cardiovascular
effects.

Keywords Obesity · Phytochemicals · Endocannabinoids · Signal transduction ·
Cardiovascular dysfunction · Therapeutic interventions

Abbreviations

2-AG 2-Arachidonoylglycerol
AEA Anandamide
BP Blood Pressure
CB1 Cannabinoid receptor 1
CB2 Cannabinoid receptor 2
CCK Cholecystokinin
CVD Cardiovascular dysfunctions
ECS Endocannabinoid system
FAAH Fatty acid amide hydrolase
GLP-1 Glucagon-like peptide-1
GPCR G Protein-coupled receptor
HR Heart rate
IL-1β Interleukin-1 beta
IL-6 Interleukin-6
LDL Low-density lipoprotein
MAGL Monoacylglycerol lipase
MCP-1 Monocyte Chemoattractant Protein-1
PKC Protein kinase C
ROS Reactive oxygen species
T2DM Type 2 diabetes mellitus
TNF-α Tumor necrosis factor-alpha
WHO World Health Organization

Introduction

Obesity is defined as an excess body weight for a given height due to abnormal and
excessive fat accumulation, thus impairing health. It is a global epidemic consequence
that potentially increases the risk of morbidity and mortality [1]. According toWorld
Health Organization (WHO) global estimates in 2016, more than 1.9 billion adults
(39%) were overweight and 650 million (13%) people suffered with obesity [2].
The increasing incidences of obesity is alarming for increase in the financial burden
related to healthcare utilization. Numerous studies have linked obesity to increase in
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the risk of CVDs [3], metabolic disorders such as type 2 diabetes mellitus (T2DM)
and dyslipidemia [4]. Association of obesity, hypertension, T2DMand dyslipidemias
have also shown to increase the incidences of CVDs.

The pathogenesis of obesity is a complex mechanism involving many intervening
factors such as diet, environment, physiological differences, medical interventions,
behavioral factors, genetic and epigenetic composition [5]. Regulation of body
weight and appetite is mainly carried out by the; nervous system, endocannabinoid
system, adipose tissues and gastrointestinal hormones. Essential hormones involved
in the regulation of appetite signals include; leptin, insulin, ghrelin, cholecys-
tokinin (CCK) and glucagon-like peptide-1 (GLP-1) [6, 7]. These hormones transmit
energy status information to brain cells and hypothalamus as a signal for hunger.
Obesity is the major risk associated with CVD in both adults and children. Insulin
resistance, increased blood pressure, dyslipidemia, atherosclerosis are the primary
causes of obesity-associated CVDs. Inflammation of adipose tissue and decreased
levels of adiponectin are considered the major factors associated with obesity and
CVDs [8, 9]. In the past few decades, detailed knowledge of the pathophysiological
processes of obesity and CVDs have been revealed. Strategies like lifestyle manage-
ment, pharmacotherapies, bariatric surgery etc. are used in the treatment of obesity
and obesity-induced CVDs. In pharmacotherapy intervention; Orlistat (inhibits
gastric and pancreatic lipases), Lorcaserin (serotonin 2C receptor agonist) and
Liraglutide (GLP-1 receptor agonist) are used for the treatment/management of
obesity [10]. Novel therapeutic interventions that were indicated for the treatment
of obesity were rapidly withdrawn from the market, because of unacceptable side-
effects such as; gastrointestinal disturbances, neuropsychotropic effects and cardio-
vascular myopathies. ECS plays an important role in the control of food intake,
energy balance, inflammation, oxidative stress [11], and lipid/glucose metabolism
[12]. These factors are involved in the progression of CVDs. The potentials of ECS
in appetite regulation and obesity makes it an important physiological strategy to be
expended for the treatment of obesity and obesity-induced CVDs. The present review
discusses the pathophysiological role of ECS receptors and their role in obesity-
induced CVDs. Also, ECS receptors involvement in the disease and therapeutic
approaches targeting ECS are elaborated for the treatment of obesity-induced CVD.

Obesity and Cardiovascular Risk

Many studies link obesity as the major cause of CVDs with causes including;
insulin resistance, dyslipidemia, hypertension, increased cardiac load and atheroscle-
rosis. The hemodynamic changes and metabolic changes in the body are the
major risk factors of heart failure induced by obesity. Many details of the patho-
physiological relationship between obesity and atherosclerosis have been revealed
from last few decades [13]. These diseases have been displayed as lipid storage
disorders with triglyceride accumulation in the tissues and cholesterol esters in
atherosclerotic plaques. Adipokine imbalance is suggested as a strong link between
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obesity and atherosclerosis, in which there occurs an imbalance between levels of
pro-inflammatory and anti-inflammatory adipokines (adiponectin). These factors
may lead to the development of insulin resistance and endothelial dysfunction.
Adiponectin is an anti-inflammatory and vasculo-protective adipokine released by
adipose tissues [14]. Additionally, adiponectin suppresses the superoxide genera-
tion and enhances the oxidation of low-density lipoprotein (LDL). Also, adiponectin
limits the initiation of atherosclerotic plaque formation in atherosclerosis.

Inflammation is the common bridge between obesity and atherosclerosis [9].
Obesity-induced inflammation is resulted by the activation of adipose tissue
macrophages, and T cells/B cells within the adipose tissues. Various inflammatory
cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-
alpha (TNF-α), Monocyte Chemoattractant Protein-1 (MCP-1) and leptin majorly
play an important role in atherosclerosis [14]. Atherosclerosis causes the narrowing
and hardening of arteries that carry blood to the heart muscle which leads to coro-
nary artery disease. In obesity, 70% of men and 60% of women are associated with
hypertension due to excess of adiposity [10]. This may lead to insulin resistance
and hyperinsulinemia, thus followed by the activation of the sympathetic nervous
system. This activation finally increases hypertension by increase in vasoconstric-
tion and cardiac output [15]. Hypertension and myocardial fibrosis eventually leads
to diastolic and systolic dysfunction in the heart. Overall, these factors contribute
to the heart failure induced by obesity. Obesity-induced cardiovascular disease is
estimated to result in 11% of heart failure cases in males and up to 14% in women.
The rise in prevalence of obesity may also increase the risk of heart failure [16, 17].
Figure 14.1 shows the linkage between obesity and cardiovascular diseases.

Fig. 14.1 Pathogenesis of Obesity-induced cardiac disorder
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Endocannabinoid System

Since 1990’s, discovery of the ECS [18], its receptors, and the potential of phar-
macotherapy in the treatment of many clinical conditions has gained more atten-
tion. ECS consists of three major constituents such as endocannabinoid molecules,
cannabinoid receptors, and enzymes involved in regulation of ECS. The endogenous
endocannabinoid molecules are Anandamide (AEA) and 2-arachidonoylglycerol (2-
AG) [19], which are responsible for maintaining signaling pathwaywith cannabinoid
receptors. ECS consists of two G Protein-coupled receptor (GPCR) [20] as cannabi-
noid receptor 1 (CB1) and cannabinoid receptor 2 (CB2). Fatty acid amide hydro-
lase (FAAH) and monoacylglycerol lipase (MAGL) enzymes are mainly involved
in enzymatic degradation of AEA and 2-AG respectively [7, 21]. The ECS acts on
metabolism and physiology of multiple systems such as the nervous system, immune
system and endocrine system.

The main function of the ECS is the regulation of protein synthesis, glycogen
synthesis, and fat deposition. Activation of the ECS receptors stimulates appetite,
glucose homeostasis and insulin secretion [22]. Evidences from the pre-clinical
and clinical studies indicate that, targeting ECS receptors play an important role
in the management of obesity, hyperglycemia and atherosclerosis (Fig. 14.2). The
combined action of drugs on receptors and enzymes of theECSdisplay amajor role in

Fig. 14.2 Pathophysiological role of the Endocannabinoid system in human body
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the management of appetite in obesity. The CB1 receptors are primarily distributed
in the areas of the brain related to motor control and sites associated with; pain
processing, cognition, emotional responses, motivated behavior, and homeostasis.
CB2 receptors are located primarily on the immune cells and are also expressed in
all the hematopoietic cells such as lymphocytes, natural killer cells, macrophages,
and neutrophils [23]. Both CB1 and CB2 receptors are G-protein coupled receptors
that possess seven transmembrane domains. The expression of these receptors vary
considerably across tissues and cell types [24].

Pathophysiological Functions of Endocannabinoid System

Cannabinoid receptors and endocannabinoids are distributed throughout the body.
The role of ECS has been observed in multiple physiological and pathological func-
tions.Cannabis Sativa L.was the first plant to stimulate the interest in the research of
ECS [25]. Tetrahydrocannabinol (THC) and cannabidiol are themajor components in
C. SativaL.THCactivates theCB1 receptors and inhibit the release of the neurotrans-
mitters in the brain. CB1/CB2 receptors and cannabinoid ligands play an important
role in the various pathophysiological conditions such as; obesity, pain, inflamma-
tion, T2DM, cancer and atherosclerosis. However, it is noted that cannabinoids are
highly prone to produce undesirable neuropsychotropic side-effects.

CB1 receptors are centrally located receptors which play an important role in
appetite regulation.

Administration of 2-AG in the limbic forebrain have been reported to be linked
to control; motivation and appetite [26]. Also, a comprehensive study by Kirkham
et al. showed that CB1 receptor antagonist Rimonabant (SR141716) significantly
decreased the feed intake in rats. CB2 receptors also show anti-obesity activity
by peripheral restriction of cannabinoidal action by AM6545 [27]. Another study
presents FAAH-deficientmicewhich exhibits increased appetite due to elevatedAEA
levels in brain, liver, and small intestine [28].CB2 receptorsmajorly play an important
role in inflammation and oxidative stress. Several in vitro and in vivo studies report
that, CB2 receptor agonists reduce neuroinflammation, diabetic complications and
neuropathic pain by inhibiting the inflammatory cytokines such as Tumor necrosis
factor α (TNF-α), Interleukin-1β (IL-1β), Transforming growth factor-β (TGF-β) and
Nuclear factor -κβ (Nf-κβ) [29].Many pre-clinical studies suggests themodulation of
cannabinoid receptors whichmay alleviate atherosclerosis [30]. Anti-atherosclerosis
effect of ECS is mainly due to anti-inflammatory action and inhibition of accumu-
lating macrophages in the artery [31]. Endocannabinoids and cannabinoid receptors
show a promising role in receptor signaling during cardiac hypertrophy and heart
failure. AEA suppresses the cardiac hypertrophy and cardiomyopathy, mediated by
the action of CB1 and CB2 receptors. Many studies reveal that, activation of CB2

receptors protect the heart from ischemic reperfusion injury [32]. Similarly, endo-
cannabinoids such as AEA, 2-AG [33] and CB2 receptor agonist such as JWH-015
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[34] show a protective effect in ischemic reperfusion injury. Many possible mech-
anisms are involved in the protection of heart by ECS such as inhibition of inflam-
matory cytokines, scavenging of reactive oxygen species (ROS), and modulation of;
Pl3K/Akt, p38/ERK1/2, and Protein kinase C (PKC) activation [35]. Therapeutic
interventions to be expended for endocannabinoid receptor signaling which targets
obesity and cardiac disorders should be explored.

Components of the ECS (CB1/CB2 receptors and enzymes) which are involved
in the endocannabinoid signaling and their role in pathological mechanisms of
cardiovascular diseases; including atherosclerosis,myocardial infarction, and cardiac
hypertrophy is explained further. Here, we discuss the potential roles of the ECS in
the cardiovascular diseases.

Role of Cannabinoid Receptor 1 (CB1) in Obesity-induced
Cardiovascular Diseases

Smoking and ingestion of cannabis have detrimental effects on heart by raising the
heart rate. This is due to the presence of THC and Phyto-cannabinoids which modu-
late the autonomic nervous system via CB1 receptors [36]. Since the identification of
cannabinoid receptors in the heart, extensive research has been carried out to study
themodulation and activity of these receptors. Expression of CB1 receptors were also
identified in the human coronary artery, smooth muscle cells and myocardium [37].

CB1 receptors are over-expressed in obesity, having increased concentrations of
endocannabinoid enzymes and receptors in the adipose tissues. Many in vivo studies
have confirmed that, the blockade of the CB1 receptor by Rimonabant, a selective
CB1 receptor inverse agonist; decreased the food intake, body weight, adiposity and
calorie intake [38, 39]. CB1 receptor blocking by taranabant (CB1 receptor inverse
agonist) also showed significant improvement in insulin sensitivity [40]. An impor-
tant finding from the research study of Schaich et al. demonstrates that, oral admin-
istration of Rimonabant in transgenic rats resulted in increased insulin resistance
and hypertension. Acute systemic blockade of CB1 receptor significantly reduced
the blood pressure, weight gain and increased the secretion of insulin. The overall
study concluded that CB1 receptor blockade may be an effective therapeutic strategy
for the treatment of angiotensin II dependent hypertension and associated metabolic
syndrome [41]. The clinical study conducted by Ruilope et al. demonstrated that,
CB1 receptor blockade showed minimal effects on the blood pressure of normoten-
sive subjects but significantly decreased the blood pressure in obese and T2DM
patients [42]. Therefore, these studies suggest the role of CB1 receptor inhibition in
the regulation of hypertension. Several studies have reported positive correlation of
ECS and CD.

Rimonabant, a potent CB1 receptor inverse agonist has been withdrawn from the
market, due to extensive neuropsychiatric effects [43]. Novel molecules should be
developed for the blockade of CB1 receptor which will benefit the patients suffering
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from obesity and related metabolic disorders. Research should be carried out to find
out alternative ways to block the CB1 receptors. After Rimonabant withdrawal from
the market, non-central CB1 blocking agents are reaching the research pipeline. The
peripheral blockade of CB1 receptors restrict Blood–brain barrier crossing, which
prevent neuronal toxicity [44]. Chen et al. demonstrated that, novel peripheral CB1

receptor antagonist TXX-522 showed molecular docking similarities with Rimona-
bant but has minimum penetration in the brain. TXX-522 has showed a significant
decrease in the rat body weight with no neuropsychiatric effects [45]. CB1 recep-
tors have shown to inhibit macrophage accumulation and anti-inflammatory action
in coronary artery diseases [46]. CB1 receptor antagonist with peripheral blocking
and combinatorial therapy in low doses are devoid of the side effects and are more
effective for the treatment of obesity and cardiovascular disease (Table 14.1).

Role of Cannabinoid Receptor 2 (CB2) in Obesity-induced
Cardiovascular Disease

The CB2 receptor was first cloned byMunro et al. from the human leukemia cell lines
(HL-60) [53]. The expression of CB2 receptors is mainly in the immune cells, spleen
cells, peripheral tissues and organs like heart, liver and pancreas [54]. CB2 recep-
tors are also expressed in the cardiovascular system. Many research findings have
demonstrated the expression of CB2 receptors in rat cardiomyocytes, myocardium,
smooth muscles and endothelial cells [55, 56]. Elevation in CB2 receptor expression
is seen in pathophysiological conditions such as inflammation and injury. This directs
the protective effect of CB2 receptors in inflammation and injury [57]. CB2 receptor
agonists display an important role in the inhibition of macrophages and leucocyte
accumulation in the coronary artery [58]. Figure 14.3 summarizes the involvement
and modulation of ECS in the management of obesity and its induced CVDs.

A study conducted by Zhao et al. has demonstrated that, administration of a CB2

receptor agonist WIN55212-2 (prototypic aminoalkylindole) in apolipoprotein E-
knockout (ApoE(−/−))mousewith a high-fat diet, reduces the size of atherosclerotic
lesions and also decreases the expression of Nf-κβ [59]. Verty et al. has demonstrated
the anti-obesity activity of CB2 receptor agonist JWH-015 in C57BL/6 mice. The
results from this study suggests that, administration of JWH-015 reduced the feed
intake, fat mass and adipocyte cells by modulating energy homeostasis and obesity-
associated metabolic pathologies in the absence of any adverse neurological effects
[60]. A CB2 receptor agonist, Beta-caryophyllene has been reported to show anti-
diabetic activity, by decreasing plasma glucose levels and inflammatory cytokines
(TNF-α and IL-6) [61, 62]. Collectively, activation of CB2 receptors exhibit a bene-
ficial role in the treatment of inflammation, lipid metabolism, CVDs, T2DM and its
related complications (Table 14.2) [63].
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Fig. 14.3 Treatment approaches by targeting the ECS in obesity-induced cardiac disorders

Conclusion

Dysregulation in the ECS leads to the development of obesity and obesity-
induced cardiovascular disorders. CB1 receptor activation aggravates the uncon-
trolled metabolic pathway, thus leading to fat accumulation and in turn obesity.
Inhibition of CB1 receptors has displayed a potential role in controlling obesity and
fat accumulation. Several studies have reported that, inhibition ofCB1 receptors led to
decrease in food intake, bodyweight reduction, decrease in insulin sensitivity, reduc-
tion in the blood pressure, macrophage de-aggregation in coronary artery diseases
etc. Drugs like Rimonabant (SR141716/Acomplia/Zimulti), having anorectic anti-
obesity property had shown promising effects in the management of obesity and
linked CVDs. Rimonabant was withdrawn globally within two years of its approval,
for its severe neuropsychiatric side effects. A novel compound TXX-522 has been
recently developed based on the parent compound rimonabant. TXX-522 has good
binding capacity to CB1 receptors, and has also exhibited lesser brain peneteration.
Therefore, phytochemical compounds with similar structures can be screened for
anti-obesity and linked CVDs. Also, CB1 receptor activation in the heart causes
depressed contractility of the heart and hypotension; inhibition of the same can
ameliorate the cardiovascular diseases such as atherosclerosis, ischemia heart reper-
fusion injury and heart failure. CB2 receptor activation has shown promising effects
in the amelioration of inflammation and oxidative stress related injury. Therefore,
CB2 agonists can be expended for regulation of insulin secretion, inflammation and
atherosclerosis. FAAH inhibition decreases inflammatory cytokines, regulates heart
rate/blood pressure, reduces reactive oxygen species and downregulates apoptotic
cell death. Therefore, this review hypothesized that ECS is a better treatment strategy
for obesity and its linked cardiovascular diseases. Thus, the novel approach to treat
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obesity-induced cardiovascular diseases by ECS will be useful in clinical research
and will be a better therapeutic option for the treatment of the same.
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Chapter 15
Obesity and Cardiovascular Disease:
Impact of Resveratrol as a Therapeutic

Xavier Lieben Louis, Sampath Krishnan, Jeffrey T. Wigle,
and Thomas Netticadan

Abstract Obesity is a global epidemic and obese populations are at a much higher
risk of developing diseases such as hypertension, type 2 diabetes, stroke and conges-
tive heart failure. Increased adiposity is the hallmark of this physiological alteration
of the body in response to excess intake of energy rich food, and this condition has far
reaching health consequences in humans. Adipose dysfunction develops over time
leading to increased secretion of inflammatory cytokines that cause inflammation and
oxidative stress, which are independent risk factors for cardiovascular disease. Dias-
tolic dysfunction is characteristic of the cardiac pathology associated with obesity.
Obesity is a manageable condition and in some cases completely reversible with
lifestyle modifications such as increased physical activity and a calorically restricted
diet. In other cases, obesity can be reversed with either medications or surgery. In
this regard, food derived compounds have been reported to have therapeutic bene-
fits. Resveratrol is one such compound; it belongs to a family of plant compounds
called polyphenols. In this chapter, we will review the causes and consequences of
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obesity, obesity associated cardiovascular disease and the potential of resveratrol in
prevention/treatment of obesity and obesity associated cardiovascular disease.

Keywords Obesity · Cardiovascular disease · Resveratrol · Polyphenols ·
Lipotoxicity · Adipose dysfunction

Introduction

Cardiovascular disease (CVD) and subsequent heart failure claims at least half a
billion lives every year, around the globe. According to estimates available through
theWorld Health Organization, around 17.9 million people died of CVD in 2016 [1].
There are a number of risk factors for the development of CVD such as hyper-
tension, diabetes, hyperlipidemia, coronary disease, valvular disease and certain
genetic mutations [2–4]. In combination with neurohormonal and cellular changes,
the heart is capable of acutely compensating for many of the stresses arising from
these pathophysiological conditions through a combination of structural and func-
tional remodeling [5]. However, prolonged stress leads to maladaptive remodeling
and the permanent loss of function of the heart and culminates in heart failure [6].
There are a number of therapeutic strategies currently being used to prevent, abate
or reverse the development of heart failure [7]. For mild cases of CVD, life style
modifications is the first step of therapy and pharmaceutical agents are prescribed
when the disease has already progressed beyond what is manageable with life style
changes [8, 9]. In certain cases such as valvular disease, electrical abnormalities and
structural disabilities of the heart at birth, surgeries or devices such as pacemakers
are used as the first step in treatment of the disease [7]. However, despite all of the
modern biomedical inventions and advanced therapeuticmethodologies, heart failure
still claims millions of lives every year around the globe. This scenario leads us to
think of alternative strategies that may more effectively prevent the development or
arrest the progression of CVD into overt heart failure and mortality.

The obesity epidemic is directly and indirectly associated with millions of deaths
every year [10].Obesity is a conditionwherein excess fat gets deposited under the skin
and in other major organs of the body. This increased adiposity further increases risk
of development of diabetes, hypertension, vascular diseases and other independent
risk factors of cardiovascular disease [11]. Heart failure is a major cause of death in
obese patients and the millions of individuals becoming obese every year are at risk
of developing some form of heart disease [12].

Family genetics, gene abnormalities, diet, level of physical activity and other
environmental factors are considered to be the major risk factors of obesity [13–16].
Genetic predisposition, together with diet plays a significant role in the development
of obesity [17]. The development and increased availability of energy dense foods
has certainly boosted the incidence of obesity around the globe (Fig. 15.1) [18].
High caloric intake accompanied by low physical activity results in increasing lipids
stored as fat. After a certain point, cells that store fat (adipocytes) cannot keep up
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Fig. 15.1 Evolution of
obesity. From: https://www.
flickr.com/photos/christoph
erdombres/7350782488

with the demand and become dysfunctional [19]. Healthy, smaller adipocytes secrete
cardioprotective beneficial adipokines such as adiponectin. In contrast, dysfunction,
enlarged adipocytes secrete pro-inflammatory adipokines such as leptin [20]. This
adipocyte dysfunction leads to high levels of circulating lipids which subsequently
results in increased uptake of lipids by other organs. Increased lipid deposition
contributes to cellular stresses resulting in dysfunction of the organ [21]. The heart
is one of the target organs in hyperlipdemic situations and the resulting stress causes
cardiac dysfunction that culminates in heart failure [22].

Earlier forms of therapies were all derived from natural products. Different types
of plants were used to treat all human ailments [23, 24]. Many of these medications
were either eaten as the food by itself or mixed in combination with other foods [25,
26]. Nutraceuticals is the modern term for compounds that are naturally derived that,
together with nutrition, delivers medicinal effects [27]. By this definition, resveratrol
(RES) can be considered a nutraceutical as it is a polyphenol that is mainly found
in grapes and other berries. Over the years, research has shown that RES has
strong medicinal properties against a variety of human ailments including cancer,
cardiovascular diseases, diabetes and some types of infections [28]. Cardioprotective
properties of RES have been well documented and has recently also been shown to
be beneficial in human clinical trials [29, 30].

Obesity

Obesity is a condition wherein excess fat accumulates in the body. A way to assess
obesity is to classify individuals using the bodymass index (BMI)which is calculated
by dividing body weight by the square of that individual’s height. For adults the
classification of obesity states is as follows (Table 15.1).

However, BMI is not a direct measure of fat stores and hence additional measure-
ments are required to calculate the levels of body fat [31]. Waist circumference, skin
fold test, waist to hip ratio calculation and modern techniques such as whole-body

https://www.flickr.com/photos/christopherdombres/7350782488
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Table 15.1 Classification
based on BMI

BMI Classification

≤24.9 kg/m2 Normal

25−29.9 kg/m2 Overweight

≥30 kg/m2 Obese

≥39 kg/m2 Severely obese

air displacement plethysmography (ADP), underwater weighing, dual energy X-
ray absorptiometry (DXA) and even ultrasound techniques can be used to accurately
determine body fat composition [32–36]. A small percentage of the obese population
are completely healthy despite being obese and are often termed as being “healthy-
obese” [37]. However, in most cases obesity is accompanied by several comorbidi-
ties and obese individuals experience poor quality of life and suffer psychologically
from social stigma [38, 39]. Obesity is a manageable condition and in some cases
completely reversible with life style changes including increasing physical activity,
adopting a caloric restricted diet, taking medications and in some cases surgery [40–
42]. Irrespective of the status of national development (underdeveloped, developing
or developed), the growing incidence of obesity and increased dependence on health
care systems has become a major worldwide concern [43–47].

World Statistics

At least 2.8 million deaths that occur every year are associated with being obese
or overweight. The prevalence of obesity worldwide has almost tripled since 1975
and as of 2016, a total of more than 1.9 billion adults were considered obese or
overweight. Shockingly, more people reside in countries where obesity causes more
deaths than being underweight [48]. The prevalence of obesity was highest in the
Americas (approximately 62% overweight and 26% obese) and lowest in South East
Asia (approximately 14%overweight and 3%obese).Women are reported to bemore
prone to obesity when compared to men around the world [48, 49]. In some African
and Mediterranean countries, the prevalence of obesity in women is almost double
that of men. Income is also correlated with the increased prevalence of obesity [18].

Canadian Statistics

According to the latest data published by Statistics Canada, roughly 1 in 4 Canadian
adults (27%) are obese [50]. Statistics Canada data from 2018 shows that 69.4% of
men and 56.7% of women 18 years and older are overweight or obese [51]. These
estimates are higher than from the self-reported data in 2009 which showed 59.2%
of Canadian men and 43.9% of women in the overweight or obese category [52].
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The number of obese children and youth is also increasing with 30% between the
ages of 5 and 17 being obese or overweight [53–55]. The geographic distribution
of obesity varies within the country. The lowest reported prevalence being 22% in
British Columbia, while the highest in New Brunswick along with Newfoundland
and Labrador where prevalence is as high as 38% [50]. Obesity is also seen more
commonly in certain ethnic populations [56, 57].

Obesity in Children

Childhood obesity is anothermajor area of concern as it possesses several health risks
including cardiovascular disease and early mortality in their adulthood [54, 58, 59].
Based on data from Statistics Canada in 2018, 23.7% of children between the ages
12–17 years are overweight or obese [51]. Obesity in children and youth is measured
using a different set of BMI cut-offs. According to the International Obesity Task
Force (IOTF), a BMI greater than 21.22 and 26.02 kg/m2 for 12 year old boys and
girls respectively, is categorized as obese. There are other systems of BMI categories
so the estimates of childhood obesity may vary accordingly. For example, in the 2004
Canadian Community Health Survey based on the IOTF system, obesity rates were
reported to be 8.2% among children and youth (2–17 years). However, based on the
Centers for Disease Control system, the estimate increased to 12.7%, while based
on the WHO system it was estimated to be 12.5% [60].

Health Costs

Obesity is associated with a number of co-morbidities. The risk of type 2 diabetes,
hypertension, cardiovascular diseases and cancers increases significantly with being
obese. Due to social stigma around obese individuals, a number of psychological
conditions are also prevalent among the obese [61, 62]. Premature mortality rates
are also reported to increase alongside the severity of obesity [10]. All these factors
contribute to an increased life time dependence on the health care system by these
individuals when compared to the non-obese. This directly results in higher than
normal health expenditure per obese individual and puts a burden on the health care
system. Estimates based on 2008 data put health care costs related to obesity between
$4.6 billion to $7.1 billion per year [63]. These cost figures show how important it
is to ramp up the awareness and fight against obesity, especially among those who
are in the higher risk categories [64].

Overall, the increasing prevalence of obesity is a major global health concern and
needs immediate attention to protect future generations. Race, sex, income and other
socioeconomic factors have been seen to be associated with increased risk for obesity
[65]. Childhood obesity is also increasing which is particularly alarming given that
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the risk of obesity increases with age. Childhood obesity also results in early onset
of comorbidities such as diabetes, hypertension and reduced life expectancy [66].

Pathology of Obesity

Adiposity/obesity and Adipose Dysfunction

Obesity is a condition that develops due to excess fat deposition in the body overtime.
Generally, excess energy in the body is stored as fat. Accordingly, the amount of
fat stored is the difference between food (energy) intake and energy expenditure
(Fig. 15.2).

Human body stores excess circulating lipids in adipocytes [67, 68]. These stored
fats are kept as a reserve energy bank that is used during a state of fasting [69].
Adipocytes are normally an integral part of the human body and are required for
normal physiology. However, when circulating lipids are chronically higher than
normal, the amount of fat deposits also increases. Overtime, the increased adiposity
results in pathological changes of obesity [70]. There aremany factors such as energy
dense diet, physical inactivity, gene mutations and/or other pathophysiological
conditions that contribute to increased circulating lipids [71, 72].

Adiposity could be increased in two different ways, either by increasing the
number (hyperplasia) or the size (hypertrophy) of adipocytes [73, 74]. The first is
considered to be physiological; while the second, wherein the adipocyte enlarges, is
considered pathological [75]. Earlier, adipose tissues were considered as just a store
of fat. However, later it was discovered that adipose tissues are also an endocrine
organ and adipocytes secrete hormones (adiponectin, leptin and resistin), cytokines
(TNF-α, IL-6) and proteins (cholesteryl ester treansfer protein, angiotensin II, plas-
minogen activator inhibitor 1) involved in the metabolism and functions of the liver,
muscles, vasculature, brain and other organs of the body [76]. Cytokine secre-
tions from adipocytes are generally known as adipokines [77]. Some adipokines
are beneficial while others cause unhealthy effects on biological functions [20]. In
normal or healthy conditions, adipocytes secrete more adipokines which are bene-
ficial, while in pathophysiological conditions where adipocyte dysfunction occurs,
the balance will be shifted to an increased release of detrimental adipokines [75,
77]. The origin of adipocyte dysfunction is mainly associated to the physiological
demands of storing very high levels of fat. Resident macrophages are also present
among the adipocytes and are involved in fat storage and secretion of cytokines. The

Fig. 15.2 Energy balance
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adipocytes and macrophages are highly involved in the genesis of chronic inflam-
mation in the adipose tissue and release of pro-inflammatory factors into the blood
[78]. Consequently, there is also increased lipolysis and release of free fatty acids
into circulation. Accordingly, adipose tissue is considered to be the major source
of the pathophysiological effects in obesity [19, 79]. This also makes adipocytes a
potential drug target to ameliorate the metabolic disarray in obese conditions. To
some extent, targeting adipocyte dysfunction has shown promise in preventing or
improving metabolic imbalances in obesity [80].

Obesity and Cardiovascular Disease

According to seminal Framingham Heart Study, the risk of developing heart failure
in obese individuals was 2 times that of normal weight subjects [81]. It has been
found that 32−49%of heart failure patients are considered obese; furthermore, obese
patients develop heart failure up to 10 years earlier than their normal BMI counter-
parts [82]. Cardiovascular complications are one of the major contributors to poor
health and lower life expectancy among obese populations [83, 84]. Obesity, espe-
cially abdominal obesity, is an independent risk factor for CVD [85, 86]. Higher BMI
is directly associated with adipocyte dysfunction, increased release of adipokines,
insulin resistance, hypertension, increased inflammation and oxidative stress that
promotes the development of cardiovascular disease [87]. Although not unanimously
accepted, the ‘obese paradox’ theory claims that obese individuals have a better prog-
nosis to CVD when compared to normal weight individuals [82]. A possible expla-
nation for this paradoxical theory is that the BMI measurements are insufficient to
accurately assess the state of obesity and adipocyte dysfunction in an individual
[88]. Additional measurements such as waist circumference and waist to hip ratio
would better classify the subjects based on the levels of fat deposition. A study on
theMonza population has shown that with every 1 kg/m2 increase in BMI, the risk of
developing left ventricular (LV) hypertrophy increases by 5.1%, and for every 1 cm
increase in waist circumference the risk increase by 2.5% [89]. Visceral adiposity
and subcutaneous fat deposits contribute to increased waist circumference which has
been found to be an independent risk factor for developing heart disease [90]. For
increased risk of CVD, theWHO’s cut-off values for waist circumference are 102 cm
in men and 88 cm in women [91].

Obesity exerts stress on the heart by increasing the blood volume and cardiac
output simultaneously, placing a larger workload on the heart [10]. This results in
adverse changes to hemodynamics, cardiovascular structure and function. Obesity
increases total body area and volume by additional fat tissue and the changes in
cardiovascular system are aimed at maintaining sufficient blood supply to the whole
body [10]. Adipose tissue contains a large volume of fluid which is present in the
interstitial spaces of the tissue. The interstitial space adds up to approximately 10%
of the total adipose tissue weight. Obesity also increases lean body mass which
independently elevates cardiac output [92]. A combination of increase in lean and
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fat mass could account for a large increase in stroke volume and cardiac output. The
expansion in volume of blood increases the preload on the heart and shifts the Frank-
Starling curve to the left. A significant change in vascular structure and function
is also observed in obesity. Obesity causes arterial stiffness [93], increased intima-
media thickness [94, 95] and increased calcification [96]. All these vascular changes
are also independent predictors of CVD. Further, these vascular changes may also
contribute to the development of hypertension in obese individuals [97].

These changes in hemodynamics increases wall tension and induces LV dilation
and hypertrophy [82]. Prolonged exposure to these stressful conditions reduces LV
wall compliance and then diastolic dysfunction ensues. Initial adaptations by the
LV help preserve LV systolic function in the early stages of cardiac remodeling.
Overtime, impairment in systolic function will develop and heart failure will be
initiated [98]. It was also found that the fatty heart, as a result of increased fat
deposits is more prone to cardiomyopathy [99]. Damage to heart muscles by fat
accumulation happens in two ways, metaplasia and lipotoxicity [100]. In metaplasia,
somecells (epithelial ormesenchymal) are replacedby fat cells, disrupting the cardiac
electroconduction. In lipotoxicity, free fatty acid accumulation in cardiomyocytes
induces cell death in the myocardium. In either case, damage to cells results in
myocardial weakening, resulting in the development of cardiomyopathy [10]. The
obesity associated increase in blood volume also induces left atrial enlargement,
which increases the risk of developing atrial fibrillation. Based on the findings from
WomenHealth Study, obesity was associated with increased risk for atrial fibrillation
[101]. Other types of arrhythmias and sudden cardiac death are also found at higher
rates in obese populations [82, 102]. Obesity and metabolic dysfunction increases
the risk of coronary artery disease. The incidence of coronary atherosclerosis is very
high in adult obesity and is a major risk factor for heart disease [103]. Obesity is
also directly linked to increased incidence of stroke. The INTESTROKE study has
found that waist to hip ratio was strongly associated with increased risk for stroke
[104]. Obstructive sleep apnea is another risk factor for hypertension and CVD [105].
Obesity is one of the major risk factors for obstructive sleep apnea, and in many sleep
apnea patients are undiagnosed which increases the risk of heart disease.

Adipose tissue is also an endocrine organ releasing a number of molecules into
the blood stream. TNF-α, IL-6, leptin, angiotensinogen, resistin and plasminogen
activator inhibitor-1 are released from adipose tissues and have direct or indirect
effect on promoting development or progression of heart disease [106]. A significant
proportion of the circulating concentrations of these molecules have originated from
adipose tissue. Most of these are mediators of the inflammatory response and may
be involved in progression of coronary artery diseases [107].

Indirect effect of obesity on cardiovascular pathology involves impairments of
kidney structure and function. Glomerular hyperfiltration, increased albumin loss,
glomerulosclerosis and progressive loss of kidney function are associated with
obesity-induced kidney damages [108]. Population studies, PREVEND [109] and
FraminghamHeart Study [110] have found direct correlation between kidney damage
and obesity.



15 Obesity and Cardiovascular Disease: Impact of Resveratrol as a Therapeutic 291

Lipids and Heart

Fatty acids are the primary energy source of the heart. In normal physiological condi-
tions, approximately 70% of energy is derived from the oxidation of fatty acids [111].
The remaining energy is derived from glucose, lactate and ketones. Generation of
ATP from fatty acid oxidation is a comparatively more oxygen demanding process
than generating ATP from glucose. The heart has the ability to switch to glucose as
the major energy source during oxygen deficient conditions such as ischemia, hyper-
tension and other pathological conditions [112, 113]. This allows the heart to adapt
to difficult conditions, preserve available oxygen and minimize the damage to the
tissue. Fetal hearts also depend more on glucose and lactate for energy, while adult
hearts shift to fatty acid oxidation tomeet their energy needs [112]. Diet, hepatic fatty
acid synthesis and lipolysis in adipose tissue are the major sources of lipid for the
heart. Heart tissues can use both non-esterified (free fatty acids) and esterified (bound
to lipoproteins) fatty acids. Circulating triglycerides undergo lipolysis mediated by
endothelium-bound lipoprotein lipase and are then internalized via membrane recep-
tors, transporters or simply by diffusion [114]. Internalized free fatty acids are then
converted to fatty acyl-CoAs and then either stored as acyl glycerides (mono, di or tri)
or transported to mitochondria for ATP generation [115]. Triglycerides stored intra-
cellularly are processed to free fatty acids by hormone sensitive lipase and adipose
triglyceride lipase [116].

Lipotoxicity

The balancing act of energy homeostasis is much more complex than the earlier
mentioned equation (Fig. 15.1). For example, there is a significant difference between
white adipose tissue (WAT) and brown adipose tissue (BAT). While both are fat
deposits, their physiological roles are different. WAT is associated with the genesis
of metabolic syndrome while, BAT contributes to thermogenesis [117]. Diet is the
major source of fatty acids (FA); it is also synthesized from other sources through
de novo lipogenesis [118]. Depending on physiologic demands FAs are released
into circulation from adipose tissue by lipolysis and will be used by other organs.
FAs can also be transported into the cells by different protein transport mechanisms
[115, 119]. These FAs are then used for a variety of cellular mechanisms involving
synthesis of membrane, signalingmolecules, post-translational protein modification,
transcriptional regulation and more importantly for energy production through beta
oxidation [120]. Normally, a balance is maintained between lipid uptake and oxida-
tion thereby preventing lipid accumulation. Metabolic disturbances often results in
increased lipid levels in the circulation. Higher circulating FAs in obesity and type 2
diabetes causes excess deposition of FAs in non-adipose tissues such as kidney, liver,
skeletal muscles and heart [121]. The excess lipid accumulating inside the cell may
cause cellular dysfunction through ER stress, mitochondrial dysfunction, oxidative
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stress and ultimately results in cell death [122]. This process of lipid induced cellular
damage and death is known as lipotoxicity [123–125].

Lipotoxicity in the Heart

The heart is one of the major organs affected by lipid accumulation [21]. Lipid accu-
mulation is also observed in cardiac pathologies wherein the myocardium reverts to
glucose as the primary source of energy [112]. Lipotoxic effects leads to cardiomy-
ocyte dysfunction, contractile abnormalities, cell death and pathogenesis of heart
failure [111, 126]. Cardiomyopathies observed in in the setting of type 2 diabetes
and obesity are often a result of lipotoxic damage to the myocardium [116]. Long
chain fatty acids like palmitate have been found to induce lipotoxicity in the heart
muscle cells when compared to short chain fatty acids [127, 128]. Some patholog-
ical cellular changes associated with lipid accumulation are ER stress, mitochondrial
dysfunction andoxidative stress. Increased ceramide accumulationhas beenobserved
as a contributor towards cell death in the heart [129]. Insulin is involved in regula-
tion of glucose metabolism, activation of survival pathways in ischemia and also
in intracellular Ca2+ handling. Lipotoxicity induces insulin resistance and thereby
causes cardiomyocyte dysfunction. Activation of protein kinase C (PKC), mitogen
activated protein kinases and reduced peroxisome proliferator-activated receptors
are also considered to be involved in the process of lipid accumulation and cellular
responses in the cell [21]. Lipid accumulation also induces contractile abnormalities
through the degeneration of myofibrils [130].

Resveratrol

RES is a phytoalexin compound produced by plants mainly in response to fungal
infections, UV radiation and other environmental stresses such as cold tempera-
tures [131]. RES is present in significant amounts in grapes, peanuts, soy beans,
pomegranates, mulberry and bilberry [132] and to a lesser extend in pine, eucalyptus
and spruce trees, and in a few flowering plants, such as Veratrum grandiflorum and
Veratrum formosanum [133, 134].

RES was discovered in the roots of white hellebore plants [135]. Later it was
also found in roots of Polyganum cuspidatum, a Japaneese knotweed which was
also called Ko-jo-kon and is the richest known source of RES. It was used in the
preparation of Japanese and Chinese herbal medicines against skin infections like
warts, dermatitis and athletes foot [136]. This was followed by reports on presence
of RES in eucalyptus and pine [137, 138]. In 1976 Langcake and Price reported the
presence of RES in grape vines for the first time [139]. During this period RES was
mainly investigated for its anti-fungal properties and used as a screening marker for
disease resistant grape cultivars [140, 141]. The first report linking RES to potential
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cardiovascular benefits was from a Japanese group which showed that RES adminis-
tration reduced triglyceride synthesis inmice [142]. Later in 1992,moderate redwine
consumption was linked to the reduced incidence of cardiovascular disease among
the French population; this theory is known as the ‘French Paradox’ [143]. At the
same time, Siemann and Creasy reported that RES might be one of the bioactive
ingredients in wine [144]. Further, Frankel et al. showed that the phenolic compo-
nent of red wine inhibited LDL oxidation which is a risk factor for atherogenesis
and thereby ischemic heart disease [145]. The association of RES to the French
Paradox generated a greater interest in RES research wherein either purified RES or
food containing significant amount of RES were tested on a wide range of research
models of human disease [131]. The highlights of RES research outcomes are its
beneficial effects against different types of cancers, cardiovascular diseases and also
against metabolic diseases such as diabetes and obesity [146–148].

Resveratrol Chemistry

RES is a stilbene derivative, produced in plants by stilbene synthase. Stilbene
synthase catalyze the synthesis of RES from one molecule of p-coumaroyl CoA and
three molecules of malonyl CoA. RES exists in two structural isomeric forms, cis-
and trans-RES (Fig. 15.3) (molecular weight: 228.24); both isomers are lipophilic
in nature [149]. RES has a melting point around 260 °C. It is insoluble in water but
soluble in ethanol and DMSO. The trans-RES isomer is relatively more stable as
compared to the cis-RES isomer; however, the trans form can get converted to the
cis for when exposed to heat or UV radiation [150]. The trans-RES in the powder
form is stable in normal atmosphere at room temperature and undergoes negligible
oxidation in these conditions. RES is susceptible to photolysis if exposed to direct
sunlight. Due to its structural similarity to the synthetic estrogen diethylstilbestrol,
RES is also considered to be a phytoestrogen [133].

Fig. 15.3 Cis-resveratrol (a) and trans-resveratrol (b). From: https://en.wikipedia.org/wiki/File:
Cis_and_trans_resveratrol_notext.svg

https://en.wikipedia.org/wiki/File:Cis_and_trans_resveratrol_notext.svg
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Cardioprotection with Resveratrol

RES is present at high amounts in grape skins and subsequently in red wines
(Fig. 15.4). This led to the ‘French Paradox’ theory in which lower incidence
of cardiovascular disease in the French population was associated with a higher
consumption of red wine [150]. Subsequent research confirmed the cardioprotective
properties of RES [151]. RES was reported to exhibit cardioprotective properties
by reducing cardiac abnormalities in hypertension, ischemic heart disease, obesity,
diabetes and cardiomyopathies; RES has been shown to improve heart and blood
vessel structure and function in animal models of cardiovascular disease [30, 152,
153]. Major cellular mechanisms that mediate effects of RES range from improving
cardiovascular risk factors such as hyperlipidemia and insulin resistance to reducing
oxidative stress and inflammation. Among the many molecules identified as RES
targets in the heart, AMPK, SIRT1 and nitric oxide (NO) aremost frequently reported
[152]. RES is found to enhance AMPK activity and thereby its downstream signaling
pathwaywhich indirectly results in increasedNOproduction [154, 155]. AMPK acti-
vation could also be involved inRES-mediated decrease in fibrosis [156]. An increase
in SIRT1 expression is associated with RES administration. SIRT1 could improve
cardiac function by increasing SERCA2A expression and thereby improving Ca2+

handling. SIRT1 could also induce AMPK activation and improve mitochondrial
function [157]. Anti-inflammatory and antioxidant activities were the first properties
to be identified and associated to health benefits of RES. RES inhibits NFkB acti-
vation and translocation into the nucleus, preventing the transcription of a variety of
genes detrimental to the cell [158].RESalso helps preservemajor antioxidant enzyme
activities such as superoxide dismutase, catalase, and glutathione peroxidase, while
reducing NADPH oxidase activity. Nuclear factor erythroid 2-related factor 2 (Nrf2)
is involved in maintaining an antioxidant environment inside the cells and RES is

Fig. 15.4 Major sources of
resveratrol: grapes and red
wine. From: https://www.pub
licdomainfiles.com/show_f
ile.php?id=13534675212806
(wine glass). https://www.
publicdomainpictures.net/en/
view-image.php?image=299
825&picture=grapesvintage-
illustration (grapes)

https://www.publicdomainfiles.com/show_file.php?id=13534675212806
https://www.publicdomainpictures.net/en/view-image.php?image=299825&amp;picture=grapesvintage-illustration
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found to promoteNrf2 activation [159].Modulation of L-type calcium channel is also
a potential mechanism by which RES could improve Ca2+ irregularities in cardiac
cells [160].

Resveratrol in Obesity-Induced Heart Disease

There is sufficient evidence showing that RES improves metabolic abnormalities in
animals [161].However, there are only a few studies that have explored the cardiopro-
tective property of RES in obesity. The first study showed that RES administration in
rats for 2 weeks reduced both infarct size and cardiac apoptosis in ex-vivo ischemic-
reperfused hearts [162]. In another studyRESprevented an increase in blood pressure
and preserved vascular function in an animal model of diet-induced obesity, the high
fat fed rats [163]. Louis et al. reported that RES reversed diastolic heart dysfunction
in high fat fed rats [164] and Qin et al. showed a significant decrease in cardiac
hypertrophy and improvement in diastolic heart function in obese mice exhibiting
characteristics of early stage type II diabetes [165]. Cardiomyopathy is the major
form of heart disease affecting the obese and overweight population. Yingjie et al.
showed that RES attenuated high fat diet-induced cardiomyopathy in a mouse model
[166]. This effect was associated with upregulation of estrogen receptor alpha which
has been proposed to mediate RES actions in vivo. As discussed earlier, obesity
pathologically affects vascular function. NO is an endogenous vasodilator and an
established target of RES [167]. Huang et al. reported that RES treatment mitigated
vascular dysfunction in high fat fedmice through upregulating eNOS/NOmechanism
[168].

To date, no study has examined the impact of resveratrol in preventing obesity
induced deterioration of heart function in humans. However, there are a few clin-
ical studies which have examined the potential of resveratrol in reducing obesity. A
recent clinical trial reported significant reductions in weight loss in obese patients
who were on a combination of resveratrol and orlistat (a standard anti-obesity medi-
cation) [169]. Similarly a combination of resveratrol and hesperetin (a bioactive
compound) was reported to reduce glucose levels and improved vascular function
in overweight and obese patients [170]. A combination of epigallocatechin-3-gallate
(a bioactive compound) and resveratrol was also shown to increase mitochondrial
capacity and stimulate fat oxidation in overweight and obese patients [171]. Earlier
studies reported that resveratrol supplementation reduced glucose, triglycerides and
markers of inflammation in obese men [172], improved cerebral blood flow in obese
subjects [173], and reduced intestinal and hepatic lipoprotein production in obese
individuals with mild hypertriglyceridemia [174].

Overall, there is some evidence that RES improves heart structure and function
in animal models of obesity. However, there is no information on impact of RES
on heart structure and function in humans with obesity, therefore future studies
should examine this aspect. Given that diet and genetic predisposition are major
contributors towards the development of obesity, future research is necessary to
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examine if RES can protect the human heart in the settings of diet induced obesity.
It is also important to know if RES can improve diastolic heart dysfunction in obese
animals and thereby prevent the progression to heart failure. Finally, more research
exploring cellular mechanisms involved in the cardioprotective action of RES is
needed. Given the success of RES in combination with standard medication or other
bioactive compounds in improving metabolic parameters in overweight and obese
subjects, it would be interesting to examine the potential of combination therapy in
preventing heart dysfunction in these subjects.
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Role of Flavonoids in Obesity Induced
Cardiovascular Dysfunction
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Abstract Obesity is found to be a contributing risk factor for Cardiovascular
Dysfunction (CVD), coronary heart disease (CHD) and heart failure (HF). Obesity
is found to be linked to the release of several proinflammatory mediators. The fluctu-
ation in the levels of these mediators and adipocytokines released by the adipocytes
further leads to cardiovascular complications. The increase in the risk of CVD and
mortality caused by obesity is due to increasing levels of atherosclerotic plaques
in the arteries and blood vessels leading to the heart. The current available treat-
ment strategies leads to several unwanted side effects for the patient which leads
to a decreased quality of life. Flavonoids are polyphenolic compounds which occur
naturally in nature. Several clinical and preclinical studies have demonstrated that
flavonoids are beneficial in decreasing the cardiovascular risks presented by obesity.
Themechanismof action primarily depends on the antioxidant and anti-inflammatory
actions of flavonoids. In view of these observations, the intake of foods containing
flavonoids have enormous potential in preventing obesity induced cardio-metabolic
diseases. However, randomized and placebo-controlled clinical trials are needed to
determine the long-term safety and efficacy of different flavonoids. The focus of
this chapter is to highlight the cost-effective health benefits of flavonoid-rich-foods
and dietary supplements containing flavonoids for the prevention and cure of obesity
linked cardiovascular diseases (CVDs).
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Abbreviations

CVDs Cardiovascular diseases
CHD Congenital heart disease
LDL Low density lipoproteins
HDL High density lipoproteins
BMI Body mass index
TNF-α Tumor necrosis factor alpha
IL-1 Interleukin-1
IL-6 Interleukin-6
SAA Serum amyloid A
MI Myocardial infarction

Introduction

Association Between the Occurrence of Atherosclerosis
and Cardiovascular Diseases

Cardiovascular diseases (CVDs) are an assemblage of different pathophysiological
conditions related to the heart and its connecting vessels. These conditions cause
defects in both the structures and functionality of the heart. The damage induced
by these diseases may be temporary or permanent and, in some cases, may even
lead to death. The heart may experience medical conditions such as arrythmias,
myocardial infarction, flutter and fibrillation. These act as a major causative factor
for hypoxia and ischemia in the body. The most prevalent cardiovascular disorder is
hypertensionor highbloodpressure.Reports suggest that racial disparities are amajor
risk factor for hypertension. It has been elucidated that the prevalence of hypertension
is higher in blacks (48.4%) and relatively lower in whites (28.1%) [1]. Prevalence
studies of hypertension conducted around the world revealed that economically-
developed countries have a prevalence rate ranging between 20 and 50%. Rural India
has the smallest fraction of its population suffering from cardiovascular diseases with
prevalence in women being 6.8% and 3.4% in men [2]. Studies carried out in India in
2014, found significant differences between the disease rates between rural and urban
India. The overall cardiovascular diseases and co-morbidities in India were 29.8%,
which ranged from 27.6% in rural parts to 33.8% in urban areas [3]. This difference
can be attributed to the difference in lifestyles led by the people in these regions. The
urban population of India has shifted towards a more sedentary lifestyle, spending
long hours either at home or in the office. Harmful dietary practices have been
adapted as an influence of rapid urbanization and the western culture. Increases in
salt consumption through the use of packaged foods is also a significant contributing
factor to the higher prevalence of hypertension and other CVDs in urban areas [4].
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Cardiovascular diseases (CVDs) have posed immense health and economic
burdens. Among the CVDs, congenital heart disease (CHD) is the leading cause of
death in theUS, causing deaths in 43.8%CVDpatients. This is followed by increased
mortality caused by stroke, high blood pressure and arterial diseases. CVDs were
responsible for deaths of 17.9 million people in 2016, among who, 85% of deaths
were caused by a heart attack or stroke [5].

The current therapeutic strategies for management of CVDs include several phar-
macological and non-pharmacological approaches. The non-pharmacological strate-
gies comprise of interventions in the daily lives of patients. This can be done through
smoking cessation therapies, increase in physical activity, dietary changes with the
attempt to reduce excess weight gain, and other lifestyle modifications. Although
these approaches may not bring about marked effects, they are necessary in addition
to the various pharmacological therapies. Government initiatives, including media
campaigns, are launched to target youth and highlight the importance of smoking
cessation as a measure to reduce the risk factors associated with CVDs. Incorpora-
tion of a low-calorie diet in obese patients suffering from hypertension is especially
effective in decreasing their weight and blood pressure.

In addition to lifestyle modifications, physicians employ medications in order to
increase the effectiveness and speed of therapy. These pharmacological approaches
includes drugs of various classes which counteract CVDs through different mech-
anisms. Antiplatelet agents, including aspirin, remains the drug of choice for the
immediate treatment following a heart attack. Antithrombotic agents such as hirudin
and bivalirudin act as direct thrombin IIa inhibitors while rivaroxaban acts as an oral
direct Xa inhibitor used for the treatment of thrombocytopenia and related disor-
ders. Lipid lowering agents targeted at lowering low density lipoproteins (LDL) or
increasing high density lipoproteins (HDL) levels are often employed as an adju-
vant therapy [6]. In cases where medications are not effective in treating the CVD,
surgical interventions or use of external devices is required. Common examples of
these interventional techniques include bypass surgery or stents.

In response to this, research and clinical trials are being conducted to use
flavonoids such as quercetin, naringenin, apigenin, eriodyctiol and myricetin in our
diet to counter themanifestation of CVDs [7]. Several studies have shown that dietary
flavonoids improve metabolic function, reduce oxidative stress, improve cardiores-
piratory and mental health and may extend lifespan in humans. Preclinical studies
on quercetin and its derivatives (rutin, hyperoside, quercitrin) has shown to cause the
uncoupling of oxidative phosphorylation in rat heart mitochondria at minute concen-
trations. This flavonoid-induced partial uncoupling activity of oxidative phosphory-
lation in mitochondria, without affecting the respiration rate, could have a cardiopro-
tective effect [8]. Results from epidemiological studies suggest that regular intake of
fruit and vegetables containing flavonoids improve endothelial function and reduce
stiffening of arteries caused by atherosclerosis, prevent blood platelet aggregation
and consequently reduce the risk of coronary artery disease and stroke [9].

It is now believed that oxidative stress in the mitochondria plays a crucial
role in the overproduction of reactive oxygen species (ROS) and nitrogen species
(NOS) which are mainly formed by NADPH oxidase. The oxidative stress state can
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be reversed by both endogenous antioxidants (glutathione, l-cysteine, superoxide
dismutase, catalase), and exogenous micronutrients (vitamin C and E, Zn and Cu),
and flavonoids, polyphenolic compounds, and carotenoids.

The incidence of obesity is on the rise in most developed and developing nations
of the world. Especially pertaining to increased stress, improper work life balance,
sedentary lifestyle, increased consumption of packaged foods or food rich in satu-
rated fats. Obesity is a major risk factor for CVDs and results in high rates of
CVD-relatedmortality. The current available therapies, though effective, have several
deleterious effects on health and decrease quality of life for the patient. Previously
conducted studies have demonstrated an existing link between flavonoids and subse-
quent decrease in obesity. The dietary intervention of flavonoids in the reduction
of obesity and decrease the overall risk of CVD is primarily attributed to the anti-
inflammatory and antioxidant effects of flavonoids, both ofwhich aremajor pathways
for obesity-induced CVDs. This new area of study opens doors for further investi-
gation and research in incorporating flavonoids as an economical, safe and effective
option in the treatment strategies for obesity-induced CVDs. Several preclinical trials
cited in the chapter account for the positive effects of flavonoids on obesity induced
CVDs. However, further clinical trials need to be conducted to assess their efficacy
and commercial use.

Link Between Obesity and CVDs

Obesity-associated disorders are a growing concern all around the world. Obesity is
a primary cause of hyperlipidemia, dyslipidemia, insulin resistance and diabetes.
Obesity is measured with the use of Body Mass Index (BMI). BMI values of
30.0 kg/m2 and higher classify as obesity [10]. The African-American youth popu-
lation has been found to have the highest rates of obesity [11]. The association of
obesity with CVD related risk and mortality remains controversial. Not all individ-
uals suffering from obesity experience cardiovascular complications. Similarly, it is
not necessary that individuals with CVDs are obese. However, there appears to be
a significant association between occurrence of obesity and increased risk of CVDs
[12]. Studies have found that overweight and obese individuals showed a greater
risk of developing heart failures when compared to normal weighted people. The
risk showed an increase with a unit increase in BMI [13]. The central deposition of
adipose tissues in obese individuals is associated with elevated levels of fibrinogen,
C-reactive protein and several proinflammatory mediators [14]. These play a major
role in the development of atherosclerotic plaques and deposits in the walls of the
arteries and blood vessels leading to the heart. This leads to an increased risk of high
blood pressure. Persistent hypertension decreases life expectancy while increasing
the risk of stroke and myocardial infarction (MI).
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Role of Inflammation and Atherosclerosis
in Obesity-Induced CVDs

Obesity was found to be associated with hypertriglyceridemia-increased level of
low-density lipoprotein (LDL) and low levels of high-density lipoproteins (HDL) in
individuals [15]. Inflammation is a primary underlying mechanism that links obesity
with disorders of the cardiovascular system. Adipose tissue is made up of adipocytes
which promote metabolic homeostasis in normal individuals. Increased number and
enlargement of adipocytes alters this homeostasis, resulting in abnormal levels of
metabolites, such as lipids, fatty acids and cytokines (Fig. 16.1) [16]. The major
contributors to obesity-induced inflammation are the adipocytokines produced by
the adipocytes. The most abundant among these are adiponectin and leptin. Resistin
and visafatin are also produced by the adipocytes in significant amounts [17]. This
leads to activation of monocytes and macrophages which along with adipocytes
produce several inflammatory factors such as leptin, tumor necrosis factor alpha
(TNF-α), interleukin-6 (IL-6), interleukin-1 (IL-1), endothelin, serum amyloid A
(SAA) and angiotensinogen. The accumulation of macrophages progresses to local
inflammation. The amount of proinflammatory factors produced by the adipose tissue
also increases as BMI increases [18].

Obesity is attributed to a chronic inflammatory response which is caused by the
abnormal upregulation of cytokines. Acute phase proteins have also emerged as

Fig. 16.1 Diagrammatic representation of obesity, adipocytes secreted bioactive substances, and
influence of dietary flavonoids in the reduction of cardiovascular diseases
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useful biomarkers for obesity induced CVD. These acute phase proteins give rise to
myocardial fibrosis which further leads to both systolic and diastolic heart failure.

The pathological role of various adipocytokines in the occurrence of obesity-
induced CVDs is described below.

Adiponectin

Adiponectin is an important mediator in the suppression of inflammation and regu-
lation of insulin resistance. It demonstrates inhibitory effects on specific molecules
including adhesion molecules which lead to atherogenic phenomenon. Individuals
suffering from obesity have shown to express low levels of adiponectin. There
is a marked decrease in blood serum levels of adiponectin in individuals with
visceral obesity, insulin resistance and related disorders. An inverse relation has
been observed between adiponectin levels and insulin resistance. Visceral obesity
results in an increase in the levels of inflammatory mediators such as TNF-α and
IL-1. A combination of these leads to vascular changes which adds to the stress on
the heart contributing to metabolic syndrome [19]. Adiponectin is widely known to
exert anti-inflammatory effects in atherosclerotic plaques as a virtue of suppression
of proinflammatory cytokines such as IL-6, TNF-α and other inflammatory factors
[20, 21]. The physiological levels of adiponectin possess the ability to inhibit the
activity and expression of adhesion molecules including E-selectins, intracellular
adhesion molecule-1, vascular cellular adhesion molecule. This phenomenon results
in an overall decrease in the adherence of monocytes to the arterial endothelium
[22]. In vitro studies have demonstrated that adiponectin exhibits a dose dependent
suppression of the TNF-α–induced surface expression of E-selectin, Intercellular
Adhesion Molecule 1 (ICAM-1), and vascular cell adhesion molecule 1

(VCAM-1) [23]. The modification of macrophages into foam cells is carried out
by adiponectin. It also induces vasodilation by regulation of endothelial nitric oxide
synthase which stimulates the production of nitric oxide [24]. Insulin resistance in
individuals also expresses low levels of adiponectin. In vivo studies have demon-
strated that adiponectin enhances tissue insulin sensitivity by alleviating triglyceride
content attributable to the enhanced fatty acid oxidation and energy consumption in
the liver and muscle [25].

Leptin

Leptin plays a major role in modulating the responses of the immune system and
inflammation cascading. It acts on the hypothalamus and regulates food intake levels
thereby inducing metabolic effects and regulating energy homeostasis [26]. The
presence of infectious and inflammatory stimuli such as cytokines and lipopolysac-
charides cause a marked increase in leptin levels in the body [27]. This observation



16 Role of Flavonoids in Obesity Induced Cardiovascular Dysfunction 313

suggests that leptin is an important mediator of inflammation and immune responses.
However, Leptin is a product of the ob gene which is an adipose specific gene. Mice
which are devoid of the leptin coding gene due to autosomal recessive mutation,
are designated as ob/ob mice. They are commonly found to be obese and diabetic.
When these mice are subjected to regular administration of leptin doses they exhibit
reduced food intake, elevated rates of metabolism, and significant weight loss [28].
Leptin exerts its activity through the central nervous system.

Chemistry of Flavonoids

Flavonoids are polyphenols occurring in nature as secondary plant metabolites. They
comprise benzo-γ-pyran rings with phenol and pyran groups making up the primary
segments (Fig. 16.2).

Their synthesis arises from aromatic amino acid precursors such as phenylala-
nine, tyrosine, malonate through shikimic acid pathway [29, 30]. It bases the chem-
istry on the 15-carbon skeleton comprising C6−C3−C6 units. The primary structure
comprises two benzene rings, A and B, which are linked by a heterocyclic pyran
ring-C [31]. This structure undergoes substitutions by diverse groups such as hydrox-
ylation, methylation, and glycosylation to produce distinct subgroups [32]. Based on
the specific substitutions and linkages, there are five major classes of flavonoids.
Table 16.1 depicts specific illustrations of these major flavonoid classes along with
their dietary sources and primary structures.

Fig. 16.2 Illustrates the structures and the dietary sources of the flavonoids
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Table 16.1 Dietary sources and chemical structures of major flavonoid classes [33, 34]

Flavonoid Class Examples Food sources Basic structure Reference

Flavones Luteolin
Apigenin
Tangeritin
Chrysin

Parsley, thyme,
celery, vegetable
oils

[35]

Flavanones Naringenin
Hesperidin
Eriodictyol
Butin
Sylibin

Citrus fruits,
grapefruit, tomato,
orange, lemon

[36, 37]

Isoflavones Daidzein
Genistein
Glycitin

Soybeans, fava
beans, psoralea,
legumes

[38]

Anthocyanins Cyanidin
Delphinidin
Pelargonidin
Peonidin
Malvidin
Petunidin

Blackcurrant,
strawberry,
raspberry,
blueberry, cherry,
grapes, apple,
peach, plum

[32]

Flavonols Quercetin
Kaempferol
Myricetin
Rhamnetin
Galangin

Apple, potato,
celery, eggplant,
red wine, walnuts,
almonds raw
spinach, cocoa

[39]

Flavones

These types of flavonoids include a 3-carbon unsaturated group and have a double
bond between C2 and C3. The backbone has a 2-phenylchromen-2-one structure
[35]. In plants, they conjugate as 7-O-glycosides [40]. Widely known flavones are
apigenin, luteolin, etc. The most prevalent origins of flavones are parsley, thyme,
celery. Polymethoxylated flavones are in the peels and tissues of citrus fruits [35].
In an investigation directed by W. Gong and J. Wu, flavones present in Scutellaria
baicalensis, were found helpful in the management of nicotine-induced cell prolif-
eration and lung cancer [41]. This brought to the revelation of alternative benefits of
flavones, in the management of cardiovascular diseases.
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Flavanones

Flavanones possess antioxidant and radical scavenging activities [42]. The major
flavanone aglycones are hesperidin, naringenin, and eriodyctiol. Naringenin is often
detected in grapefruit and grapefruit juice [37]. It has been learned for its role in
the treatment of liver diseases because of the buildup of oxidative stress [43]. Citrus
fruits are used for their antioxidant properties. This is because of the rich content of
flavanones present in these fruits [36]. Certain studies established that the antioxidant
potential of flavanones results from their planar character [44].

Isoflavones

Isoflavones are a class of phytoestrogens. These are plant-derived compounds that
show estrogenic activity. This class of flavonoids has a phenyl group substituted on
a position meta to the oxygen atom. Of all available phytoestrogens, soy isoflavones
are used in the prevention and management of cardiovascular diseases. These show
the visible effects of arterial vasodilation, inhibition of atherosclerosis, and lowering
levels of serum cholesterol. These are effective in the treatment of atherosclerosis,
which is by the character of their antioxidant effects. On smooth muscle cells, these
compounds show antiproliferative and antimigratory effects along with effects on
thrombus formation [45]. Major isoflavones available from soy protein are daidzein,
genistein, and glycitin [38]. Certain investigations have confirmed the contribution
of Isoflavone in the diminishing of blood pressure [46].

Anthocyanins

Anthocyanins form the principal part of many pigments found in flower petals,
fruits, vegetables, grains, etc. They exist in plants in glycosidic forms called antho-
cyanins [32]. Structural differences, particularly, the difference in the number of
hydroxyl groups present, methylation and glucosylation and the distribution of posi-
tive charge can induce color variations in anthocyanins [47]. Cyanidin, Delphinidin,
Malvidin etc. are the most commonly used anthocyanins. Cell culture studies, animal
models and human trials that have been conducted proved that anthocyanins possess
anti-oxidative activity, contributing to the prevention of cardiac diseases [48].
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Flavonols

These flavonoids are also known as flavon-3-ols or catechins. In these compounds,
there is no double bond between C2 and C3. There is also an absence of C4 carbonyl
in ring C of the structure. The presence of gallic acid residues has been observed
in some Flavan-3-ols, which is attached to the C ring hydroxyl by an ester bond
[39]. They exist as two diastereomers—catechin and epicatechin [32]. Flavanols
present in cacao are found to have significant antihypertensive, anti-inflammatory and
antioxidant activities. Cocoa consumption links with reduced blood pressure, as
revealed by several studies on these compounds [49]. Tea, grapes, berries, apples,
red wine, etc. are some major sources of flavonols.

Dietary Flavonoids that Reduce Obesity
and Obesity-Induced CVDs

Luteolin

A trial was performed to assess the beneficial effects of luteolin on vascular dysfunc-
tion in a diet-induced obese mouse model (Table 16.2). Obesity was induced in
6 weeks old male mice using High fat-diet (60% kcal from fat) for 8 weeks and
then treated with luteolin (10 mg/kg/day). On the evaluation of blood cholesterol,
glucose, triglyceride levels and body weight it was determined that the animals
displayed elevated levels of metabolic indexes in HFD mice and luteolin helped
to reduce the increased weight and other metabolic changes. These findings can
be attributed to the restoration of endothelial nitric oxide levels, decrease in reac-
tive oxygen species and tumor necrosis factor levels and normalization of endothe-
lial nitric oxide synthase (eNOS) and SOD1 gene expression demonstrating both
anti-inflammatory and anti-oxidant properties [50].

Naringenin

Naringenin belongs to the class of citrus flavonoids which shows promising antiox-
idant properties. A clinical trial performed in rats sought to analyze the effect
of naringenin on metabolic parameters and cardiovascular structure and function
(Table 16.2). The rats were divided into 4 groups and each was fed with their
respective diets for a period of 16 weeks and two of the groups were supplemented
with naringenin 100 mg/kg/day. Analysis of both cardiovascular and metabolic
criteria in control and test groups concluded in providing better insight into the
multiple mechanisms of its cardio-protective activity. Naringenin showed antihy-
pertensive, lipid-lowering and insulin-sensitizing properties in high-fat diet-fed rats.
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There are various possiblemechanisms contributing to these properties like the reduc-
tion of oxidative stress and reduced inflammatory cell infiltration. It improved the
functioning of liver mitochondria by increased peroxisome proliferator-activated
receptor-γ expression and reduction of lipid peroxidation. The anti-hyperlipidemic
effect is achieved by lowering of plasma cholesterol levels and biosynthesis of choles-
terol. Further reduction in hepatic glycolysis and gluconeogenesis improves insulin
resistance which improves metabolic syndrome conditions [51].

Hesperidin

Citrus flavonoids have been proved to show significant effects in comorbidities
associated with metabolic disorders and hesperidin belongs to this category.

A trial was performed to understand the effect of hesperidin and its metabo-
lite hesperetin on cardiovascular functions in patients with metabolic syndrome
(Table 16.2). Adults with metabolic syndrome between 21 and 65 years of age were
called in for the trial. The participants were divided into two groups and were given
either hesperidin or the placebo for a 3-week period then after a 3-day washout
period they were shifted to the other treatment arm. Various metabolic parameters
and markers of cardiac and endothelial function were assessed after 3 weeks of
periods.

The analysis showed improvement in endothelial cell function and favorable
changes in both lipid profile and inflammation biomarkers that provide information
on the beneficial effects of hesperidin on metabolic disorders [52].

Genistein

Genistein is one of the major components of soy flavonoids and has been shown to
have various health benefits in cancer, cardiovascular andmetabolic disorders. A trial
that had 120 postmenopausal women between 49 and 67 years old was observed for a
period of 12monthswhere theywere randomly divided into two groupswhowere fed
with genistein (54 mg/day) and placebo besides a Mediterranean diet (Table 16.2).
Various parameters were observed namely inflammatory markers, insulin resistance,
blood pressure, BMI index and other metabolic markers. Genistein administration
in the given population showed improvement of both glucose and lipid metabolism
hence a direct effect on insulin resistance and cardiovascular function [53].
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Cyanidin

Cyanidin is the most common anthocyanin present in fruits and vegetables and is
said to have beneficial effects in cases of metabolic syndrome due to their antioxidant
properties. A trial consisting of 72 male rats where there were 6 experimental diets
for a period of 16 weeks (Table 16.2). Initially, for a period of 8 weeks, they are fed
with their respective diets and later for the next 8 weeks their diet was supplemented
with cyaniding-3-glucoside and queen garnet plum juice. After the 16-week trial
cardiovascular, histopathological, plasma and body measurements were taken for
analysis. Both cyanidin-3-glucoside and queen garnet plum juice showed reduced
body weight gain, fat mass, oxidative stress, plasma lipid levels and inflammatory
cell infiltration. It increased insulin sensitivity and thus exhibited positive effects in
cases of metabolic disorders [54].

Quercetin

Quercetin is a flavanol present inmultiple dietary sources like tea, spices, herbs, fruits
etc. and is said to have favorable anti-inflammatory properties. A studywas attempted
to analyze the effect of quercetin on abnormalities associated with metabolic disor-
ders in male rats (Table 16.2). In this study, 3 groups of rats containing both obese
and lean rats were randomly administered with quercetin either 2 mg/kg or 10 mg/kg
of body weight. For analysis blood pressure and blood plasma levels were observed.
This study concluded that chronic administration of quercetin helped in improving
the inflammatory status and other metabolic parameters [55].

Rutin

Rutin is a flavanol present abundantly in plants, buckwheat and passionflower. It is
a major component found in apples. It has been proved to show antioxidant, cyto-
protective, vasoprotective, anti-carcinogenic, neuroprotective and cardio-protective
activities. A studywas done to characterize the hepatic, cardiovascular andmetabolic
response to rutin in a rat model (Table 16.2). MaleWistar rats were randomly divided
into 6 experimental groups each containing 12 rats. Two groups were fed a high-
carbohydrate diet and two groups were fed a high-fat diet for either 8 weeks or
16 weeks. Two further groups one with carbohydrate and the other fat diet were
administered rutin (1.6 g/kg food) for the last 8 weeks of the 16-week period. The
8-week groups were used to study the change in the pathophysiology of the rats due
to the diet.

After the 16-week trial systolic blood pressure measurements, echocardiog-
raphy, vascular reactivity, erythrocyte reactive oxygen species production and plasma
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markers for oxidative stress were tested to analyze the effect of rutin. The study
concluded that rutin had a significant role to play in improving inflammation, oxida-
tive stress-related cardiovascular impairment and prevented metabolic changes due
to fat diet [56].

Apigenin

Apigenin is a flavone present in chamomile, parsley, onions, grapefruit and oranges.
It has shown to have many beneficial properties like anticancer, anti-diabetic, anti-
obesity antioxidant and anti-inflammatory. A given study investigated the protective
effects of apigenin against obesity and relatedmetabolic disorders (Table 16.2). In the
study, the animalswere randomly divided into twogroups andwere fed an either high-
fat diet or high-fat diet along with 0.005% w/w apigenin for 16 weeks. At the end of
the study, blood glucose levels, plasma adipocytokines, lipids and amino-transferases
levels were measured for analysis besides other histopathological analyses. It was
concluded that apigenin lowered plasma levels of free fatty acid, total cholesterol,
apolipoprotein B and hepatic dysfunction markers. It increased the expression of
genes related to fatty acid oxidation, TCA cycle and cholesterol homeostasis. It
down-regulated expression of lipolytic genes, lipogenic genes and decreased activity
of TGE and cholesterol synthesis. It also showed a prominent effect on the reduction
of pro-inflammatory mediators [57].

Baicalin

Baicalin is a flavonoid with significant anti-inflammatory and antioxidant properties.
In a study, animals were divided into standard diet-fed animals and high-fat diet-
fed animals (Table 16.2). The high-fat diet-fed animals were treated with baicalin
(80mg/kg) once per day.On analysis of both histopathological and serumparameters,
it was found that baicalin decreased serum cholesterol and free fatty acid levels,
suppressed systemic inflammation and activated hepatic AMPK leading to protective
effect in case of metabolic disorders [58].

Diosmin

Diosmin is a flavonoid present mainly in citrus fruits. It has shown the presence of
antioxidant, anti-hyperglycemic, anti-inflammatory, anti-mutagenic, and antiulcer
properties. The aim of the study was to evaluate the protective effects of diosmin on
an experimentally inducedmyocardial infarcted ratmodel (Table 16.2). The ratswere
pretreated with diosmin (5 mg/kg) before inducing isoproterenol (100 mg/day) at an
interval of 24 h for 2 days. At the end of the study period cardiac markers, cardiac
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indices, lipid profile, lipid peroxidation products, electrocardiogram were estimated
along with its radical scavenging abilities. It was concluded that treatment with
diosmin provided cardioprotection due to antihyperlipidemic effects by preventing
the accumulation of lipids by its free radical scavenging effects and also improves
the status of lipid profile by HMG-CoA reductase inhibiting capacity [59]. Marketed
products of various flavonoids available to target different disorders are summarized
in Table 16.3.

Discussion and Future Perspectives

Obesity and cardiovascular dysfunction are major health concerns around the world.
Obesity and CVD can lead to lifelong co-morbidities such as Type-II diabetes, hyper-
tension, bacterial or microbial infections and mortality. The current lifestyle prac-
ticed and the amount of stress around the world, especially in the developing and
the developed countries is enormous. As per the prevalence, the induction rate of
obesity and cardiovascular dysfunction is shifted from the elderly population to the
population in their late 30 s and 40 s. The allopathic medicines prescribed for obesity
like Orlistat, Lorcaserin, Phentermine-topiramate, Liraglutide etc. have many side-
effects like dizziness, anorexia, stomach pain, increased blood pressure and heart
rate, raised pulse etc. As obesity leads to CVD manifestations, anti-obesity medi-
cations contribute more to these complications, thus leading to fatality. Also, medi-
cations for CVD are lifelong, and have too many complications when taken for an
extended amount of time. Therefore, there is a need to explore phytoconstituents that
can treat obesity, CVD; and will not cause untoward side-effects. There are several
research studies undertaken for the treatment of obesity induced CVD. The preclin-
ical data obtained from animal models support the beneficial role of flavonoids in
the prevention of CVDs and distinctive cancer types. The current data also supports
that the flavonoids are promising molecules to improve cardiometabolic function
as well as health and wellbeing. Despite interacting with multiple targets, intake
of flavonoids is considered to be safe. Healthful foods containing flavonoids and
other bioactive polyphenols may be the best cost-effective strategy for the preven-
tion of non-communicable and cardiometabolic diseases. Further, the bioavailability
of flavonoids can be improved via the use of newer nanotechnology methods and
drugdelivery systems such as nano-delivery systems,microencapsulation, andmicro-
emulsions. The future drug delivery techniques would help in improving bioavail-
ability by increasing the intestinal absorption, enhancing metabolic stability in the
gut, and targeting a different absorption site [60]. Many investigators have reported
clinically important adverse interactions between herbal remedies and fruit juices
with orally administered synthetic or allopathic drugs. Studies are needed to under-
stand any adverse interactions between flavonoid products with synthetic or prescrip-
tion drugs. In addition, studies on the adverse interactions, if any, of flavonoids with
gut microbiota are also warranted.
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Table 16.3 Marketed Flavonoids and their indications

Flavonoid Product Dose Indication

Luteolin LutiMax (Luteolin 100
mg +Rutin 100 mg)

1 to 4 tablets × 200 mg Neuro-protective,
immuno-modulatory and
ameliorates
neurodegeneration

Luteolin Complex
(Luteolin 50 mg +
Rutin 50 mg)

1 capsule/day To treat Age-related
cognitive decline

Luteolin 100 1 capsule/day Neuroprotection
And for treatment of
age-related memory
defects

Hesperidin HD Complex
(Hesperidin 50 mg +
Diosmin 450 mg)

1 tablet, twice daily Improved and healthy
vasculature

Nuvaprin HD
(Hesperidin 50 mg +
Diosmin 450 mg)

2 capsules × 500 mg For healthy and normal
vasculature
And reduction in
inflammation

Genistein Genistein 125 mg 2 capsules × 125 mg For cardiac health
And menopausal
symptoms

GeniKinoko
(Genistein 180 mg)

4 capsules, 2 times a day Improves immune health,
cellular health and prostate
health

Quercetin Quercetin Bromelain
Complex (Quercetin
500 mg + Bromelain
156 mg)

1 capsule 2–3 times a day
× 500 mg

For immuno-modulatory
diseases and cardiac health

Rutin Rutin 250 mg 1 capsule × 250 mg For absorption and
assimilation of vitamin C
For healthy vasculature

Apigenin Apigenin 50 mg 1 capsule × 50 mg Prostate health and
Promotes glucose
metabolism

Diosmin Venostor
(Diosmin 450 mg +
Hesperidin 50 mg)

Depends on the indication
type

Healthy vasculature and
acute hemorrhoidal
disease crisis

Flavonoids have proven to have a beneficial effect in ameliorating obesity and
cardiovascularmorbidity. Supplementary studies should be conducted in knowing the
exact mechanism of action and molecular mechanisms of flavonoids in the treatment
of obesity induced CVD. This will help in increasing the success rates with less
side-effects and decreasing the mortality rate in the obese patients.
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Chapter 17
Homocysteine and Related B Vitamins
in Pre-diabetes and Diabetes Mellitus

Slavica S. Mutavdzin and Dragan M. Djuric

Abstract Diabetes mellitus (DM) is the most common endocrine disorder and a
global health problem with increasing prevalence. DM is associated with different
organ dysfunction due to micro- and macrovascular complications. It should be
taken into account that organ damages usually start earlier, in subjects with impaired
glucose tolerance i.e. in the pre-diabetic state. There are different biomarkers that
give information about organ damages. They are increased in pre-diabetic state, and
indicate necessity to start preventing the development of DM and its complications
on time. Homocysteine is also significant endothelial function biomarker. Its level
is increased in both DM and pre-diabetes. DM is also characterized by a decrease
in vitamin B-group levels, especially in vitamins B6, B12 and folic acid (folate).
Reduced levels of these vitamins will lead to an additional increase in homocysteine
levels, which will result in further impairment of organ functions. The results of
numerous studies indicate the positive effects of administration of these vitamins in
subjects with DM. Therefore, in order to prevent or delay the complications of DM,
it is advised adequate dietary intake of vitamins. Since there is scientific evidence
that metformin used in DM therapy reduces vitamin B12 and folic acid (folate)
level, supplementation of these two vitamins is recommended in patients receiving
metformin in therapy.
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Introduction

Diabetes mellitus (DM) is the most common endocrine disorder characterized by
hyperglycemia and followed by numerous metabolic changes due to decreased
insulin production or secretion, decreased insulin action, or both [1, 2]. It repre-
sents a global health problem. More than 6% of the world population is affected by
DM. Current data demonstrate that 415 million adults suffer from diabetes mellitus;
while 318 million people have impaired glucose tolerance or pre-diabetes [3]. It is
considered that DM prevalence will increase to about 642 million in 2040 [4]. This
prevalence does not contain the people with pre-diabetes. The prevalence of pre-
diabetes is increasing worldwide. It is expected to be more than 400 million in 2030
[5].

Diabetes mellitus is defined as fasting blood glucose level of 126 mg/dl
(7.0 mmol/l) and greater, while pre-diabetes or impaired glucose tolerance is defined
as fasting plasmaglucose levels 100mg/dl (5.6mmol/l) to 125mg/dl (6.9mmol/l) [6].

DM is associated with different organ dysfunction, such as retinopathy, renal and
cardiovascular disease (CVD), gastrointestinal disturbance, sexual dysfunction and
neuropathy [7, 8]. It is followed by macrovascular complications which are the most
common cause of death among persons with diabetes mellitus [9]. CVD occur more
frequently in patients with diabetes mellitus and represents one of macrovascular
complications of DM. To prevent the onset of CVD, primary prevention should
be implemented. However, it should be taken into account that cardiovascular risk
is already increased in people in the pre-diabetic state or with impaired glucose
tolerance [5]. It is shown that impaired fasting glucose is not just a precursor of
diabetes; it is also an individual risk factor forCVDand all-causemortality [10]. If left
untreated, pre-diabetes would progress to diabetes and the associated complications
[5]. In order to prevent diabetes development and its complications early detection
and treatment of pre-diabetes is necessary.

It is important to discover pathological processes associatedwith asymptomatic or
preclinical stages of the disease to prevent its progression. The onset of type 2 diabetes
can be prevented or delayed by change in diet, introducingmoderate physical activity
and weight loss [11]. With the increasing technical development that enables more
accurate investigation of biochemical processes occurring during diseases, the role
of biomarkers is increasing. Biomarkers, such as blood glucose levels, hemoglobin
A1c and cholesterol level have been measured as part of clinical assessment of DM
and cardiovascular disease for many years [12]. Diabetes progression is, not only
connected with changes in these biomarkers. It is reported that also inflammatory,
endothelial dysfunction, oxidative stress and autonomic nervous system dysfunction
markers are elevated in diabetes [12, 13]. Inflammatory markers, C-reactive protein
and interleukins (ILs), have been shown to predict development of DM type 2 [14]
and are used routinely in medical practice to screen for cardiovascular disease [13,
15]. Other inflamatory biomarkers in relation with DM are tumor necrosis factor
α (TNFα), antioxidants such as reduced glutathione and vitamin E (α-tocopherol),
lipid peroxidation products such as malondialdehyde and isoprostanes. Biomarkers
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of endothelial dysfunction include 8-hydroxy-2-deoxy-guanosine (8-OHdG) and
homocysteine (Hcy) [12, 13].

It is shown that increased oxidative stress and changes in antioxidant defense
represent an important mechanism in the pathogenesis of DM and in the develop-
ment of its complications [16]. Increased glucose level is followed by the synthesis of
reducing sugars that can react with lipids and proteins and promote the production of
reactive oxygen species (ROS) [17, 18]. Hyperglycaemia increases the production of
peroxynitrite and other reactive nitrogen species, as well. It induces DNA and protein
damage, activates polyADP ribose polymerase, and stimulates endothelial stress and
cell death [19]. The oxidative stress alters total metabolism [20], and may cause
damage to endothelial cells and promote the development of atherosclerosis. The
association between oxidative stress and CVD in diabetic conditions via endothe-
lial dysfunction and the resulting pathological changes in inflammation, coagulation
status and cell-proliferation has been widely investigated [21–24]. In the case of
pre-diabetes, the situation is not completely known, but studies suggest that there
are changes in redox-status, and oxidative stress related DNA damage before DM
diagnosis [25, 26]. It is revealed that central mechanism responsible for the increased
cardiovascular risk in pre-diabetes is endothelial dysfunction. Endothelial dysfunc-
tion occurs due to the elevated formation ofROSand advanced glycation endproducts
(AGEs) as well as increased lipid peroxidation under hyperglycaemic conditions [27,
28]. Endothelial dysfunction results in imbalance between coagulation and fibrinol-
ysis, platelet activation, proliferation of vascular smooth muscle cell and stimulation
of inflammatory processes. Consequently, pro-thrombotic environment is created, so
if hyperglycaemia remains untreated it will cause CVD in the long-term [27, 28].

The association between biomarkers and disease progression from normal to
impaired fasting blood glucose (pre-diabetes) has not been studied extensively.
Recently, it has been shown that 8-OHdG is elevated already in the pre-diabetic
state, suggesting an impact on pathological processes of even moderate increases
in blood glucose level [26]. If reliable and specific biomarkers for prediabes can
be identified, early detection and treatment of pre-diabetes could slow the diabetes
epidemy.

Homocisteine—Biomarker of Endothelial Dysfunction

Homocysteine (Hcy) is a cytotoxic sulfur-containing amino acid. It is produced as an
intermedier during the breakdown of methionine [29–31]. Butzand du Vigneud was
the first to describe Hcy, while the association of Hcy with various diseases was first
indicated by Carson and Neil in 1962 [32, 33]. Total homocysteine level between 12
and 30 mmol/L is considered mild hyperhomocysteinaemia, while Hcy level higher
than 100 mmol/L severe hyperhomocysteinemia [34].

Hcy is removed by reactions of one carbon cycle. One carbon cycle is
an important group of biochemical reactions that involves the utilization and
production of methyl group (CH3). The methylation cycle is a significant part



332 S. S. Mutavdzin and D. M. Djuric

of the one carbon cycle. During methylation, S-adenosylmethionine is formed
from methionine and adenosine triphosphate (ATP). Methionine is formed from
Hcy and 5-methyltetrahydrofolate in the presence of methionine synthase. 5-
methylteterahydrofolate originates from dietary folate. Folate species that are not
consumed in this reaction are used for the production of RNA/DNA bases and high
energy molecules and cofactors such as ATP, nicotinamide adenine dinucleotide
(NAD) and coenzyme A [35]. Vitamin B12 is cofactor in methionine synthase. Hcy
is secreted into the plasma from endothelial and red blood cells as a product of
incomplete conversion of methionine to cysteine [12].

Epidemiology of Hyperhomocysteineamia

The incidence of hyperhomocysteineamia is 5–10% in general population; it
increases with aging and reaches 30–40% [34]. Hyperhomocysteineamia was found
in 13–47% of patients with vascular diseases [36]. It has been reported that 58%
patients with diabetes mellitus had hyperhomocysteinaemia, and higher incidence
was found in males than in females [37]. Hcy level is increased under conditions of
renal impairment, increased concentration of insulin, and administration of certain
medications, such as metformin, glitazones, phenytoin, and methotrexate. Also, Hcy
level increases in cases of the nutritional deficiency of vitamin cofactors: folate,
vitamin B12, and vitamin B6 which are necessary for the homocysteine metabolism
[38–41]. Deficiencies of these vitamins with resultant mild hyperhomocysteinemia
can be risk factor of several diseases [42]. Estimated prevalence of vitamin B6 defi-
ciency is 10.6% [43], folate <1% [44] and vitamin B12 about 6% [45] in the USA.
Prevalence of these vitamins deficiency in Asia is higher, for instance vitamin B6
deficiencywas reported in 52.8% and folate deficiency in 39.7%of healthy persons in
Pakistan [46], while prevalence vitamin B12 deficiency was about 70% in India [45].

Homocisteine as a Risk Factor

Hcy is considered as a potential risk factor for many disorders such as cardiovascular
diseases, atherosclerosis, venous thrombosis, vascular complications, and systemic
diseases [47, 48]. Some authors demonstrated association between plasma homocys-
teine level and CVD risk [49], while others showed that reducing homocysteine level
did not reduce cardiovascular risk and CVD incidence [49]. There is an agreement
about the prothrombotic and prooxidant properties of homocysteine, which can cause
the formation of ROS and contribute to endothelial dysfunction [50, 51]. Homocys-
teine can inhibit the expression of antioxidant enzyme glutathione peroxidase-1.
The consequence of this inhibition is that the regeneration of reduced glutathione is
limited [49].
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It is evidenced that Hcy has an important role in the development of CVD
and nervous system disorders [52]. An experimental research showed that D,L-
homocysteine thiolactone strongly inhibited Na+/K+-ATPase activity in cortex,
hippocampus and brain stem, while d,l-homocysteine induced just a moderate
inhibition of hippocampal Na+/K+-ATPase of rats. Decreased Na+/K+-ATPase
activity could be a factor that results in epileptic seizures in hyperhomocysteinemic
conditions [53]. Hyperhomocysteinemia is considered to be a risk factor for
atherosclerosis and cardiovascular diseases [52, 54]. However, the mechanism by
whichHcy leads to atherosclerotic changes is not completely clear. It is demonstrated
that the single administration of Hcy increased contractility of rat femoral artery
smooth muscles. Also, 24-h-long incubation of rat femoral artery with Hcy induced
an impairment of vascular endothelium, expressed as interruption of endothelial cells
[55]. Experimental data suggested that Hcy produces an endothelial dysfunction
through ROS production, decreases the production of endothelial nitric oxide,
stimulates proliferation of vascular smooth-muscle cells, increases the formation
of highly atherogenic oxycholesterols, stimulates lipid peroxidation, has a throm-
bogenic effect [29], and stimulates the expression of vascular endothelial growth
factor (VEGF) [39], intracellular adhesion molecule-1, proinflammatory cytokines
such as IL-1β, IL-6, TNF-α, and monocyte chemoattractant protein (MCP-1) [52].
Hcy influences cardiac function, its administration decreased cardiac contractility
and reduced coronary flow of isolated rat hearts [56], inhibited the cardiac oxygen
consumption and may lead to cardiotoxicity [57]. Hyperhomocysteinemia is also
linked with oxidative stress and inflammation in DM type 2. It was demonstrated that
Hcy contributed in atherosclerotic process of diabetes. Hyperhomocysteinemia was
found in diabetic patients and represents strong risk factor [58, 59]. Other studies
reported elevated or lower Hcy level in diabetic patients comparing to non-diabetics,
demonstrating potential role of Hcy in development of vascular disorders in diabetic
subjects [38, 60]. It was demonstrated that 58% of diabetic patients had increased
homocysteine level [38]. One meta-analysis established that Hcy levels were higher
in DM type 1 patients with complications, such as retinopathy or nephropathy, and
it was not elevated in DM type 1 patients without any complications [61]. Also,
it was confirmed that increased Hcy level is typically associated with increased
risk of DM type 2 [62]. It is considered that increased Hcy has been involved in
DM type 2 development and diabetic adverse outcomes [47, 58]. DM type 2 is
characterized by increased oxidative stress. Increased plasma level of homocysteine
reflects increased oxidative stress [50]. In addition to elevated Hcy levels, vitamin
B12 and folate deficiency are linked to oxidative stress in diabetics [63].

Maschirow et al. demonstrated significantly increased homocysteine level in
pre-diabetic patients comparing to the controls (14). The elevated homocysteine
showed that increased oxidative stresswas accompaniedwith changes in intracellular
metabolism. Also, the elevated plasma homocysteine level indicated of endothelial
dysfunction [12]. It is likely that homocysteine contributes itself to the oxidative
stress by promotion the formation of ROS. The association between homocysteine
level and oxidative stress is obvious, although themechanismof this association is not
completely clear. It was demonstrated that a relatively small increase in blood glucose
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levels certainly affects endothelial function, leading to increased DNA damage and
release of homocysteine from endothelial cells [12].

Higher homocysteine levels are found in patients with diabetic nephropathy
compared to patients with diabetes who have not developed nephropathy. It was
demonstrated significantly higher level of plasma homocysteine in patients with
diabetic nephropathy with macroalbuminuria than in patients with microalbumin-
uria and diabetic patients without albuminuria [64]. There are several explanations
of alteration of Hcy level. The main way to remove Hcy from the body is through
renal excretion [65, 66]. The deterioration of renal function may decrease the renal
clearance of homocysteine leading to increase in plasmahomocysteine concentration.
Next explanation is thatHcy could promote oxidative stress,which could induce renal
injury and impairment. It was shown that the auto-oxidation of homocysteine formed
reactive oxygen species, and impaired the production of glutathione peroxidase [67].
Hcy can also have direct toxic effects on kidney tissue [68]. Experimentally induced
chronic hyperhomocysteinemia demonstrated arterial and arteriolar thickening, and
tubulointerstitial and podocyte injury in the kidney [69]. In addition, Hcy has ability
to activate MAP kinases resulting in endoplasmic reticulum stress in mesangial cells
[70]. Homocysteine activates nuclear factor-kappa B and increases the expression of
monocyte chemoattractant protein-1 in the kidney [71], then, induces inflammatory
transcriptional signaling in monocytes [72], enhances inflammatory status, supports
proinflammatory cytokine production and macrophage infiltration [73]. Thus, in
hyperhomocysteinemia inflammation is expected. Inflammation plays a significant
role in the development and progression of diabetic nephropathy [74]. In one study
plasma concentrations of methionine cycle intermediates S-Adenosyl-homocysteine
(SAH), S-adenosyl-methionine (SAM), and homocysteine weremeasured in patients
with renal failure and DM type 2. Increased plasma concentrations of thesse param-
ethers were related to the degree of renal insufficiency in patients with DM type 2
[75]. Patients with DM type 2 had significantly higher erythrocyte SAH concentra-
tions than non-diabetic patients [76]. However, no study has proved that patients with
DM and with increased plasma SAH are at a higher cardiovascular risk than patients
with normal SAH levels. In addition, persons with DM type 2 are more susceptible
to the damaging effects of Hcy than healthy persons [77].

Patients with insulin resistance and increased insulin level have elevated Hcy, as
well. It was demonstrated proportional elevation in plasma homocysteine and plasma
insulin levels [78]. Hyperhomocysteinemia is considered to exacerbate insulin resis-
tance by leading to endoplasmic reticulum stress, increasing glucose output and
upregulating phosphoenolpyruvate carboxykinase (PEPCK) [73, 79]. If insulin resis-
tance worsens, it would result in more poor glucose control which is a risk factor for
diabetic complications [64].

Obesity is a risk factor for many diseases as CVD, DM and fatty liver disease.
Studies demonstrated that aberrant metabolism of methionine and its metabolites
are associated with increased body fat and adiposity. One research showed that
high plasma cysteine levels were associated with increased body mass index (BMI)
and body mass both in children and adults [80]. Some studies found correlation
between increased homocysteine levels and abdominal obesity, BMI, insulin level
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and HOMA-IR (Homeostatic Model Assessment for Insulin Resistance) [81].
Another research showed positive association between high intake of saturated
fatty acids and higher homocysteine levels [82]. Hyperhomocysteinemia inhibits
lipolysis and results in adipose tissue dysfunction. Also, the dietary administration
of homocysteine during two weeks was shown to reduce the levels of glycerol
and free fatty acids, as well as adiponectin, and increase plasma leptin levels [83].
Hyperhomocysteinemia and fatty liver are usually found simultaneously, however
the mechanism is not completely known. A diet rich in fats resulted in increased
total cholesterol and doubled homocysteine levels in animals [84]. Cysteine diet in
mice induced activity of lipogenic enzymes, lowered metabolic rate, and increased
visceral adiposity [85]. Also, total homocysteine level is related to obesity [86].
Studies had reported correlation of plasma SAH and SAM with BMI in female [87,
88]. Another study revealed that plasma SAM level is associated with fat mass and
trunk adiposity in older adults. However, SAH values did not show this association
[89]. An in vitro study, found that SAH impaired both basal and induced glucose
uptake and lipolysis in 3T3-L1 preadipocytes [90]. This research demonstrated that
increased intracellular SAH did not alter preadipocyte factor 1 and peroxisome
proliferator activated receptor-γ 2. Their results indicated that SAH did not affect
adipogenesis per se but altered adipocyte functionality that consequently leads to
altered glucose disposal and lipolysis. Hyperhomocysteinemia inhibits lipolysis
and results in adipose tissue dysfunction. Previous data indicated that increased
homocysteine values due to cholesterol and fat intake may lead to a progression of
atherosclerosis. It is suggested that homocysteine induces endoplasmic reticulum
stress. This would lead to increased hepatic biosynthesis and uptake of cholesterol
and triglycerides [91]. Another mechanism that may explain atherosclerosis and fatty
liver development is that hypomethylation associated with hyperhomocysteinemia
results in lipid accumulation, decreased synthesis of phosphatidylcholine required
for very low-density lipoprotein assembly and homeostasis. Hcy is thought to block
enzymes involved in high density lipoprotein cholesterol (HDL-C) synthesis, which
in turn leads to decreased HDL-C levels [92].

Control of Hyperhomocysteinemia

Plasma Hcy level is negatively proportional to the folate (vitamin B9) and cobalamin
(vitamin B12) [93], so Hcy can serve as an indicator of these vitamins level [94].
The association of low folate level with elevated plasma S-adenosylhomocysteine
and lymphocyte DNA hypomethylation was firstly reported by Yi and Melnyk in
2000 [95]. It is considered that deficiency of vitamin B6, B9 and B12 and hyperho-
mocysteinemia may be a risk factor for coronary artery disease [96]. Hyperhomocys-
teinemia can be genetic or acquired.Mutations in gene formethylenetetrahydrofolate
reductase are the main genetic defect that leads to hyperhomocysteinaemia. Defi-
ciency of vitamins B6, folate, chronic kidney disorders, older age and use of antifo-
late drugs are the main acquired causes for hyperhomocysteinemia [97]. Deficiency
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of folate and vitamin B12 in patients with DM type 2 was linked to hyperhomocys-
teinemia [63]. It is demonstrated that folate, vitamin B6 and B12 intake control and
reduce the Hcy level. Folate is considered that reduces Hcy level in plasma for 30%.
Therefore, an economical and reasonable strategy to control plasma Hcy is possible
by intake of these vitamins [48].

Homocysteine Related B Vitamins

Folate (Folic Acid, Vitamin B9)

Vitamin B9 is a carbon donor in the synthesis of amino acids, purines, and pyrimidine
bases and a methyl donor in the synthesis of methylcobalamin and methionine [98].
Folate is a natural vitamin B9 found in foods, while folic acid is a synthetic derivative
that is added to foods or supplements. The bioavailability of folic acid is greater than
the bioavailability of folate [99].

Folate Functions

Folate is necessary for growth [100], DNA synthesis and erythropoiesis [101], and
has an important role in methylation process. So, deficiency of folate can lead to
damage both in DNA synthesis and in the methylation cycle [102]. This vitamin is
essential for many important processes such as cell growth and proliferation; it has
the role of co-factor in numerous metabolic reactions [103, 104]. The importance
of folate is reflected in one of its major functions that is nucleotide synthesis, DNA
production and reparation, andmethionine production by homocysteinemethylation.
The obtained methionine is then converted to S-adenosylmethionine or it could be
used in synthesis of proteins [105].

Folic acid is considered to have many important positive effects, such as
reducing oxidative stress, improving endothelial function, and preventing apoptosis
by reducing plasmahomocysteine level [106, 107]. Itwas demonstrated that folic acid
increased coronary flow, increased nitrite outflow and decreased superoxide anion
production, however it increased lipid peroxidation index in isolated rat hearts. The
effects of folic acid were reversed or blocked by N(ω)-nitro-L-arginine methyl ester
(L-NAME), indicating involvement of NO in the mechanism of the folic acid effects
[108].

Epidemiology of Folate Deficiency

In the USA only 0.1% people have a folate deficiency, thanks to a folic acid fortifi-
cation program started in 1998 [109]. Similarly, folate deficiency is rare in countries
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with folic acid fortification program that is established in more than 75 countries
[99]. Most developed countries have mandatory folic acid flour fortifications, and
most European countries recommend folic acid supplementation before conception
and during the first three months of pregnancy [110]. Deficiency of folate is related
to low socioeconomic status and inadequate intake of green leafy vegetables, malnu-
trition, and mental status changes, medication intake, alcoholism and genetic defects
[94, 111]. It was indicated that deficiency of vitamin B6 and folate are the major
factors of hyperhomocysteinemia [96].

Folate Deficiency

Women of childbearing age and non-black Hispanic women, people with high BMI,
celiac diseases and vitamin B12 deficiency may exhibit folate deficiency [103, 111].
In addition, it is known that folate deficiency also disturbs DNA and methylation
cycles [112], and it can lead to many disturbances as anemia, neurological abnor-
malities and birth defects [94]. Also, it is demonstrated that folate deficiency is
related to hyperhomocysteinemia [63]. Folic acid involvement in the pathogenesis
of DM type 2 is associated with vitamin B12 deficiency and subsequent hyperho-
mocysteinemia. Although folic acid deficiency is not widespread, folic acid supple-
mentation has been tested in people with DM. A case–control study found that low
intakes of folate and vitamin B12 in patients with DM type 2 were followed by
hyperhomocysteinemia [113]. Individuals with DM type 2 who received folic acid
treatment demonstrated reverted DNA damage expressed as a significant decrease in
micronuclei, and reverted oxidative stress comparing to the individuals withDM type
2 without folic acid treatment [114]. Furthermore, folate supplementation improves
glycemic control. It reduces glycosylated hemoglobin, fasting blood glucose, serum
insulin, insulin resistance and Hcy in DM type 2 patients [115]. An experimental
research found that the application of folic acid in a diabetic rats lead to a cellular
response characterized by cardiac antioxidative enzymes activity decrease and by
a significantly reduced blood glucose level [116]. Another research in diabetic rats
demonstrated that folic acid administration leaded to reduction in a liver damage
parameters and cardiac matrix metalloproteinase 2 activity, marker of tissue remod-
eling, so it has potential hepato- and cardioprotective effects [117]. Folic acid, pyri-
doxine and vitamin B12 have positive effects on signs and symptoms of diabetic
retinopathy [118]. Metformin administration can cause folate deficiency. Adminis-
tration of folic acid for 8 weeks in patients with type 2 DM who received metformin
therapy led to an improvement in homocysteine levels, total antioxidant capacity and
malondialdehyde concentration [119].
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Cobalamin (Vitamin B12)

Vitamin B12 belongs to the cobalamin group. The synthetic form of vitamin
B12 is cyanocobalamin (CNCbl). When extracting vitamin B12 from bacterial
cultures, a CN group is added. Naturally, there are two forms of vitamin B12, 50-
deoxyadenosylcobalamin (coenzyme B12) and methylcobalamin (MeCbl) [120].
Conversion of vitamin B12 into coenzyme B12 occurs in mitochondria; while
into MeCbl occurs in cytoplasm. Coenzyme B12 and MeCbl are essential for the
metabolism of methylmalonic acid and homocysteine, respectively [45]. Vitamin
B6, B9, B12 supplementation is recommended and used to control homocysteine
levels and to reduce the risk of cardiovascular disease [121].

Vitamin B12 Function

Vitamin B12 is cofactor of methionine synthase. It is a folate-dependent enzyme
that is essential for methionine production from homocysteine. Vitamin B12 is a
major coenzyme for the methylation reaction in humans, including DNA and RNA
methylation. It participates in the regeneration of methionine from homocysteine
in the cytoplasm, as well as in the conversion of methylmalonic acid-coenzyme
A (CoA) to succinyl-CoA in mitochondria. These reactions are important for the
removal of toxic compounds, such as homocysteine and methylmalonic acid and for
lipid metabolism [122]. Vitamin B12 has an important role in methylation and DNA
cycle and cell metabolism, thus deficiency in this vitamin may cause an interruption
in DNA production and damage of cell metabolism [45]. Its deficiency will lead to
cell division and differentiation damage, and an increase in homocysteine levels. The
resulting effects are similar to those caused by folate deficiency [100].

Epidemiology of Vitamin B12 Deficiency

Vitamin B12 deficiency is rare in the general population as it is present in most foods
of animal origin. Deficiency of this vitamin can often occur in vegans [63]. The
prevalence of vitamin B12 deficits in the UK and the United States is 6% for those
under 60 years of age. With aging, the prevalence of this deficit increases to 20% in
the population over 60 years of age. Vitamin B12 deficiency is far more common in
Africa and Asia. Data show that 80% of pre-school children and 70% of adults in
India have vitamin B12 deficiency [45]. Also, 65% of newborns have vitamin B12
deficiency and 27% of newborns have folate deficiency in India [123]. Vitamin B6,
B12 and folate deficiency and their association with hyperhomocysteinemia has been
shown in Pakistan [42].
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Vitamin B12 Deficiency

Vitamin B12 deficiency is related to cell metabolism and it is very important for
the conversion of the homocysteine to methionine. Vitamin B12 deficiency leads to
elevated plasma Hcy. Thus, elevated plasma homocysteine is a sensitive marker of
vitamin B12 deficiency [124–126]. Increased Hcy represents a risk factor for hyper-
tension [127], insulin resistance [128], DM type 2 [129], diabetes-related complica-
tions [130] and coronary artery disease [131]. It was shown that vitamin B12 defi-
ciency had high prevalence in adults with DM type 2 [63, 132–137]. Nevertheless,
there are limited data about vitamin B12 levels and the prevalence of vitamin B12
deficiency in people with pre-diabetes. One recent study demonstrated that the levels
of vitamin B12 are negatively correlated with the severity of glucose tolerance. That
study confirmed that prevalence of vitamin B12 deficiency is higher in pre-diabetics
than in the healthy population [122]. A negative correlation between vitamin B12
and homocysteine levels was shown not only in individuals with DM, but also in
those with pre-diabetes and normal glucose tolerance [122]. Maternal vitamin B12
deficiency and high levels of folate before the child delivery may contribute to the
onset and progression of DM type 2 and obesity [138, 139]. Studies demonstrated
vitamin B12 deficiency in DM type 2 patients treated with metformin [140, 141].
Another research reported the association between deficit of vitamin B12, adiposity
and gestational diabetes [142].

Subjects with a family history of diabetes or with risk factors such as obesity,
hypertension, and impaired glucose tolerance should be screened forMTHFRC677T
mutation. If mutation is confirmed, there is suggestion for vitamin B12, B6 and folic
acid supplementation that might help reduce the risk in these individuals [143]. In
contrast, systematic analysis of cohort studies has shown that there is limited evidence
that cobalamin deficiency can be considered a risk factor for cardiovascular disease
or diabetes mortality, therefore supplementation with this vitamin is not necessary
[144]. So the use of vitamin B12 to reduce the risk of developing diabetes is still
controversial. Alternatively, oxidative stress is one of the mechanisms in the patho-
genesis ofDM.VitaminB12 and folic acid deficiency in peoplewithDMis associated
with oxidative stress and hyperhomocysteinemia [145]. Therefore, it is possible that
vitamin B12 deficiency is a risk factor for developing DM complications. One of the
most common complications of DM type 2 is peripheral neuropathy and its develop-
ment is associated with hyperhomocysteinemia, which is more commonly found in
patients with diabetes [146, 147]. Atherosclerosis is another frequent complication
associated with DM. It was shown that in milieu of increased homocysteine level,
arterial stiffness occured more frequently [148].

Prolonged use of metformin was shown to cause malabsorption of cobalamin,
thereby increasing the risk of vitamin B12 deficiency [138, 149–155]. In elderly
patients, short-termmetformin therapymay reduce vitamin B12 levels, too [156]. On
the other hand, vitaminB12 deficiency has also been reported in diabetic patientswho
did not take metformin [157]. Subjects with DMwho used metformin showed worse
cognitive performance than those without metformin in therapy or those without
DM. To improve cognitive performance, the use of vitamin B12 supplements is
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suggested [158]. A meta-analysis demonstrated that supplementation with lipoic
acid and methylcobalamin improved nerve conduction velocity and reduced diabetic
neuropathy [159].

Thrombosis may be associated with hyperhomocysteinemia due to vitamin B12
deficiency [160]. Mild deficiency of vitamin B12 can cause fatigue and anemia
without neurological features. Moderate deficiency can induce macrocytic anemia
with some minor or clear neurological disturbances, such as loss of sensation in the
distal parts of the body [47]. Chronic vitamin B12 deficiency leads to bone marrow
suppression, neurological damage and increases the risk of cardiomyopathy [45].

Therefore, besides physical exercise, a vitamin B12-rich diet can be useful in
lowering plasma homocysteine levels, decrease in insulin resistance, and reducing
the risk of developing DM type 2 or cardiovascular disease [122].

Pyridoxine (Vitamin B6)

VitaminB6 represents a group of three related compounds: pyridoxal, pyridoxine and
pyridoxamine, and their corresponding phosphorylated derivatives. The active form
of vitamin B6 is pyridoxal-5-phosphate (PLP). PLP is an aminotransferase, which
acts as a coenzyme formore than 140metabolic reactions, such as the interconversion
of amino acids, neurotransmitters synthesis, regulation of energy homeostasis, and
formation of heme [161]. It is coenzyme for the enzyme glucose-phosphorylase that
is essential for the utilization of glycogen in the liver and muscles. In this way, PLP
actively participates in glucose metabolism [162].

Recently, it has been demonstrated that pyridoxine (vitamin B6) has antioxidant
effects, although it is not classified as an antioxidant [163, 164]. PLP plays impor-
tant role in H2S biogenesis [165], as well in the metabolism of proteins, fats, and
carbohydrates [163, 166]. It influences polyunsaturated fatty acids synthesis, and in
the conditions of its deficiency lipid peroxidation increases and antioxidant defense
decreases, so there are suggestions, that pyridoxine deficiency is associated with
atherogenesis [167, 168].

It was demonstrated that newly diagnosed DM patients had decreased concentra-
tions of PLP comparedwith healthy subjects [169]. Other research reported that long-
term co-administration of folic acid, pyridoxine and vitamin B12 led to a decrease
in Hcy levels; however, it did not reduce the risk of developing DM type 2 in women
at high risk of CVD [170].

Vitamin B6 levels are not fully and clearly associated with the development
of DM type 2, however, there is evidence that a deficiency of this vitamin stimu-
lates the progression of DM complications. In an experimental study it was shown
that vitamin B6 supplementation reduced insulin concentration and insulin resis-
tance without affecting blood glucose level [171]. Also it was demonstrated that
the simultaneous administration of vitamins B6 and B1 suppressed DNA glyca-
tion in diabetic leukocytes, however, these effects were not obtained when vitamin
B6 was administered alone [172]. After 6 months of vitamin B6 supplementation
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testing, retinal edema was decreased and light sensitivity increased in diabetics with
non-proliferative retinopathy [118].

Other B-group Vitamins

Thiamine (Vitamin B1)

Thiamine or vitamin B1 is a coenzyme and plays an important role in the active
transfer of aldehyde groups and glycation, and in neuro-transmission. It has
been shown that vitamin B1 has the potential to influence the development of
diabetic complications [173]. One recent study demonstrated that coadministration
of thiamine, α-lipoic acid and carnosine effectively reduced glucose concentration in
obese patients with DM type 2 [174]. In another study an increased DNA-glycation
in leukocytes from diabetic patients with nephropathy was decreased after a 5-month
thiamine and pyridoxine supplement trail [172]. Both DM type 1 and 2 are associated
with decreased vitamin B1 levels and increased renal clearance [175]. In a compara-
tive cross-sectional study, healthy subjects were compared with those with DM and
microalbuminuria or macroalbuminuria. Thiamine was lower in diabetics, and espe-
cially in those with microalbuminuria. A negative correlation between thiamine and
lipid profile was demonstrated in patients with DM and microalbuminuria [176].
Various studies show the positive effects of thiamine administration. Thiamine
administration for one month reduced glucose and leptin in diabetics compared to
controls [177]. Another study reports that there was a significant decrease in urinary
albumin excretion in patients with DM and microalbuminuria after three months of
vitamin B1 administration [178].

Niacin (Nicotinic Acid, Nicotinamide, Vitamin B3)

Nicotinic acid is a compound ofNADand reduced nicotinamide adenine dinucleotide
(NADH), which are necessary for the production of ATP and to provide energy needs
at the cellular level [179]. It is reported that niacin increased HDL-C, decreases low
density lipoprotein cholesterol (LDL-C) and tryacilglycerides [180]. Due to its bene-
ficial effects on lipid status, vitamin B3 is administered alone or in combination with
other lipid-lowering drugs, nevertheless its effect on reducing cardiovascular risk
is not completely clear [181]. Niacin supplementation reduced monocyte adhesion
to endothelial cells from diabetic patients, suggesting that niacin has many effects
apart from lipid parameter influence. These effects could be important in lowering
of cardiovascular risk [182]. In one experimental study, the effect of niacin in DM
rats was tested [183]. A significant decrease in oxidative stress was observed with a
decrease in blood glucose level. Also, there was a recovery of the liver and kidney
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tissue damage, as well as a decrease in DNA damage. Therefore, it is considered that
the use of niacin in DMmay reduce the negative effects of this disease. On contrary,
there are some negative effects of niacin supplementation. In patients with previous
myocardial infarction and normoglycemia or impaired fasting glucose niacin admin-
istration increased risk for DM type 2 development [184]. It is demonstrated that
both nicotinic acid and nicotinamide induce insulin resistance in human and in rats
[185, 186]. However, despite a modest increase in risk of new onset DM type 2, there
is a potential cardiovascular benefit of niacin administration [184].

Biotin

Biotin is a cofactor for various carboxylases, such as acetyl CoA, pyruvate, methyl-
crotonyl CoA, and propionyl CoA carboxylase. Even if mammals lack the ability to
produce biotin, its deficiency is rare due to its presence in many animal and plant
foods [187]. Biotin stimulates the synthesis of insulin, so it may have positive effects
and therapeutic potential in the treatment of DM [188]. There is not much research
regarding biotin and DM type 2. Experimental studies demonstrated that biotin and
chromium piccolinate supplementation of rats with DM type 2 resulted in antidia-
betic effects, preventing insulin resistance in skeletal muscle by increasing glucose
transporter protein (GLUT4) expression [113, 189].

Conclusion

Diabetes mellitus is followed by numerous metabolic changes, as well as micro-
and macrovascular complications. However, these changes often start earlier, in the
pre-diabetic state. Therefore, it is important to monitor biomarkers that indicate the
presence of pre-diabetes and to start preventing the development of DM and its
complications in time. Homocysteine is a significant endothelial function biomarker
which plasma level is increased in both DM and pre-diabetes. In addition to the
increase inHcy, diabetes is also characterized by a decrease in vitaminB-group levels,
especially in vitamins B6, B12 and folic acid. Positive effects of administration of
almost all B-group vitamins have been observed in people with DM. Administration
of vitamins B12, B6 and folic acid will increase the conversion of Hcy to methionine,
and thus reduce Hcy induced DM complications. Therefore, in order to prevent or
delay the complications of DM, it is advised adequate dietary intake of vitamins.
Since, there is scientific evidence thatmetformin used inDM therapy reduces vitamin
B12 and folic acid level, these two vitamins supplementation is recommended in
patients receiving metformin in therapy.
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Chapter 18
Cardiac, Hemodynamic
and Electrophysiological Changes
in Obesity and the Effects of Bariatric
and Metabolic Surgery

Sjaak Pouwels, Elijah E. Sanches, Besir Topal, and Alper Celik

Abstract Obesity is associated with various diseases such as type 2 diabetes,
hypertension, obstructive sleep apnoea syndrome (OSAS), metabolic syndrome, and
cardiovascular diseases. It affects the function of several organ systems, including
the pulmonary and cardiac systems. Furthermore, it induces pulmonary and cardiac
changes that can result in right and/or left heart failure. Secondly it is associated with
electrophysiological changes that can induce cardiac arrhythmias and electrocardio-
gram (ECG) abnormalities. In this chapter we will discuss a few components of
the complex pathophysiology of obesity on the cardiovascular system; (1) hemody-
namic and cardiac structural changes (2) electrophysiological influences of obesity
and finally (3) the effects of bariatric and metabolic surgery.

Keywords Obesity · Bariatric surgery ·Metabolic surgery · Atrial fibrillation ·
cardiac function · hemodynamic · QT interval · P-wave dispersion

Introduction

Obesity is a public health endemic according to the World Health Organisation
(WHO) and numbers are still increasing [1]. Obesity is defined as a Body Mass
Index (BMI) greater than or equal to 30 kg/m2. Obesity can be subdivided in the
following 3 classes; class I obesity 30–35 kg/m2, class II obesity 35–40 kg/m2 and
class III obesity >40 kg/m2 [1, 2]. In 2014, 39% of adults aged 18 years and over
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were overweight (BMI > 25) and 13% were obese. Although obesity is preventable,
there are 650 million obese individuals worldwide [1].

Obesity is associated with a wide range of co-morbidities such as cardiovas-
cular disease (CVD), type 2 diabetes (T2DM), hypertension and obstructive sleep
apnoea syndrome (OSAS) [2, 3]. Obesity also has detrimental physiological effects
on cardiac structure, electrophysiological properties and cardiovascular hemody-
namics [4–6]. This can result in several cardiac anomalies, which eventually can
lead to serious cardiac arrhythmias and even mortality [7, 8]. Patients with obesity,
that are weight stable have an increased risk of developing cardiac arrhythmias and
even sudden cardiac death [7, 8]. According to the Framing study, the mortality rate
due to sudden cardiac death in men and women with obesity was estimated to be
about 40 times higher than the mortality rate in a matched lean population [7, 9]. In
men with severe obesity a 6 - and 12-fold excess mortality rate was demonstrated
[10]. The mechanism of unexplained deaths in obese patients is still unclear and may
be related to repolarization abnormalities [5, 7, 10].

Due to cardiac structural changes repolarization abnormalities and cardiac rhythm
disorders (like atrial fibrillation (AF)) are often seen on an electrocardiogram (ECG).
Several studies have reported QTc prolongation and increased QTc dispersion in
patients with left ventricular (LV) hypertrophy, particularly in association with
hypertension and obesity [11]. LV hypertrophy occurs commonly in severely obese
persons, even in those who are normotensive [11]. Some studies state that there
is an improvement in ventricular repolarization in a population with obesity after
weight loss [5, 12]. Regarding rhythm disorders, AF is the most common arrhythmia
worldwide, with a prevalence of 0.5%, representing nearly 33,5 million individ-
uals on the globe [13]. The AF numbers are probably underestimated, because a
large part of the AF population is asymptomatic and another part of the AF popula-
tion consists of individuals with transient symptoms who remain undiagnosed [13].
Obesity is an independent risk factor for developing AF [5, 14]. AF can have very
serious medical consequences, which can lead to strokes, heart failure and an overall
increased mortality [5, 15].

In this chapter, wewill discuss a few components of the complex pathophysiology
of obesity on the cardiovascular system: (1) hemodynamic and cardiac structural
changes (2) electrophysiological influences of obesity and finally (3) the effects of
bariatric and metabolic surgery on cardiac rhythm disorders and ECG abnormalities.

Hemodynamic and Cardiac Structural Changes

Patients with obesity are prone for developing complications in particular cardio-
vascular complications. Epidemiological data suggest that obesity is associated with
30% increased risk of developing heart failure [16, 17]. To this extent an increase
of 1 point in body mass index increases the risk of heart failure by 5% and 7% in
respectively men and women [18]. Furthermore there is a linear relationship between
overall body weight and the heart. In more detail, long-term obesity is associated
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with significant morbidity (e.g. left ventricular hypertrophy and dilatation), which
may result in heart failure [18, 19]. In patients with obesity left ventricular dilatation
can be present in 8–40% andmost of them have an increasedmass of the left ventricle
[20, 21].

Pathophysiology

As stated earlier, obesity has detrimental physiological effects on several organ
systems.Most influenceswere seen on pulmonary and cardiac function [5, 22]. These
induced pulmonary and cardiac changes can result in right and/or left heart failure
[18]. Basically, the pathophysiological mechanism is multifactorial. In patients with
obesity, significant increments in blood volume are found (this reflects an increased
size of the vascular bed) and this paralleled with an increase in cardiac output [18].
As a direct consequence of the earlier mentioned physiological change, the renal and
cerebral blood flow remain roughly the same (compared to ‘ideal body weight’) [18].
According to the results of inert wash out studies, excess body weight incorporates
extra bloodvolumeandflow.This is roughly an extra bloodflowof2−3ml/min/100g.
This means that 100 kg of excess body fat would require as much as 3 L/min blood
flows, that implicates an increase in cardiac output [18]. Actually, the blood volume
and cardiac output of an individual of 170 kg are roughly twice those of a subject of
70 kg [18]. Clinically this can induce a series of symptoms like dyspnoea, fatigue and
chest pains, but physiologically because most of these patients do not a have (signif-
icant) tachycardia, there must be some sort of cardiac remodelling [4, 5, 22]. This
indicates that patients with obesity will have an augmented left ventricular preload
(volume) and often increased afterload (hypertension), with maintenance of a high
output state at the expense of elevated right and left ventricular filling pressures
[18, 22, 23].

In obesity, the volume overload will lead to complex compensatory mechanisms
leading to left ventricular (LV) enlargement and hypertrophy. This is mainly due
to an increase in preload and afterload. The degree of change can be assessed with
echocardiography measuring the basal interventricular septum (IVST) and posterior
wall (PWT). With these variables a mathematical formula can be used to calculate
the left ventricular mass (LVM) [24]. Regularly, we can state that an increase in
wall thickness (defined by an increase in IVST, PWT) with a normal LVM leads
to concentric remodelling. Concentric hypertrophy is present, when there is an
increase in wall thickness and an increase in LVM [24]. Left ventricular remodelling
is induced by volume overload (either through an absolute increase of blood volume
or by the presence of hypertension) [23, 25–27]. Left ventricular dilatation is often
present in patients with obesity that will lead to increased diastolic and systolic
volumes [4, 22, 28]. Figure 18.1 gives an overview of cardiac structural changes.
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Fig. 18.1 Cardiac structural changes determined by left ventricular mass (LVM) index and relative
wall thickness in gm/m2 (RWT)

With regards to the effects of obesity on right ventricular dysfunction, there is less
attention and interest for compared to the function of the left ventricle. Therefore
the literature specifically investigating the right ventricular dysfunction is sparse. In
the study by Kardassis et al. [29] an increase in right myocardial performance index
was found. Also there was a significant difference in isovolumetric relaxation and
contraction time in patients with obesity compared to lean subjects. Furthermore,
patients with obesity had a significantly reduced RV ejection time compared to lean
subjects [29]. Rider et al. [30] found similar results in patients with obesity compared
to lean. They measured several parameters with MRI and found a significant greater
RV mass in patients with obesity together with RV end-diastolic and end-systolic
volumes. Interestingly there was no significant difference in RV ejection fraction
between obese and lean patients.

Obstructive sleep apnoea (OSA) and related sleep disordered breathing patterns
(like Obesity Hypoventilation syndrome (OHS)) can have a detrimental impact on
cardiovascular hemodynamic function. These conditions induce vascular changes,
in particular in the pulmonary vascular bed, mainly due to chronic hypoxia and
hypercapnia [18]. This results in pulmonary vasoconstriction, which will eventually
lead to higher pulmonary blood flow and finally pulmonary hypertension [18, 23].
These pathophysiological changes will lead to a significant trans pulmonary pressure
gradient with elevated left ventricular filling pressures [18, 23]. Finally hypertrophy
of the right heart will be induced andmight lead to right heart failure [26]. Figure 18.2
gives anoverviewof the cardiovascular andhemodynamic changes causedbyobesity.
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Fig. 18.2 Hemodynamic and structural changes due to obesity

Electrophysiological Influences of Obesity

Patients with obesity have an increased risk of developing ECG abnormalities and
heart rhythm disorders of which atrial fibrillation (AF) is the most common [31,
32]. As described earlier in this chapter, patients with AF have an increased risk for
developing cardiovascular morbidity and mortality [31, 32]. In the development of
AF, obesity plays a significant role and it is estimated nearly half of the incidence
of AF is due to obesity [33]. Pathophysiologically this is a complex multifactorial
mechanism that includes epicardial adipose tissue biology, ventricular adaptation
and well-known obesity related diseases like hypertension, obstructive sleep apnoea
syndrome (OSAS), type 2 diabetes mellitus (T2DM) [32, 33].

Pathophysiology

In the pathophysiology of obesity and AF we have to consider two separate patho-
physiological entities, namely the pathophysiology of AF in general and the patho-
physiology of AF in patients with obesity [5]. Unfortunately, after more than
100 years of research we still not fully understand the pathophysiological mecha-
nisms. One of the landmark studies in AF research is the work ofMoe and Abildskov
[34]. They formed the hypothesis that AF is basically the result of multiple coexisting
electrical wavelets that move through the atria of the heart [34].
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Secondly, AF is to be considered as a self-sustainable condition. This means
that a minimum number of electrical wavelets must excite a tissue volume. This
hypothesis was confirmed by Cox et al. [35] using the surgical MAZE procedure.
However with these hypotheses many questions still remain about several aspects of
which focal activity, wavebreak formation and re-entry are the most important. The
above-mentioned questions and hypotheses have led to the formulation of two main
theories that try to explain the complex mechanisms of wave propagation in AF.
Several studies indicate that high frequency activation of AF depends on electrical
dissociation. This leads to a complex multidirectional conduction between two or
more layers of the atrial walls [36]. Secondly there is the ‘rotor’ theory and ‘rotors’
are considered as localized re-entrant sources that generate electrical spiral waves
[37, 38]. These waves are induced with a high frequency and are moving away from
the rotor to interact with tissue irregularities. This results in one or more complex
patterns of ‘fibrillatory’ conduction waves [38].

When looking at the initiation of AF, there seems to be a different kind of mech-
anism. The study done by Haïssaguerre et al. [39] showed that atrial sleeves in
pulmonary veins are responsible for the majority of the ectopic triggers that initiate
AF. These findings were confirmed by many follow-up studies and even additional
ectopic trigger locations were found (e.g., the superior vena cava) [40]. These patho-
physiological studies increased knowledge and led to new treatment methods of
which electrical isolation of the pulmonary veins (PV) is the most important one.
This treatment method revolutionized the field and became the gold standard.

In pathophysiology of AF in obesity, there seems to be a clearer link between
structural changes and electrophysiological changes. This was found in post-mortem
studies of patientswith obesity that showed enlargement of the left atriumwas present
in nearly all of them [41–43]. However there are no clear prevalence numbers of left
atrial enlargement in patientswith obesity.We can hypothesize that left atrial enlarge-
ment/remodelling is a multifactorial mechanism that can be induced by factors like
duration of obesity, presence of comorbidities and a variety of metabolic effects
[44–47]. Left atrial remodelling and the size of the left atrium are considered to be
an important factor in AF in patients with obesity. There are multiple studies that
show significant differences in left atrial size between patients with obesity and lean
subjects [48–50]. Stritzke et al. [51] performed a 10-year longitudinal study that
indicated that hypertension and obesity were independent predictors for left atrial
enlargement. After adjustment for age and gender, obesity was shown to be an even
more potent predictor [51]. These findings were substantiated in a study done by
Tang and colleagues [52]. They investigated and followed a cohort of 3,248 patients
with paroxysmal AF for 21 years and found that BMI and left atrial volume signifi-
cantly predicted the development of permanent AF [52]. In studies investigating the
correlation between obesity and left atrial enlargement and its relation to AF there
might be discrepancies in the results. This is mainly due to the methods used to
assess the size of the left atrium. Also the multifactorial mechanisms in obesity and
AF development need to be taken into account [53, 54].
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Treatment

The treatment of obesity and AF is a process benefitted from a multidisciplinary
approach. Capehorn et al. [55] introduced a 4-tier framework to treat overweight and
obesity and this framework can also be used as blueprint for the multidisciplinary
treatment of patients with AF (and obesity). The first part is often a consultation
of the general physician who can give a basic set of lifestyle adjustment and can
start treatment of possible obesity related diseases. The second tier is often a more
intensified lifestyle management program, very often in a group setting. Tier 3 is
and intensified program. These programs incorporate physical exercise, cessation of
smoking and alcohol, possible medication adjustments and a structured nutritional
program. Tier 4 is basically a referral to a bariatric surgical team due to a complex
and severe form of obesity. These patients have a BMI > 40 kg/m2 or BMI > 35 kg/m2

with obesity related comorbidities, which mandate surgical treatment [55].
In the treatment of AF, multidisciplinary treatment strategies also play a pivotal

role, especially in patients with cardiac arrhythmias and obesity [50, 56]. Several
studies indicated that AF might be reversible after multidisciplinary treatment [50].
In the study by Abed and colleagues weight reduction showed to be beneficial in
regressing LV hypertrophy, reducing LA size and eventually reversal of AF [50].
This program showed to be effective in patients with obesity. Also in patients with
overweight (BMI between 25 and 30 kg/m2) aggressive cardiovascular risk reduction
and weight management leads to a reduction in AF associated parameters (like left
atrial volume, LV hypertrophy) and to greater arrhythmia-free survival after catheter
ablation [57].

Lifestyle Management

Lifestyle management has been shown to be beneficial in the improvement of
metabolic profiles of patientswith obesity and other associated diseases [5, 58]. These
programs should be focussed on optimizing blood pressure levels, glycaemic control
and lipid profile and finally overall physical fitness [59, 60]. Studies by Pouwels
indicated that there might be an added benefit of exercise programs in periopera-
tive bariatric practice [58, 61]. Exercise programs can give a significant reduction in
cardiovascular risk factors, but will also increase physical fitness. These programs
can be easily used in the multidisciplinary treatment of patients with overweight or
obesity andAF, not (yet) ready for bariatric surgery [58, 61]. Secondly, several comor-
bidities like cardiomyopathy and OSAS will improve if adequate weight reduction
is achieved [62, 63]. We can postulate that improvement of these conditions might
lead to reverse cardiac remodelling, however further studies are need to substantiate
this hypothesis.

In multiple studies weight reduction is correlated with an improvement in cardiac
function in particular improvements in oxidative stress [64], adipokine profile [65],
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inflammatory milieu [66, 67] and microvascular fibrosis [68]. Next to these effects,
weight reduction can also be beneficial in inducing electrophysiological changes [44,
69]. Gaborit et al. [70] performed a magnetic resonance imaging study and showed
a reduction in epicardial fat volume in patients with obesity that lost weight. It can
be stated that moderate physical activity and possibly avoiding weight gain might
be a preventative strategy for AF. This strategy can also be beneficial in reducing
recurrences after the first episode AF [71]. The most important study in this matter is
the CARDIO-FIT study by Pathak et al. [71]. In this study 1-MET higher cardiores-
piratory fitness at baseline was correlated with a reduction of AF recurrence risk of
13% [71].

Bariatric and Metabolic Surgery

In the era of increasing numbers of patients with morbid obesity and rhythm disor-
ders, there is a place for bariatric and metabolic surgery in its treatment. Several
studies showed beneficial effects of bariatric andmetabolic surgery on cardiovascular
diseases, but the underlying mechanism is not entirely understood [4, 72]. It is postu-
lated that themechanismmight have two components (1) aweight-dependent compo-
nent (e.g. weight loss, circulating volume) and (2) a weight-independent component
(inotropic hormones, like GLP-1) that might induce cardiac remodelling [4, 5].

In the last few years there has been an increasing number of studies investigating
the incidence of ECG abnormalities in patients with obesity and its resolution after
bariatric and metabolic surgery [11, 12, 44, 69, 73–77]. The majority of these studies
show a significant reduction of ECG abnormalities after surgery, either with the
QT interval, QT interval dispersion or P-Wave or P-wave dispersion, irrespective of
the type of surgical procedure and duration of follow-up [11, 12, 44, 69, 73–77].
Peiser et al. [78] investigated the occurrence of cardiac arrhythmias in patients with
OSA and obesity. They showed a drastic decrease in incidence of sinus bradycardia,
premature atrial and ventricular complexes, sinus arrhythmias and heart blocks [78].
Despite impressive numbers, no statistical analysis was done on these numbers and
therefore it is unknown whether these results were statistically significant.

Regarding AF conflicting results exist after bariatric and metabolic surgery. In
several studies AF related morbidity and hospital admissions were investigated [14,
15, 79, 80]. Donnellan et al. [14] AF recurrence was investigated in two groups: (1)
group of patients that had bariatric surgery prior to ablation and (2) group patients
that only had ablation. They showed that the bariatric surgery group had an AF
recurrence rate of 20% compared to 61% in the control group (p < 0.0001) [14]. The
frequency of repeat ablation was also significantly different in favour of the bariatric
surgery group (6 patients (12%) versus 77 patients (41%) in the control group (p <
0.0001)) [14]. Jamaly et al. [15] investigated the frequency of new onset AF in the
patients that were originally included in the Swedish Obese Subjects (SOS) study. In
19 years of follow-up, 247 patients (12.4%) in the surgery group versus 340 (16.8%)
in the non-surgery group developed new onset AF (HR 0.71; 95% CI 0.60−0.83; p
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< 0.001) [15]. In the study by Shoemaker et al. [79] investigated the prevalence and
predictors of AF in a cohort of 1341 patients who underwent bariatric surgery from
1/2008 to 10/2012. In this cohort the prevalence of AF was calculated and 1.9% of
the study population developed AF. The patients with AF were significantly older
(median 56 versus 46 years p < 0.001). More males developed AF (p = 0.004) and
the patients with AF had a higher rate of comorbidities (DMII p = 0.02, HT p =
0.002, CAD p= 0.002, CHF p < 0.0001 andOSA p < 0.001) [79]. However, Shimada
et al. [80] showed contradicting results. They investigated the AF related Emergency
Department (ED) visits and rate of hospitalization due to AF in a population that
had bariatric surgery. During the first 12 months after bariatric surgery there was an
increased risk of ED visit of hospitalization for AF (22.8%; 95% CI: 19.1−26.4%)
with an OR of 1.53 (95% CI: 1.13−2.07; p = 0.006). Between 13 and 24 months
after bariatric surgery there are still elevated risks (21.2%; 95% CI: 17.7−24.7%),
corresponding to an OR of 1.41 (95% CI: 1.03−1.91; p = 0.03) [80].
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Chapter 19
Estradiol Benzoate Ameliorates
Obesity-Induced Renal Dysfunction
in Male Rats: Biochemical
and Morphological Observations

Amrit Pal Singh, Manjinder Singh, Tajpreet Kaur, Harpal Singh Buttar,
Sarvpreet Singh Ghuman, and Devendra Pathak

Abstract Obesity-induced renal dysfunction is a potential risk factor for causing
cardiometabolic diseases, but the underlying mechanism remains unclear. Present
studywas designed to evaluate the protective role of estradiol benzoate in high fat diet
(HFD)-induced renal dysfunction in male rats. Six groups of rats (7 animals/group)
were randomly assigned to different treatment groups. Adult male and female rats
were fed high fat diet (HFD) containing 30% fat for 12 consecutive weeks. One
group of male rats simultaneously received daily injections of estradiol benzoate
(50 and 100 μg/kg/day, i.p.) over 12 weeks. HFD-induced obesity was assessed
by calculating obesity index, adiposity index, and serum lipid profile. Renal func-
tion was determined by measuring creatinine clearance, serum urea, uric acid, elec-
trolytes, and microproteinuria. Serum estradiol level and systolic blood pressure
(SBP) were measured using standardized techniques. Hydroxyproline content was
quantified in the kidneys to estimate collagen deposition. Renal oxidative stress was
measured through quantification of thiobarbituric acid reactive substances, super-
oxide anion generation and reduced glutathione levels. Hematoxylin and Eosin and
special Picrosirius red staining of the isolated kidney tissues was done to observe
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changes in gross morphology, glomerular volume and collagen content, respectively.
As opposed to the control group, HFD-fed rats demonstrated significant increase in
obesity and adiposity indices, lipid profile, SBP and renal dysfunction along with
increased hydroxyproline content and oxidative stress in the renal tissues. HFD also
caused marked increase in SBP in both sexes. Biochemical and histological studies
revealed that the males exposed to HFD were more susceptible to renal dysfunction
than females. However, estradiol benzoate administration tomale rats showed protec-
tion against HFD-induced renal dysfunction accompanied by significant reductions
of SBP, renal oxidative stress and fibrosis. It is concluded that estradiol protects
against HFD-induced hypertension and renal dysfunction in male rats. To the best of
our knowledge, we are the first ones to report the renal protective action of estradiol in
male rats exposed to chronically fed HFD.While the findings of this study cannot be
directly extrapolated to humans, nevertheless, the renoprotective effects of estradiol
warrant verification in obese men suffering from acute renal malfunction.

Keywords Estradiol benzoate · High fat diet · Renal dysfunction · Hypertension ·
Oxidative stress · Obesity-induced nephropathy · Renoprotection by estradiol

Introduction

According to theWHO estimates, global prevalence of obesity has doubled in the last
25 years [1]. Obesity is a rapidly growing public health problem both in developed
and developing countries affecting around 600 million people that constitutes nearly
13% of adult population worldwide [1]. One-third of adults and one-sixth of young
obese children live in America alone [2]. There is an escalating trend of obesity
among adult men and women in south Asian countries [3]. In India, obesity has
become an important public health issue affecting around 25–44% of adult urban
population [4]. Obesity-related cardio-metabolic disorders, including nephropathy
and poor quality of life, and employee absenteeism put high economic burden on the
healthcare costs worldwide.

While the total amount of white adipose tissue (WAT) in lean adult men or
women consists of about 20%, the quantity of WAT can increase >40% in obese
humans. WAT secretes a wide range of adipokines, inflmmatory cytokines and inter-
leukins (IL6, IL8). Adipokines regulate appetite, insulin sensitivity, angiogenesis,
blood pressure, and immune response. Obesity-induced up-regulation of inflam-
matory cytokines is linked with pathological conditions such as atherosclerosis,
hypertension, hyperlipidemia, heart attack, stroke, and various types of cancers.

The unhealthy dietary habits, increased intake of calorie-rich foods, high
consumption of sugar and sugar loaded drinks, and sedentary lifestyles are consid-
ered the main reasons for causing obesity. The unmanaged obesity leads to various
chronic disorders such as type II diabetes, hyperlipidemia, cardiometabolic diseases,
stroke, fatty liver, breathing problems, neurodegenerative disorder and some cancers
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[5]. Obesity is also one of the well-recognized risk factor for causing renal compli-
cations [6, 7]. Obese men and women not only suffer from an enhanced incidence
of oxidative stress, but also the large amount of adipose tissues in the body produce
high levels of pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α),
interleukin-6 (IL-6), adipokines, leptin, resistin, and a reduction in adiponectin that
provokes renal damage [8–10]. It has been reported that obesity-induced hyperlipi-
demia, hyperglycemia, and hypertension cause pathological changes in the renal
vascular endothelial cells, and produce glomerular interstitial cell proliferation and
nephropathy [10]. As mentioned earlier, the white adipocytes secrete a wide array of
bioactive substances that cause activation of renin-angiotensin-aldosterone system,
enhance sympathetic activity, and produce hemodynamic alterations which invoke
obesity-related cardiovascular and renal complications [6]. Somebiochemical factors
considered to be involved in obesity-induced nephropathy and renoprotection by
estradiol are displayed in Fig. 19.5.

Inwomen, ovarian hormones are essential for reproduction andbone development.
Estrogens strongly influence adipocyte differentiation and body fat distribution.Also,
estrogen hormones play an important role in maintaining body homeostasis and
kidney function and renal hemodynamics. Postmenopausal women are more suscep-
tible to body fat accumulation, development of metabolic syndrome, and onset of
cardiovascular diseases. Obesity-induced lesser nitric oxide production can influence
the local renin-angiotensin system, release of growth factors, cytokines as well as
proliferation of mesangial cells [11]. Two distinct types of estrogen receptors ER-α
and ER-β have been identified in various parts of the nephron, suggesting the role of
estrogen in regulation of renal function. ER-α is present on the podocytes, whereas
ER-β is expressed on the ascending loop and distal convolute tubules of the nephron.
Clinically speaking, men are more prone than women to renal complications arising
from multifactorial etiologies. It appears that in women, estrogens play an important
function in combating renal damage or kidney dysfunction [12–14]. Estrogen defi-
ciency inmenopausal women and in experimental animals (e.g. mice) has been noted
to induce obesity and skeletal abnormalities [15, 16].However, information regarding
the renoprotective effects of estrogen in obesity-induced renal dysfunction in obese
men and women is lacking. Animal studies have indicated that estrogen treatment
protects against surgical- and drug-induced renal injuries,which are attributedmainly
to the anti-inflammatory and anti-oxidant properties of estrogens [14, 17, 18]. The
renoprotective actions of estrogen in high fat diet (HFD)-induced renal pathology
has never been explored. Therefore, the present study was designed to investigate
the renoprotective role of estradiol benzoate against HFD-induced renal dysfunction
in male and female rats.

Materials and Methods

Adult Wistar albino rats of both sexes weighing 225–250 g were employed in
the present study. Animals were kept under standard animal husbandry conditions
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and were maintained on group specific diet and water ad libitum. Normal diet
contained fat (5%), carbohydrates (85%) and proteins (10%) as macronutrients,
whereas the HFD consisted of fat (30%), carbohydrates (60%) and proteins (10%)
as macronutrients.

Drugs and Chemicals

Estradiol benzoate was procured from Macmillon Pharmaceuticals Ltd., India.
Picrosirius red was purchased from Sigma Aldrich, India. All other reagents used
were of analytical grade.

Experimental Protocol

Six groups of rats, each containing 7 animals, were randomly assigned to various
study groups. Group 1 and 2 (Control males and females) were fed on normal diet.
Group 3 and 4 (HFD males and females) were given HFD for 12 consecutive weeks.
Group 5 and 6 (HFDmales+ estradiol) were treated with estradiol benzoate (50 and
100 μg/kg/day, i.p.) and fed on HFD for 12 weeks.

At the end of 12th week, the rat urine was collected by placing them in metabolic
cages. Then, the rats were removed from cages, weighed and their naso-anal length
was recorded. Animals were anaesthetized with ketamine, the blood samples were
collected using retro-orbital puncture and were sacrificed by cervical dislocation.
The perirenal fat, retroperitoneal fat and epididymal fat was isolated and weighed.
Serum separated from coagulated blood and urine samples were used for various
biochemical estimations. Immediately after the animal’s sacrifice, the kidneys were
removed, weighed and washed with 1.17% potassium chloride (KCl) solution. Small
portions from each kidney were used for estimation of superoxide anion generation
(SAG) and hydroxyproline content, and the rest of tissue was minced and homoge-
nized in 1.17%KCl solution (10%w/v) using teflon homogenizer. The contents were
centrifuged at 800 × g for 20 min to remove cellular debris and then re-centrifuged
at 11,000 × g for 20 min. The clear supernatant was used to estimate lipid peroxides
and reduced glutathione (GSH) levels. A small part of kidneys was preserved in 10%
neutral buffered formalin (NBF) for histological studies.

Morphological Assessment of Obesity

Obesity index and adiposity index was calculated. Obesity index was calculated
as cube root of body weight (g)/nasoanal length (mm) × 104. Adiposity index =
(perirenal fat + retroperitoneal fat + epididymal fat/body weight) × 100.
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Estimation of Lipid Profile and Glucose Level

Serum cholesterol, triglyceride, high density lipoprotein (HDL) and glucose levels
were estimated in serum samples by using commercially available kit by Delta
Lab and Transasia Biomedicals Ltd, India. Results were expressed as milligram
per decilitre of serum.

Estimation of Renal Parameters

Estimation of creatinine in serum and urine samples was done by using
commercially available kit by Avecon Healthcare Pvt. Ltd., India. Creatinine clear-
ance (CrCl) was calculated as: CrCl = [Urine creatinine × urine volume/serum
creatinine × 24 × 60 × animal wt] and the results were expressed as millilitre per
minute per kilogram of rat body weight. Urea and uric acid levels were estimated in
serum by using commercially available kit by Span Diagnostics Ltd. and Precision
Biomed Pvt Ltd. India, respectively and the values were expressed as milligram per
decilitre of serum. Potassium and sodium level in serum and urinary microproteins
and sodium was assayed using commercially available kits by Crest Biosystems,
India. Potassium level was expressed as millimoles per litre of serum.

The FeNa was calculated by using formula [FeNa = urine sodium × serum crea-
tinine × 100/serum sodium × urine creatinine]. Results of FeNa were expressed as
percentage change in the values. The microproteinuria was expressed as milligram
per day excretion.

Estimation of Serum Estradiol

Serum estradiol was estimated by using commercially available kit by DIA-source
Immunoassays, Belgium. The results were expressed as nanogram estradiol/ml of
serum.

Assessment of Systolic Blood Pressure (SBP)

The SBP in rats was measured at the start and end of experimental period using
non-invasive blood pressure measuring apparatus (Kent Scientific, USA).
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Estimation of Renal Hydroxyproline Content and Oxidative
Stress in Renal Tissues

Renal hydroxyproline content was estimated using well established method [19].
The hydroxyproline concentration was expressed as milligram per gram of tissue.
Quantification of lipid peroxides measured in terms of thiobarbituric acid reactive
substances (TBARS), SAG andGSHwas done bymethods described elsewhere [19].

Histological Studies

Kidneys sections preserved in 10% NBF were dehydrated in graded concentrations
of ethanol, immersed in xylene and then embedded in paraffin. The 5 μm sections
were cut and stained with haematoxylin–eosin to observe gross histological changes
and to measure glomerular volume as an index of glomerular hypertrophy as per
standardized procedure [20]. The picrosirius red stainingwas done towitness fibrosis
in renal tissues.

Statistical Analysis

Data obtained from various groupswere statistically analyzed using oneway analysis
of variance followed by Tukey–Kramer post hoc test. The p < 0.05 was considered
to be statistically significant. Results were expressed as mean ± standard error of
mean.

Results

No significant differences were observed in the serum and tissue parameters between
control female and male rats. Therefore, the data of control male rats were used for
statistical comparison with the treated group.

Effect of Estradiol Treatment on Morphological Parameters

The HFD exposure produced significant increases in obesity and adiposity indices
in male and female rats. However, the HFD-induced increase in both obesity param-
eters was markedly lesser in females than that of male rats. Estradiol treatment
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profoundly attenuated HFD-induced escalation in obesity and adiposity index in a
dose dependent manner in male rats (Table 19.1).

Effect of Estradiol Treatment on Lipid Profile and Glucose
Level

Both males and female rats fed on HFD demonstrated significant changes in lipid
profile showing higher levels of cholesterol and triglycerides accompanied by reduc-
tion in HDL level. Results displayed in Table 19.1 show that HFD exposure caused
more profound changes in lipid profile of males than females, and this effect
was markedly attenuated with estradiol treatment in male rats. Similarly, gender
related trend was witnessed in the glucose concentration as observed in lipid profile
(Table 19.1).

Effect of Estradiol Treatment on Renal Parameters

As compared to control group, rats fed on HFD for 12 weeks depicted significant
reduction in CrCl along with increase in serum urea, uric acid, potassium, FeNa
and microproteinuria (Fig. 19.1). The HFD-induced changes in renal parameters
were more pronounced in males than females. Interestingly, the estradiol treatment
abolished HFD-induced renal damage in a dose dependent manner in male rats.

Serum Concentration of Estrogen

As was expected, the control females showed significantly higher levels of estrogen
in comparison to control males. HFD exposure did not alter the serum estrogen
levels in neither males nor females. However, estradiol injection in male rats caused
a significant increase in serum estradiol as compared to their control counterparts
(Fig. 19.2).

Effect of Estradiol Treatment on Systolic Blood Pressure (SBP)

Figure 19.2 shows that SBP of both male and female rats was significantly increased
after 12 weeks of HFD exposure. No statistically significant difference was observed
in the SBPofHFD fedmales and females. Estradiol treatment significantly attenuated
SBP in HFD fed males in a dose dependent manner (Fig. 19.2).
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Fig. 19.1 Effects of estradiol benzoate treatment on renal parameters in male and female rats.
Values represent mean± S.E.M. a= p < 0.05 versus control male; b= p < 0.05 versus HFDmale; c
= p < 0.05 versus HFD female; d = p < 0.05 versus HFD + estradiol benzoate male (50 μg/kg/day)

Effect of Estradiol on Renal Hydroxyproline and Oxidative
Stress Parameters

Renal hydroxyproline level was markedly increased in HFD fed rats as compared to
control group. Obese males had more hydroxyproline content in their kidneys than
obese females. Marked reduction in renal tissue hydroxyproline was noted after the
concomitant administration of estradiol in HFD fed animals (Fig. 19.2).

When compared with the control group, the obese rat kidneys revealed significant
oxidative stress as depicted by increase in TBARS and SAG accompanied by reduc-
tion in GSH content. As observed in other parameters, the renal oxidative stress in
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Fig. 19.2 Effects of estradiol benzoate treatment on serum estradiol level, SBP, renal hydroxypro-
line content and glomerular volume in male and female rats. Values represent mean ± S.E.M. a =
p < 0.05 versus control male; b = p < 0.05 versus HFD male; c = p < 0.05 versus HFD female; d
= p < 0.05 versus HFD + estradiol benzoate male (50 μg/kg/day)

obese females was markedly lesser than obese males. Simultaneous treatment with
estradiol benzoate significantly attenuated HFD-induced oxidative stress in male rats
(Table 19.2).

Histological Examination of Renal Tissues Collected
from Various Groups

Hematoxylin and eosin stained renal tissues fromcontrol rats showednormal integrity
of glomerulus surrounded byBowman’s capsule and convoluted tubules. On the other
hand, renal tissues collected from the HFD fed rats showed histological changes such
as detachment of basement membrane from glomeruli, neutrophil accumulation and
increase in tubulointerstitial space along with tubular dilation. Profound glomerular
hypertrophymeasured in terms of glomerular volumewas observed inHFD fedmales
and females as compared to their control counterparts. Estrogen treatment attenu-
ated HFD-induced increase in glomerular volume and other histological changes in
rat kidneys (Figs. 19.2 and 19.3). Renal tissues stained with picrosirius red demon-
strated marked deposition of collagen at glomeruli and convoluted tubules that was
ameliorated with estradiol treatment in male rats (Fig. 19.4).
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Fig. 19.3 Histopathology of H & E stained renal sections at 200× magnification. a control male;
b control female; c HFD male; d HFD female; e HFD + estradiol benzoate male (50 μg/kg/day);
f HFD + estradiol benzoate male (100 μg/kg/day)

Fig. 19.4 Histopathology of picrosirius red stained renal sections at 200×magnification. a control
male; b control female; c HFD male; d HFD female; e HFD + estradiol benzoate (50 μg/kg/day);
f HFD + estradiol benzoate male (100 μg/kg/day)

Discussion

Obesity is considered a major risk factor for cardiovascular, renal, and
cardiometabolic disorders. Renal injury has been reported in rats given fat rich diet for
12 weeks [21]. Our results corroborate the findings of previous investigators, since
rats given 30% HFD for 12 weeks showed marked renal dysfunction and fibrosis
with significant increase in lipid parameters, SBP and kidney oxidative stress both
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in male and female rats. However, the renal toxicity was more pronounced in males
than that of females. Exogenous administration of estradiol to males demonstrated
protection against HFD-induced renal injury. To the best of our knowledge, we are
the first ones to report the renal protective action of estradiol in male rats exposed to
chronically fed high fat diet.

The gender related results of various preclinical and clinical studies have shown
that the males are more vulnerable than females towards renal complications arising
from various etiologies [12, 13]. The estrogen is considered to have anti-oxidant
and anti-inflammatory effect. Estradiol’s protective effect on mesangial cells and
in glomerulosclerosis was noted by decreased growth factors in rat remnant kidney
[17]. Estradiol also protected ischemia reperfusion induced kidney injury in rats by
curtailing overproduction of endothelin-1 [22].

The present study showed greater obesity index, adiposity index and lipid profile
in obese males than obese female rats (Table 19.2). Body fat is primarily stored
in two type of adipose tissues, namely white adipose tissues (WAT) and brown
adipose tissue (BAT). The WAT serves as a depot for release of free fatty acids
and adipokines consisting of leptin and resistin that cause suppression of appetite
and reduce insulin sensitivity, respectively. The BAT has large number of mito-
chondria containing uncoupling protein-1 (UCP-1), and is involved in body heat
production [15]. The BAT also activates peroxisome proliferator activated receptor-
γ, thereby improving metabolism of body fat [23]. An imbalance between WAT and
BAT leads to obesity by accumulating fat in visceral and retroperitoneal tissues.
Generally, obese females demonstrate higher expression of BAT than males [24].
Such phenomenon may have accounted for low obesity index and adiposity index
observed in obese females as compared to obese males in the present study. Estrogen
hormone increases mitochondrial BAT and over expression of UCP-1 that affords
suitable justification for reduction of obesity and adiposity index in estradiol treated
male rats as compared to control group in our study [25]. However, further studies
focusing on quantification of WAT and BAT content and expression of UCP-1 with
estrogen treatment in obese animals are required to prove this hypothesis. The DNA
microarray analysis has revealed that females have greater fat clearing capacity in
their skeletal muscles through activation of genes encoding for enzymes involved in
fatty acid beta-oxidation [26].

Our results demonstrated higher serum glucose levels in obese rats than controls
(Table 19.1). The increase in resistin and decrease in adiponectin level contributes
towards obesity-induced insulin resistance and down regulation of the expression
of glucose transporters, thereby preventing glucose entry into cells that leads to
hyperglycemia [9, 27].Obese females showed lesser hyperglycemia than obesemales
that may be attributed to the fact that significantly decreased levels of adiponectin are
reported in obese females as compared to males [28]. Estradiol treatment resulted in
lowering of glucose levels in male rats (Table 19.1). The estrogen is documented to
reduce the resistin level, thereby increasing insulin sensitivity of the cells [29].

Our results highlighted marked increase in systolic blood pressure (SBP) in obese
rats as compared to normal rats (Fig. 19.2B). Various factors such as activation of
renal sympathetic system, renin angiotensin system, angiotensin converting enzyme
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(ACE) as well as of angiotensin receptors and increased oxidative stress are docu-
mented to account for obesity-induced increase in blood pressure in various studies
[30, 31]. The increase in endothelin-1 is noted to contribute towards endothelial
damage and consequent increase in blood pressure [32]. Treatment with estradiol
markedly attenuated SBP in obese rats. The estrogen treatment is noted to reduce
activity of ACE activity and AT-1 receptors along with increase in synthesis of
vasodilator peptides [33, 34]. Estradiol up-regulates the expression of endothe-
lial nitric oxide synthase (eNOS), which leads to vasodilatation through enhanced
production of nitric oxide (NO) and reducing sympathetic tone [34]. The estrogen
increases the level of prostaglandin E2 and cGMP level that mediated vasodilatation
in kidneys [35]. Increased leptin levels in obesity leads to activation of sympathetic
nervous system that contributes to obesity-induced hypertension [36]. Estrogen is
noted to reduce leptin level, improve leptin sensitivity and to modulate leptin recep-
tors [37]. Such action might have accounted for estrogen mediated anti-hypertensive
effect in obese rats. However, a separate study is needed to evaluate this hypothesis.

A marked decrease in CrCl along with increase in serum urea, uric acid, elec-
trolytes, and microproteinuria demonstrated obesity-induced renal dysfunction in
male and female rats, and these parameters were significantly attenuated by estra-
diol treatment of male rats (Fig. 19.1). The hyperlipidemia leads to renal damage by
executing changes in glomeruli and renal vasculature with increase of intimal thick-
ening and narrowing of the lumen of renal blood vessels. The activation of sympa-
thetic nervous system and the renin-angiotensin-alodeosterone system contributes
towards hypertension in renal disease that further damages the kidneys. The hyper-
lipidemia and hypertension are noted to produce glomerular injury and podocyte
damage [38]. The estrogen receptors are present on podocytes and their activation
leads to improvement of renal function, marked by decreased proteinuria [38, 39].

The serum levels of estrogen did not change significantly with HFD in both male
and female rats (Fig. 19.2A). Interestingly, we observed that obese rats treated with
low dose of estradiol demonstrated almost similar levels of serum estrogen levels as
compared to obese females with no significant change in various parameters between
the two groups. The results in both groups, viz,HFD fed females and HFD fed males
treated with low dose of estradiol benzoate were markedly less than HFD fed obese
males, which highlight the role of estrogen as renoprotective agent in both sexes.

The elevation in TBARS and SAG, and reduction of GSH in kidneys of obese
rats indicated marked oxidative stress as compared to the controls (Table 19.2). The
generation of highly reactive oxygen species (ROS) in kidneys contributes causing
damage in glomerular, podocyte and tubulo-interstitial cells [40, 41]. The activated
RAS elevates the activity of NAD(P)H oxidase enzyme that in turn increases the
production of ROS [42]. It has been reported that obesity associated hyperglycemia
and raised angiotensin-II levels alter the level of cytokines through activation of
protein kinase C, mitogen activated protein kinase and nuclear factor kappa-B that
further lead to oxidative stress [7]. The adipocytes interact with macrophages and are
able to secrete inflammatory cytokines such as TNF-α, IL-1 and IL-6, that are well
documented to produce oxidative stress throughmultiple pathways [7, 9]. The obesity
is considered an inflammatory disorder that provokes the infiltration of neutrophils.
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Hematoxylin and Eosin staining demonstrated marked neutrophil infiltration in renal
tissues of obese rats (Fig. 19.3). The mast cell stabilizers are known to ameliorate
obesity-induced renal dysfunction in rats, thereby adding to the inflammatory aspect
of obesity associated renal complications [43]. The HFD fed females seem to suffer
from lesser oxidative stress than males as seen in our study. The estradiol adminis-
tration attenuated HFDmediated renal oxidative stress in male rats (Table 19.2). The
elevated oxidative stress observed in post-menopausal women clearly indicates that
estrogens play an important role in controlling oxidative stress [44]. The estrogens
are also reported to reduce renal NAD(P)H oxidase activity [45].

Nearly 12.5% of collagen is constituted by hydroxyproline and its increased level
in tissues is an indicator of tissue fibrosis. Our results demonstrated marked increase
in renal fibrosis in HFD fed rats as compared to the controls. This effect was amelio-
rated in estradiol treatedmale rats (Figs. 19.2 and19.4). Transforminggrowth factor-β
(TGF-β) is a cytokine that is involved in causing fibrosis, and obesity is documented
to increase TGF-β level in kidneys [46]. on the other hand, estradiol is reported to
curtail TGF-β level in other models of renal injury [47].

Obesity and hypertension play synergistic role in the development of renal compli-
cations. The bioactive molecules released from white adipocytes appear to cause
hypertension through renin-angiotensin induced constriction of renal blood vessels,
activation of RAS, and enhanced sympathetic tone [30]. The obesity-induced hyper-
tension in turn causes damage in renal tissues.Estrogen treatment is reported to reduce
blood pressure in animal models of hypertension through reduction of endothelins
and increased production of eNOS [48, 49]. The estrogens ameliorate renal injury
through their anti-inflammatory and anti-oxidant potential [17]. The results of this
study also showed that estradiol treatment not only caused reduction in systolic blood
pressure but also lessened obesity-induced renal injury in male rats. Further studies
are warranted to enhance our understanding about the biochemical and morpholog-
ical mechanisms involved in the estradiol-induced amelioration of kidney failure
observed in obese patients as well as reduction of obesity-related cardiovascular
complication.

In summary, continuous exposure to HFD for 12-weeks produced marked hyper-
tension, oxidative stress, and significant morphological injury especially in the
kidneys of male rats than their female counterparts. Simultaneous daily administra-
tion of estradiol benzoate (50 and 100 μg/kg/day, i.p.) to male rats for 12-weeks
protected against HFD-induced hypertension and renal dysfunction. Figure 19.5
summarizes the hypothetical mechanism of renoprotective action of estradiol
benzoate inmale rats. Further studies are needed to understand the underlying cellular
and molecular mechanisms of estradiol’s renoprotective actions.

While the findings of this study provide important clues about the renoprotec-
tive effects of estradiol, these findings cannot be directly extrapolated to humans.
Nevertheless, the renoprotective effects of estradiol warrant verification in obese
men suffering from acute renal dysfunction malady.
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Fig. 19.5 Diagrammatic illustration of pathophysiological mechanisms involved in obesity-
induced renal damage and reversal by estradiol benzoate treatment in male rats
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Chapter 20
Biochemical, Metabolic and Clinical
Effects of Intermittent Fasting
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Abstract Periods of voluntary abstinence from food and drink has been practiced by
different civilizations around the world for religious and other reasons for centuries.
Obesity is a global pandemic and prevalence is on the rise. It has beenwell proven that
the obesity increases the risk of cardiovascular disease, malignancy and premature
death. Multiple strategies for weight loss have been investigated and energy restric-
tion is one of the popular and effective method. Two common types of energy restric-
tion are caloric restriction and intermittent fasting. Restriction of energy consumption
by fasting would likely help in weight loss despite the regimen used and adhering to
the most practical regimenmay be the appropriate decision. Overall effects of energy
restriction are decrease in inflammation, blood pressure, blood glucose levels and
increase in insulin sensitivity and antioxidants. Increase in physical activity has enor-
mous health benefits and must be combined with caloric restriction to achieve clini-
cally significant weight loss and to sustain weight loss. Although the positive effects
of energy restriction are remarkable, we should not forget undernutrition component
of malnutrition continues to remain as a global cause of death and disease. Overall,
appropriate intake of calories and nutrients necessary to meet our daily requirements
would promote health and longevity and either excess or lower amount of calorie
intake could result in adverse events.
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Introduction

Periods of voluntary abstinence from food and drink has been practiced by different
civilizations around the world for religious and other reasons for centuries. Obesity
is a global pandemic and the prevalence is expected to rise in the next few decades.
One of the major causes of obesity is passive overconsumption of energy due to
affordable, readily available, processed calorie dense food along with significant
drop in physical activity. It has been well proven that obesity increases the risk of
cardiovascular disease, malignancy and premature death [1]. Multiple strategies for
weight loss have been investigated which include fat restriction, increasing physical
activity, behavior modification, high fiber intake and importantly energy restriction
[2]. Two common types of energy restriction are caloric restriction and intermittent
fasting. Caloric restriction is reduction in daily caloric intake by 20–40% over a
long period of time without any prolonged periods of fasting. Intermittent fasting
is periods of voluntary abstinence from food and drinks as a measure to decrease
overall energy intake. Dietary energy restriction has been associated with excellent
health benefits in multiple early animal studies performed few decades ago [3, 4].
Similarly, health benefits of intermittent fasting have been described in rats as early as
1980s [5]. Although we use the broad term of ‘intermittent fasting’, different studies
have used different regimens to demonstrate the health benefits.

Regimens of Intermittent Fasting

Two common types of intermittent fasting are alternate day fasting and time restricted
feeding, although there are multiple modified intermittent fasting regimens used in
different studies. Alternate day fasting is abstinence from food for 20–28 h followed
by a day of ad libitum feeding. Time restricted feeding is a concept where there is
12–16 h fasting from food every day to restrict the number of meals in a day. James
Neel’s ‘thrifty gene hypothesis’ claims ancient humans went through cycles of feast
and famine and hence humans are genetically efficient at storing excess energy and
utilize it during famine. Halberg et al. based his study on this hypothesis and tested
whether the fluctuations in energy intake is required in humans for optimal metabolic
function. 20 h of fasting in healthy individuals showed increase in insulin mediated
glucose uptake [6]. This is an example of alternate day fasting. Stote et al. performed a
randomized crossover design study where participants were assigned to 1 meal/day
or 3 meals/day group. Health effects of time restricted feeding on this study was
mixed. Some other studies have used modified regimens like Harvie et al. where one
group used intermittent energy restriction (~2700 kJ/day for 2 days a week) and the
other group used continuous energy restriction (25% restriction for 7 days a week).
Authors concluded that intermittent energy restriction almost had the same effects
as continuous energy restriction and could be used as an alternative [7]. Patterson
et al. reviewed 16 different fasting interventions and noted 11 of them reported
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statistically significant weight loss [8]. Overall, restriction of energy consumption
by fasting would likely help in weight loss despite the regimen used and adhering to
the most practical regimen may be the appropriate decision.

Effects of Fasting in Animal Studies

Multiple animal studies have interrogated different health effects of fasting. Funes
et al. noted rapid changes in gastrointestinal tract within 36 h of fasting in sparrows
and atrophic changes noted on small intestine could be adaptive response expecting
refeeding [9]. Intermittent fasting increased the mRNA expression and IgA levels
in intestines promoting bacterial clearance in mice [10]. Immune response to viral
mimic intraperitoneal injection was exaggerated when measured using IL-6, IL-10,
IFN-� and TNF-alpha [11]. Telemetric analysis of heart rate in rats were performed
by Mager and team [12]. Decrease in body weight, heart rate, systolic and dias-
tolic blood pressure along with increased parasympathetic activity and decreased
sympathetic activity was noted. Incidence of diabetes was significantly lower in rats
which were in the fasting group compared to normally fed rats. Rats which had alter-
nate day fasting and two days a week fasting didn’t have any difference in diabetes
incidence [13]. Significant reduction in accumulation of diacylglycerols (DAG) was
noted in intermittent fasted mice and was associated with decreased Protein Kinase
C activation may explain improved insulin sensitivity [14]. Increase in adiponectin
levels along with decrease in visceral fat and increase in triglyceride accumulation
in subcutaneous fat was noted with both caloric restriction and intermittent fasting
groups. This proves the beneficial modulation of lipid metabolism and insulin sensi-
tivity was present in both types of fasting [15]. One of the very interesting studies
showed myocardial infarction caused by ligation of coronary arteries in rats was
smaller in size resulting in better left ventricular function in intermittent fed rats
compared to the control group [16]. Animal studies cannot be directly extrapolated
to human for various reasons. Metabolic response of humans to fasting could be
very different from animals and the feasibility and long-term sustainability of the
prolonged periods of fasting in humans is less.

Metabolic Effects of Fasting in Humans

Multiple human studies have looked at different aspects of intermittent fasting.One of
the very early observations were by Storm et al. who looked at mortality rates before
and after second world war and noted cardiovascular mortality in Norway was lower
during the World War II, but increased back to pre-war levels after the war. Authors
noted a coincidence with the caloric and fat restriction happened duringWorldWar II
in Norway [17]. Another study has noted that 83% of weight loss in 10-week caloric
restriction was fat mass and happened even with decrease in resting metabolic rate
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in energy restriction group [18]. Mattson has performed detailed study involving 10
overweight asthma patients who were subject to alternate day calorie restriction for
8 weeks and lost 8% of total body weight. Increased serum beta-hydroxybutyrate
levels and decreased leptin levels confirmed compliance and switch to fatty acid
metabolism on fasting days. Cholesterol, triglycerides, markers of oxidative stress
like 8-isoprostane, nitrotyrosine, protein carbonyls, markers of inflammation like
serum tumor necrosis factor-alpha and brain-derived neurotrophic factor were signif-
icantly decreased suggesting a beneficial effect from alternate day fasting apart from
improvement in their asthma symptoms [19]. Although the sole focus of this article
is to discussion the overnutrition part, undernutrition part of malnutrition needs to
be mentioned briefly as well. Undernutrition is insufficient intake of energy and
nutrients to maintain good health in an individual. Undernutrition continues to be
a major health care problem in developing countries and affect mainly children,
pregnant women and elderly. Common examples are protein energy malnutrition,
iron deficiency anemia, vitamin A deficiency, etc. Malnutrition is well associated
with childhood mortality and some authors consider up to 50% of childhood deaths
could be related to malnutrition [20]. Malnutrition is also significantly associated
with increased mortality in adults irrespective of cause of death [21]. One of the
other studies noted the hazard ratio for all-cause mortality in patients over 65 years
of age were 3.7 higher in patients who were malnourished and 1.5 in patients who
were at risk of malnutrition [22]. Overall, appropriate intake of calories and nutrients
necessary to meet our daily requirements would promote health and longevity and
either excess or lower amount of calorie intake could result in adverse events.

Fasting and Diabetes

Fasting promotes certain biochemical changes in carbohydrate and lipidmetabolism.
Anabolic process help building macromolecules like glycogen and lipids while
catabolic process involves breakdown of macromolecules to produce energy.
Diabetes is a condition with high blood glucose level attributed because of insulin
resistance or deficiency or absence of insulin. Type 2 diabetes mellitus is associ-
ated with obesity, adiposity and insulin resistance [23]. In fed state, as food starts to
breakdown, blood sugar level increase leading to insulin secretion, which activates
anabolic pathway. Glucose homeostasis is maintained by liver, muscle and adipose
tissues with help of Insulin by means of glucose transport, glycogen synthesis and
lipogenesis. When high insulin levels are needed to maintain glucose homeostasis,
it is called as ‘insulin resistance’ and is a common occurrence with overfeeding and
obesity. In fasting state, insulin activity is low and glucagon activity is high as blood
sugar levels starts lowering. Low insulin state activates catabolic pathway which
involves breakdown of macromolecules like glycogen into glucose which is used to
produce energy [24]. Calorie restrictions by means of fasting is known to reverse
insulin resistance and visceral obesity in animal models [25]. Furmli et al. demon-
strated that intermittent fasting in insulin-dependent adults help them to looseweight,
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reverse their insulin resistance and decrease HbA1c. It eventually resulted in cessa-
tion on insulin therapy [26]. Caution is needed given intermittent fasting increases
the risk of hypoglycemic episodes despite reducing the diabetes medications [27].

Fasting and Cancer

Obesity has been identified as one of the important risk factors for cancer. There
are studies linking obesity to at least 13 different types of cancer including breast,
colorectal, esophageal, pancreatic cancer, etc [28]. Obesity reportedly could account
for approximately 20% of all cancer cases. Weight loss and exercise have been
associated with decreased risk of breast cancer [29]. Bariatric surgery and subse-
quent weight loss were linked to lower incidence of cancer diagnosis in morbidly
obese patients [30]. In humans, Intermittent fasting has shown to reduce abdom-
inal obesity and inflammatory markers which could potentially have preventive
effects for obesity, inflammation and cancer [31]. There is no human data avail-
able to show direct effect of Intermittent fasting on cancer prevention, however its
effect on metabolic pathways leading to low IGF-level, low blood sugar levels and
promoting ketogenesis may reduce DNA damage and carcinogenesis [32]. American
Cancer Society recommends patients receiving chemotherapy to increase calories
and protein intake. However recent studies and preclinical animal trials have shown
advantage of intermittent fasting on cancer prevention and treatment [33–35]. Fasting
makes cancer cells vulnerable and normal cells resistant to chemotherapy which is a
desired outcome for the cancer treatment [36, 37]. Overall, intermittent fasting has
shown significant anticancer role, even during chemotherapy as it increases suscep-
tibility of cancer cells to chemotherapy, prevent resistance to chemotherapy, protects
normal cells from toxic effects of chemotherapy [38–40].

Fasting and Cardiovascular Diseases

Cardiovascular disease is leading cause of mortality and morbidity in the world.
Obesity, diabetes mellitus, hypertension, dyslipidemia, smoking and lack of phys-
ical activity are considered as major modifiable risk factors for development of
cardiovascular illnesses. Control of these risk factors reduce incidence of cardiovas-
cular diseases [41]. Intermittent fasting helps with weight loss and prevent/improve
obesity, helps control blood glucose levels and lowers insulin resistance and decrease
the incidence of diabetesmellitus.Duringfirst 12 h of fasting, glycogenolysis remains
the primary mode of energy. In later stages, when glycogen stores are depleted,
metabolism switches to lipolysis which result in conversion of fat to free fatty acids
and ketones. This is called as ‘metabolic switch’. This metabolic switch reduces the
concentration of total cholesterol, triglycerides, and LDL cholesterol and thereby
alters plasma lipid profile favorably [42]. Periodic fasting also has beneficial effects
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on circulatory system—it reduces systolic blood pressure, diastolic blood pressure
and heart rate by activating parasympathetic system [12]. Brain-derived neurotrophic
factor (BDNF) is produced by activation of glutamatergic receptors which is stimu-
lated by intermittent fasting. BDNF stimulates synthesis and release of acetylcholine
by cholinergic neurons and activates parasympathetic system [43]. Atherosclerosis is
a chronic inflammatory condition which is a leading cause of vascular diseases. LDL
accumulation in arterial wall under oxidative stress, triggers inflammatory response
and cause plaque formation with adhesion of inflammatory blood cells and prolifera-
tion of vascular smooth muscle. Proinflammatory factors such as IL-6, homocysteine
and CRP are known to be reduced by intermittent fasting [44].

Religious Fasting and Ramadan

Purpose of intermittent fasting could be for spiritual, cultural and health benefits.
Fasting has been popular in different cultures and religions since ages. Hinduism
calls fasting ‘Vrata’ which is observed to test penance or honor god. Islam has
‘Ramadan’ and Judaism has ‘Yom Kippur’. Many churches follow ‘Lent’, which
last for 40 days—starts on Ash Wednesday and ends on Holy Saturday prior to
Easter, when religious fasting is observed. Ramadan is the holy month for Muslims
when religious fasting is practiced. Muslims abstain from eating any food, drinks or
any oral intake from dawn to sunset for whole month. Nature of the fasting during
Ramadan allow up to 12–16 h of fasting period. This type of intermittent fasting
is being practiced across the globe for centuries by Muslims. During early hours of
fasting, glycogen acts as the energy source, but later during the day, metabolism goes
into catabolic phase where fatty acid utilization occurs.

In general, all the benefits of intermittent fasting are seen in Ramadan fasting,
including improvement in insulin sensitivity, decreased atherogenic risk, oxidative
stress, and decrease in various inflammatory markers [44]. Ramadan fasting is asso-
ciated with positive impact on lipid profile, leukocyte count and blood coagula-
tion which may help prevent atherogenicity [45]. In a meta-analysis by Fernando
et al., reduction in weight and fat percentage with the Ramadan fasting, especially in
peoplewith overweight or obesity is observed.They also noted return to pre-Ramadan
weight and body composition was observed in 2–5 weeks [46]. Other studies showed
reduction in BMI, lipid profile, blood pressure, blood glucose, and HbA1C level in
diabetic population [47]. But given people restrict not only food, but also fluids can
have deleterious effects like hypoglycemia, dizziness, hyperglycemia, dehydration,
etc. Dehydration may cause irritability, headaches, sleep deprivation and lassitude
[48]. Though Ramadan fasting is considered safe in healthy individuals, it might
not be safe in individuals with medical illness. Islam allows certain excuses for not
fasting Ramadan, includes children, menstruating women, pregnant or breastfeeding
women, travelers. It is believed that fasting for long hours may also result in harm
[49].
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Major Studies of Fasting in Humans

Most of the research about intermittent fasting is done on animal models and most
of the limited number of human trials are observational. When the published human
trials are analyzed, many trials have small sample size (hundred or less participants)
and there is significant variation in duration and protocols of intermittent fasting
and the parameters analyzed. Many observational trials are based upon religious
beliefs and not primarily motivated by health reasons [50]. Observational studies of
Ramadan fasting showed various benefits from intermittent fasting like weight loss
and metabolic health benefits [46, 51, 52]. Meta-analysis has investigated studies of
intermittent fasting and concluded weight loss happens during Ramadan, but weight
returns to baseline after fasting ceases [53]. Human studies have been reviewed by
Barnosky et al. which suggested the possible benefit of diabetes risk reduction in
overweight and obese population [54]. Another randomized control trial enrolled
107 overweight or obese individuals to compare intermittent fasting and continuous
energy restriction and concluded both are comparable strategies. We could not find
any large randomized clinical trials in humans to study intermittent fasting. Wegman
et al. recruited 24 healthy individuals in a double-crossover, double-blinded, random-
ized clinical trial. This study suggests that the intermittent fasting is acceptable in
healthy individuals, however additional research is needed to further assess the poten-
tial benefits and risks [55]. Mattson et al. reported that intermittent fasting could lead
to a reduction in blood pressure, heart rate, cholesterol, and triglycerides in humans
[43]. Group of researchers randomized 100 healthy participants into 2 groups, one
exposed to unrestricted eating and others had fasting mimicking diet—low in calo-
ries, sugars and protein for 5 days a month. Later, they crossed over these groups.
Findings were clear revealed that the group that fasted lost weight, lost some body
fat, lowered their blood pressure, and decreased their IGF-1, a genetic marker for
diseases such as cancer [31]. Though popularity of intermittent fasting to gain health
benefits fromweight loss is on rise, we still do not have strong evidence to support and
recommend various fasting regimens as a health intervention to prevent and manage
certain medical diseases [56]. More human subject research trials and stronger data
is needed to recommend intermittent fasting regimens to general population.

Other Options for Weight Loss

Obesity is well associated with increase in morbidity and mortality. Weight loss in
morbidly obese individuals reduces mortality [57]. To achieve weight loss, various
prescriptions are available includes lifestyle intervention, pharmacotherapy and
bariatric surgeries. In general, typical response with lifestyle modification yields 5%
reduction in total body weight, 10% reduction in weight is considered successful
weight loss [58]. Lifestyle intervention for weight loss includes various dietary
regimens, exercise and behavioral therapy.
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Pharmacotherapy can be considered for individuals with BMI ≥ 30 or BMI ≥
27 with comorbidities. A specific diet plan should be attempted first with moderated
physical activity as tolerated to maintain weight loss. Pharmacotherapy is recom-
mended for those who are unable to achieve weight loss of goal of 5% with lifestyle
interventions within six months. Choice of the drug depends of individual pref-
erence, side effects, cost and comorbid conditions [59]. Candidates for bariatric
surgery include adults with a BMI ≥ 40 kg/m2 with one or more obesity related
morbid condition. When more than 30% reduction in body weight is goal—bariatric
surgeries are recommended choice [60]. Device therapy is considered for those who
are unable to tolerate pharmacotherapy and bariatric surgery. Gastric banding to
decrease size of stomach, intragastric balloon systems to take up stomach space
and give feeling of satiety. Decision of surgery should be based on multiple factors
including patient motivation, compliance, operative risk, and comorbid conditions.
First and predominant way to maintain healthy weight is lifestyle change—adapta-
tion in daily life should include proper management of eating behavior, appropriate
dietary modification and moderate and as tolerated physical activity.

Conclusions

Given obesity is a growing global pandemic, multiple strategies against weight gain
has been investigated. Basic idea should be to limit the intake of calories and nutri-
ents necessary to meet our daily requirements and strictly avoid ‘caloric overdose
or caloric toxicity’. We cannot overemphasize the importance of moderate physical
activity in promoting health and preventing illness. It is well proven that obesity
increases the morbidity and mortality and there is reasonable amount of evidence
to suggest weight loss in obese individuals promote health. Intermittent fasting is
comparable to continuous caloric restriction in weight loss and positive health bene-
fits. Multiple biochemical and metabolic changes have been analyzed in different
studies and most of them are positive as mentioned above. We strongly recommend
lifestyle modifications and moderate physical activity as the first line. Although we
have mentioned multiple animal and small human studies which showed the benefits
of intermittent fasting, large size randomized trials are necessary before we prescribe
intermittent fasting regimens to general population to promote health.
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