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Abstract:  The feasibility of classifying different human activities based on microDoppler 

signatures is investigated.  Measured data of 12 human subjects performing seven different 

activities are collected using a Doppler radar. The seven activities include running, walking, 

walking while holding a stick, crawling, boxing while moving forward, boxing while standing 

in place, and sitting still. Six features are extracted from the Doppler spectrogram. A support 

vector machine (SVM) is then trained using the measurement features to classify the activities.  

The multi-class classification is implemented using a decision tree structure. Optimal 

parameters for the SVM are found through a four-fold cross validation.  The resulting 

classification accuracy is found to be more than 90%. The potentials of classifying human 

activities over extended time duration, through wall, and at oblique angles with respect to the 

radar are also investigated and discussed. 
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1. Introduction 

Due to the increasing demand for physical security and surveillance, one of the 

emerging applications of radar recently is the detection and tracking of people in a highly 

cluttered environment [1-11]. For instance, it is desirable to locate humans through walls and 

extract information on their activities in real time by using electromagnetic based sensors. The 

applications of through-wall human monitoring include disaster search-and-rescue, physical 

security, law enforcement, and urban military operations.  

There has been a significant amount of research for developing human detection and 

tracking sensors. One approach is the use of wide bandwidth to achieve high resolution 

imaging in the down-range dimension. Several studies have shown promising results from 

imaging building interiors to ultimately detecting and tracking humans in indoor environments 

as reported in [2-8]. Another choice is to use a Doppler radar [1, 9-22].  Doppler-based radars 

are excellent for detecting movement while suppressing any stationary clutters in the 

background. Low-cost sensors using off-the-shelf components or even single-chip modules are 

readily available.  Finally, a very unique and interesting aspect of Doppler returns from 

humans is the appearance of “microDoppler” features [9, 12].  MicroDopplers are generated 

from the non-rigid-body motions of humans, and contain valuable information related to 

human movements. Since it was first reported in [9], a number of works have appeared on 

exploiting microDopplers for human classification.  For example, van Dorp [13] estimated the 

parameters of human gait from FMCW radar data. Otero [14] designed a simple classifier to 

recognize walking humans using a spectral analysis. In [15-17], microDoppler features of radar 

target returns were extracted through various time-frequency analyses.  MicroDoppler 

features were explored to distinguish among humans, animals and vehicles in [18-22].  In this 
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paper, we pose a different research question, namely, whether it is possible to distinguish 

various human activities such as walking, running, crawling, etc. based on the microDoppler 

features.  The reliable recognition of simple human activities may be a first step toward 

addressing the more difficult yet important question of determining human intent.   

Our approach is to apply a support vector machine (SVM), trained using measured 

microDoppler data, to classify activities of a human.  SVM is a binary classifier that 

constructs a maximal-margin hyperplane to separate data between classes [23-25]. It has been 

used extensively for many diverse classification problems due to its superior performance over 

other classification methods such as the Fisher linear discriminator and the Bayesian decision 

method.  In the radar community, SVM has been applied to array signal processing [26, 27] 

and radar target recognition [28, 29] problems.  In this study, we consider 7 different human 

activities including running, walking, walking while holding a stick, crawling, boxing while 

moving forward, boxing while standing in place, and sitting still. In order to recognize the 

activities, the time-varying Doppler signatures are examined using the short-time Fourier 

transform and different features are extracted from the spectrogram. Based on the extracted 

features, an SVM is constructed to classify the seven activities. For the generation of training 

data, measurements on twelve human subjects are collected in the laboratory using a 2.4GHz 

Doppler radar [10]. To implement a multi-class problem using the SVM, which is a binary 

classifier, a decision-tree based structure is employed. The training process and the resulting 

classification accuracy are evaluated.  The importance of each feature is also investigated. 

Finally, the potentials of classifying human activities over extended time duration, through 

wall, and at oblique angles with respect to the radar are investigated and discussed. 

This paper is organized as follows. The measurement data collection of the different 
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human activities is described in Sec. 2. Sec. 3 discusses the feature selection and extraction 

process from the spectrogram. In Sec. 4, the concept and training results of the SVM are 

described. Sec. 5 addresses some additional issues of monitoring humans including through-

wall. Sec. 6 presents the conclusion.  

2.  MEASUREMENT OF DIFFERENT HUMAN ACTIVITIES  

Measured data of 12 human subjects undergoing different activities are collected using 

a Doppler radar testbed [10]. The radar operates at 2.4 GHz. The transmitter operates in the 

continuous wave mode.  The receiver comprises a microstrip antenna connect to a 

commercial integrated receiver board. The antennas are installed to collect vertical polarization 

data.  Since the human body is typically vertically elongated, the use of vertical polarization 

results in a stronger radar return.  The received signals are down-converted and then digitized 

(at 1 kHz) for off-line processing. The measurements are performed in an indoor environment 

under the line-of-sight condition. Only a single human subject is tested at one time, with the 

subject moving directly toward the radar.  The range of the measurement is between 2 m and 

8 m. 

Data for human subjects undergoing seven different activities are collected, including: 

(a) running, (b) walking, (c) walking while holding a stick (using both hands), (d) crawling, (e) 

boxing while moving forward, (f) boxing while standing in place, and (g) sitting still (with 

slight fidgeting movements). An illustration of the performed activities is shown in Fig. 1. The 

descriptions of each activity are given in Table 1. The data are collected over a six second 

interval.  The short-time Fourier transform (STFT) is then applied to the data to generate the 
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corresponding spectrogram. A 0.25-second Kaiser window is used in the STFT.  The resulting 

spectrograms of the seven activities from one particular subject are shown in Fig. 2.  

Table 1. Seven human activities under study. 

Activity Description 

(a). Running The act of running forward quickly by moving arms and 

legs. 

(b). Walking The act of walking forward at a moderate speed while 

moving arms and legs. 

(c). Walking while 

holding a stick 

The act of walking while holding a wooden stick in a 

horizontal position using both hands. 

(d). Crawling The act of crawling on both hands and knees while 

moving forward on the ground. 

(e). Boxing while 

moving forward 

The act of throwing punches using both arms while 

walking forward. 

(f). Boxing while 

standing in place 

The act of throwing punches using both arms while 

standing still. 

(g). Sitting still The act of sitting in a chair with slight fidgeting 

movements such as shaking of legs, touching of hair, or 

crossing of arms. 

 

 

Fig. 1. Illustration of measurements of seven different human activities. 

(a)         (b)       (c)       (d)         (e)       (f)      (g) 

Rx 

Tx 



 6 

    

(a) Running                        (b) Walking 

  

   (c) Walking while holding a stick              (d) Crawling 

    

(e) Boxing while moving forward       (f) Boxing while standing in place 
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                   (g) Sitting with slight movements 

Fig. 2. Spectrograms of seven human activities. 

As seen in Fig. 2, the spectrograms show rather interesting and distinct signatures 

depending on the activity. The strongest return in each spectrogram comes from that of the 

torso, while the periodic microDoppler modulations surrounding the torso return come from 

arm and leg movements.  Among all the activities, the running motion has the highest 

Doppler frequency due to the torso, which can be as high as 30 Hz. It also has a wide Doppler 

signal spread, which can be as large as 120 Hz. The walking motion shows similar Doppler 

patterns with the running case, except the maximum Doppler shift from the torso is lower (20 

Hz) and the period of the microDoppler is longer. Walking while holding a stick has a similar 

spectrogram with the walking case, but it has a slightly narrower microDoppler frequency 

spread.  In the crawling motion, the torso Doppler is nearly zero.  In addition, the 

spectrogram shows that most of the microDopplers are skewed toward the positive with respect 

to the torso Doppler.  This is expected since contrary to the earlier motions, there is no back-

swing in the crawling motion. In the boxing while standing in place motion in Fig. 2(f), 

periodic microDopplers from the arms are clearly observed. In Fig. 2(e), the boxing while 

moving forward motion has a positive torso Doppler component in addition to the 
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microDopplers from the arms.  In comparison to normal walking, it is also clear that the 

microDoppler spread is quite wide due to the rapid punching motion. The sitting still has 

almost a zero torso frequency and shows small, sporadic microDopplers due to fidgeting 

motions. These characteristics of Doppler signatures will be extracted in the next section. 

3. FEATURE EXTRACTION AND TRAINING DATA GENERATION   

3.1. Doppler Signal Detection and Feature Extraction.  In order to extract distinct Doppler 

features from a spectrogram, it is necessary to distinguish the Doppler signal from noise. A key 

issue is the determination of a noise threshold. A histogram of the signal strength of the noise 

(i.e., received signal with no target present) is shown in Fig. 3(a). In the figure, the noise is 

found to have a Gaussian-like distribution. Fig. 3(b) shows a histogram when the human 

Doppler signal is present. Thus the lowest power level at which the signal histogram starts to 

deviate from the Gaussian-like noise distribution can be used as the noise threshold, which, 

reading from the figure, is −83 dBm. Using this threshold, the spectrogram of a representative 

activity (boxing while standing in place) is processed and shown in Fig. 4. We note here that 

while this approach works well in the present line-of-sight situation, it may not work in more 

complex environments containing interference, through-wall or multi-path effects. 

        
Power (dBm) Power (dBm) 
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(a)                               (b) 

Fig. 3. (a) Histogram of the noise, (b) Histogram of the target return and noise. 

   

             (a)                                 (b) 

Fig. 4: Spectrogram of the boxing while standing in place motion. (a) Before the processing, 

(b) After thresholding. 

Next, different Doppler features are extracted from the de-noised spectrogram. The 

spectrogram itself can be used as input to a classifier without any processing to identify 

different activities. However, such high dimensional data would result in a classifier with a 

very complex inner structure and thus an enormous training process.  The proper choice of 

features can reduce data dimensions while maintaining the essential characteristics of the 

microDoppler signatures. Based on the initial observations in Sec. 2, we choose the following 

six features to characterize the microDoppler signatures: (1) the torso Doppler frequency, (2) 

the total bandwidth (BW) of the Doppler signal, (3) the offset of the total Doppler, (4) the 

bandwidth without microDopplers, (5) the normalized standard deviation (STD) of the Doppler 
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signal strength, and (6) the period of the limb motion. An illustration of the features is depicted 

in Fig. 5.   

The torso Doppler frequency (1) corresponds to the speed of the human subject. The 

human torso speed is a very basic yet important piece of information since there is a large 

variation in the torso speed depending on the different activities. The total bandwidth of the 

Doppler signal (2) is related to the speed of the limb motions. A large bandwidth results from 

fast swings of arms or legs. The offset of the total Doppler signal (3) is a measure of the 

asymmetry between the forward and backward motions of the limbs. This offset would be the 

same as the torso speed if the forward and backward swings are exactly symmetrical when the 

limbs move back and forth. The bandwidth without microDopplers (4) represents the Doppler 

bandwidth of the torso alone.  It accounts for the bobbing motion of the torso while the 

human performs an activity. The normalized STD of the Doppler signal strength (5) is related  

to the dynamic range of the motion. For example, a large motion like running tends to have a 

high standard deviation in the Doppler signal strength, while sitting still has a small value. We 

normalize the STD value by the mean of the Doppler signal strength to eliminate the effect of 

distance between the human subject and the radar. The period of the limb motion (6) 

corresponds to the swing rate of the arms and legs. 

A Matlab routine is written to extract these six features automatically by processing 

data over a three-second time window.  The torso Doppler frequency (1) is the average 

frequency of the peak signal in strength over the time bins within the window. For the 

calculation of features (2), (3), (4) and (6), two signal envelopes are first identified. The highest 

Doppler frequency at each time bin makes up a high-frequency envelope. The lowest Doppler 

frequency at each time bin makes up a low-frequency envelope. The bandwidth (2) is the 
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averaged difference between the largest frequencies from the high frequency envelope and the 

smallest frequencies from the low frequency envelope. The offset of the Doppler frequency (3) 

is the mean value between the largest frequencies of the high-frequency envelope and the 

smallest frequencies of the low-frequency envelope. The bandwidth without microDopplers (4) 

is the averaged difference between the smallest frequencies from the high-frequency envelope 

and the largest frequencies from the low-frequency envelope. Feature (5) is the standard 

deviation of the signal strength divided by the average of the signal strength of all the above-

noise Doppler signals in the spectrogram. The period (6) is the time period of the 

microDoppler from the limbs.  

 

Fig. 5. Selected features of the Doppler spectrogram. 

 

3.2. Training Feature Set Generation.  A classifier implemented using a machine learning 

technique requires a training data set. In our study, the data set is constructed by extracting the 

(2) BW 

(4) BW w/o -D 

(1) Torso Frequency 

(3) Offset 

(6) Period 

3 sec time window 
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features from the measured data, which consists of 12 human subjects performing seven 

activities. Each human subject repeats a particular activity for six seconds four different times. 

Then we use a three-second time window to extract three different realizations of the features 

per measurement. Thus, 12 realizations of each activity from a particular person are formed. 

The total number of feature sets is (12 subjects) ⅹ (7 activities) ⅹ (12 realizations) = 1008. 

The mean values of each feature from all 12 subjects are shown in Table 2. It can be seen that 

the mean values show clear differences among activities, making classification potentially 

possible. However, by also examining the histograms (not shown here), we find that the 

distributions show considerable overlap with one another.  This means it is not an easy task to 

construct a classifier to distinguish the activities, and a more sophisticated classifier like the 

SVM is therefore needed. 

Table 2. Mean values of the six features. 

 Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 

Activity (a) 29.209 128.654 20.127 104.50 1.772 0.425 

Activity (b) 22.430 120.159 21.157 85.341 1.725 0.528 

Activity (c) 19.430 100.352 19.717 69.093 1.378 0.520 

Activity (d) 6.491 63.691 13.570 39.197 1.294 0.539 

Activity (e) 11.101 89.205 17.365 60.402 1.432 0.474 

Activity (f) 0.172 97.537 5.679 50.119 0.918 0.424 

Activity (g) -0.055 30.862 -0.041 23.384 0.851 0.529 
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4. HUMAN ACTIVITY CLASSIFICATION USING SVM  

An SVM is applied to classify the seven human activities based on the features 

extracted from the Doppler spectrogram. SVM is a binary classifier developed by Vapnik [23-

25]. It is a supervised learning method that is based on a kernel technique. The original optimal 

hyperplane algorithm is limited to a linear classification problem. However, SVM is developed 

to create a nonlinear class boundary by applying the kernel technique to achieve the maximum 

margin between classes. Through the kernel technique, the input data are transformed to a high 

dimensional space. In the transformed feature space, the data may be classified by a linear 

hyperplane. The linear optimal hyperplane results in a nonlinear boundary in the original input 

space. Because the classification accuracy depends on the kernel used, the selection of kernel is 

very critical in practice.  

 We utilize LibSVM, a freely available SVM library implemented by Chang and Lin 

[30]. For the given penalty parameter and the kernel parameter, LibSVM constructs the decision 

boundary based on the training data and then calculates the classification error for the 

validation data.  In our case, three quarters of the data collected are used for the training data 

set, and the remaining one quarter is used as the validation set.   

For the training procedure, two scenarios are used as shown in Fig. 6. The first 

scenario uses all the data from nine subjects for training and the data from the remaining three 

subjects for validation. The second scenario uses nine realizations of all twelve subjects as the 

training set, and the remaining three realizations of all the subjects as the validation set. The 

first scenario is more realistic because it classifies the activities of unknown humans based on 

the data from known subjects. The second scenario classifies a person’s activity based on 

training data that include that individual. The final classification error is calculated using a 
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four-fold cross validation. In the validation, the error is calculated four times with different 

combinations of training and validation data set for the given total data set. This process 

generalizes the performance of the SVM and is summarized in Fig. 7. Successful training 

should result in both small average error and small error variance.  

 

Fig. 6. Training and validation data set for the four-fold validation.  (a) The first scenario.  

(b) The second scenario. 

Subject1 ……… …  Subject10… Subject 12 

1 
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Subject1 …………Subject10  … Subject12 
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Fig. 7. The process of four-fold validation. 

The formulation of the SVM is based on the two-class problem. In order to apply an 

SVM to the multi-class problem like the one at hand, it should be reformulated into several 

binary class problems. Different methods have been developed to handle such multi-class 

problems using SVMs [31, 32]. In this paper, we apply SVMs to a decision tree classifier. The 

decision tree method breaks multiple classes into several distinct binary decision problems 

using a tree structure. At each non-leaf node of the structure, a binary SVM classifier is used. A 

decision-tree based SVM is selected because it is simple and intuitive. Furthermore, it requires 
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the least number of SVMs to be trained and has the shortest training and testing time. The 

configuration of the suggested decision tree is shown in Fig. 8. Six different SVMs should be 

constructed. Each SVM uses a different amount of training data. For example, the training data 

set for SVM1 consists of activities (a),(b),(c),(d),(e),(f) and (g). That of SVM3 is from only 

activities (b) and (c).  

In our decision tree struture, SVM1 is used at the top node to separate all activities into 

two groups: a group with high torso speed and a group with low torso speed. Among the group 

with high torso speed, the running activity (a) is separated from other two through SVM2, 

while SVM3 is used to classify between activities (b) and (c).  SVM4, SVM5 and SVM6 are 

used to divide the group with low torso speed into specific activities. We note that this structure 

is constructed heuristically so that it may not be optimal.  

 

 

Fig. 8. Suggested decision tree using SVM. 

We use the Gaussian kernel for the construction of the SVMs. For successful learning, 

the penalty parameter of the SVM and the Gaussian kernel width should be carefully 

SVM1 

SVM2 

SVM3 

SVM4 

SVM5 SVM6 

(a) (b) (c) (d) (e) (f) (g) 
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determined. The optimal values are searched exhaustively to have the minimum average 

classification error over the four-fold cross validation for each SVM.  

For the first scenario, the average and the variance of the validation error of 

classification are 0.081 and 0.007, respectively. For the second scenario, the average and the 

variance of the validation error of classification are 0.072 and 0.010.  The second scenario has 

slightly smaller validation error, or better accuracy (92.8% vs. 91.9%), as compared to that of 

the first case. This is expected since the second scenario classifies a person’s activity based on 

training data that include that individual.  It is also worth noting that the performance of the 

SVM is better than that of an artificial neural network classifier [33], which achieved a 

classification accuracy in the mid-80 percent range. 

The resulting averaged confusion matrices are shown in Table 3.  The boxing while 

moving forward (e) has the highest classification error in the first scenario, but it has a very 

small error in the second scenario. We believe this is caused by the large deviations in how 

each subject performs this activity. Thus, predicting an unknown person’s activity results in a 

high error. We also observe that the walking while holding a stick (c) activity is easily 

confused with the walking (b) activity in both scenarios. This shows that such a fine motion 

difference is harder to detect. In particular, at 2.4 GHz, the Doppler resolution is poor and the 

arm microDoppler is very much buried inside the microDoppler from the leg motions.  The 

only distinction between the two activities appears to be the slightly smaller average values of 

all six features in activity (c) in comparison to activity (b), as shown earlier in Table 2.  

Table 3.  Results of the SVM based on a decision tree structure.  (a) Confusion matrix for 

the first scenario.  (b) Confusion matrix for the second scenario.  Es represents 

the estimated class, and Ac represents the actual class. The number represents the 

percentage of correct classification in each case. 
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(a)                                     (b) 

Es\Ac (a) (b) (c) (d) (e) (f) (g) Es\Ac (a) (b) (c) (d) (e) (f) (g) 

(a) 97 0 0 0 0 0 0 (a) 95 0 0 0 0 0 0 

(b) 0 82 17 0 2 0 0 (b) 1 83 15 0 0 0 0 

(c) 3 18 81 0 4 0 0 (c) 2 17 85 0 3 0 0 

(d) 0 0 0 95 6 0 0 (d) 0 0 0 89 1 0 0 

(e) 0 0 2 5 78 1 0 (e) 0 0 0 11 96 0 0 

(f) 0 0 0 0 10 99 0 (f) 2 0 0 0 0 100 0 

(g) 0 0 0 0 0 0 100 (g) 0 0 0 0 0 0 100 

 

 

The SVM classification of activities using the Doppler features results in a low 

validation error. However, it is instructive to investigate which features are more important in 

the classification. First, we carry out the classification process using one single feature at a 

time.  The four-fold validation error trained with only a given feature is shown in Table 4. 

From the table, the orders of features in terms of classification performance are as follows: the 

torso frequency (feature 1), the BW without microDopplers (4), the total BW (2), the offset of 

the total Doppler (3), the normalized STD (5), and the period (6). The torso frequency alone 

can achieve a 70% performance, while the classification accuracies from the normalized STD 

of signal strengths and the period are only around 30%. 

Table 4. Classification error only with a particular feature. 
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Particular 

Feature 
(1) (2) (3) (4) (5) (6) 

Error 

(Accuracy) 

0.299 

(70.1%) 

0.456 

(54.4%) 

0.552 

(44.8%) 

0.350 

(65.0%) 

0.682 

(31.8%) 

0.697 

(30.3%) 

 

Next, we evaluate the combined effect of these features by adding the features one at a 

time based on the orders determined above.  Note that since the features can interact in a 

complex way in the classification process, it is not easy to predict the exact effect of combining 

features. The classification accuracy as more features are added sequentially is depicted in Fig. 

9. As expected, more features result in a higher accuracy overall. However, the last two 

features, namely, the normalized STD of signal strengths and the period only improve the 

result very marginally.  Therefore, good accuracy can be achieved with only the four most 

important features. 

 

Fig. 9. Accuracy of the SVM classification with an increasing of number of input features. 
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5. ADDITIONAL INVESTIGATIONS 

5.1. Classification of a Sequence of Activities.  In practice, human behaviors may consist of 

a sequence of activities when observed over an extended time period, transitioning from one 

activity to another. It would be useful to investigate whether it is possible to reliably classify 

human activities on a continuous basis.  If so, then it may be possible to determine higher-

order human intent through the classification of a series of simple activities discussed 

previously.  With the SVM classifier we have developed for single-event activities, one 

question is how it will perform during the transition between activities.  Measurement data 

from a person undergoing a sequence of activities over a longer time duration are collected and 

tested using the constructed SVM.  A three-second time window is first applied to the data 

and input to the classifier.  The window is then slid forward by 0.5 second at a time and the 

process is repeated onward. Two cases are considered for the sequential activities. The first 

case comprises crawling motion (d), followed by boxing while standing in place (f), followed 

by walking (b). The second case comprises walking (b), boxing while standing in place (f), and 

boxing while moving forward (e), followed by walking while holding a stick (c).  Figs. 10(a) 

and (b) present the measured spectrograms and the classification results for the two cases. The 

SVM predicts the activities of the first case correctly except for the transition from boxing 

while standing in place to walking. The misclassification region is shaded in the figure. In the 

transition, the activity is classified as boxing while moving forward (e). Because the features 

are averaged values in the three-second time window, the classification can be erroneous when 

the activity changes during the time window. However, the misclassified result of boxing while 

moving forward (e) is not unreasonable as it can be regarded as a combination of boxing while 

standing in place (f) and walking (b). The second case has two intervals where 
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misclassifications occur. The transition from walking (b) to boxing while standing in place (f) 

is again misclassified as boxing while moving forward (e) by the SVM. The transition from 

boxing moving forward (e) to walking while holding a stick (c) is classified as sitting still (g). 

Since these transitional motions are not included in the training data, the results for these 

intervals can be interpreted as examples of how our classifier performs under an unknown 

activity.  With its structure, the classifier simply forces a decision based on the match in the 

extracted features.   

 

 

(a) 

 

Time 

(d)        (f)    (e)     (b) 
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                               (b) 

Fig. 10. Spectrograms of a sequence of activities and their classification results, (a) Crawling, 

boxing while standing in place, followed by walking, (b) Walking, boxing while 

standing in place, boxing while moving forward, followed by walking while 

holding a stick. 

 

5.2. Oblique Angle Case.  In the collected data, the human subject always moves directly 

toward the radar.  This will not in general be true in a more realistic situation. To assess the 

effect of the oblique angle case, the seven activities of a particular human subject are measured 

when the subject approaches to the radar while maintaining a 30 degree angle with respect to 

the radial direction. The measurement setup and the path are shown in Fig. 11(a).  Note that to 

maintain a fixed 30 degree angle with respect the radial direction, the chosen path is not 

straight.  The subject repeats the seven activities four times. Features from 12 realizations are 

extracted in the same manner as before for each activity. The previously trained SVM based on 

the head-on data under the second scenario is then used to classify to the newly measured data.  

The result shows almost the same classification performance. The classification accuracy was 

91.4% (vs. 92.8%).  It is believed that the accuracy is not significantly deteriorated because 

the effect of the oblique-angle case is just a scaling of the Doppler information and the amount 

is not large when the angle is not too large.  Fig. 11(b) shows a spectrogram from the walking 

Time 
(b)  (e)  (f)   (e)  (g)  (c) 
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case.  Very little difference exists between this figure and the head-on walking data shown in 

Fig. 2(b).   

 

 

                  (a)                                (b) 

Fig. 11. (a) The trajectory of the oblique angle (30-degree) case, (b) Measured spectrogram for 

the walking motion. 

 

5.3. Through-wall Measurements: In-situ through-wall measurements are also performed to 

see how the microDoppler features are affected by wall. The test is carried out on an exterior 

building wall, which is a 40-cm thick brick wall. The radar is placed in the interior of the 

building 0.1 m behind the wall, and a human subject carries out the activities on the other side 

of wall outside the building. The signal experiences approximately a 25 dB two-way 

attenuation due to the wall. Moreover, the noise level is increased by 11 dB due to the 

reflection of the incident signal from the wall. Thus, the signal-to-noise ratio (SNR) suffers a 

30o 
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36 dB reduction. The histograms of noise signal strength for the line-of-sight and through-wall  

cases are shown in Fig. 12. It would be much more difficult to detect the target from noise due 

to the reduced SNR. 

 

              (a)                                   (b) 

Fig. 12. (a) Histogram of noise in case of line-of-sight, (b) Histogram of the through-wall case. 

 

Fig. 13 shows the spectrograms of the walking and the crawling activity measured in 

the through-wall environment. The 60Hz AC line can now be seen due to the much lower 

signal level.  The human subject approaches the radar as time progresses. While the torso 

return can be still seen, it is now much more difficult to identify the microDopplers when the 

human subject is far from the radar (more than 4 m).  When the human is within 4 m from the 

wall, the microDoppler signatures of each activity can be better observed, although the limited 

SNR is still troublesome for our current feature extractor.  While this through-wall result is 

somewhat pessimistic, we believe the main bottleneck is in our radar hardware.  With a 

pulsed waveform and more sophisticated timing to avoid transmitter jamming, a significant 

Power (dBm) Power (dBm) 
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improvement in the SNR may be possible.  Other than the SNR issue, our recent study has 

shown that the wall effect on the Doppler frequency is actually quite negligible [30]. 

 

(a)                                  (b) 

Fig. 13. (a) Through-wall measurement of the walking activity, (b) Through-wall measurement 

of the crawling activity. 

 

6.  CONCLUSION 

In this paper, we investigated the feasibility of classifying different human activities 

based on microDoppler signatures.  Measured data of 12 human subjects performing seven 

different activities were collected using a Doppler radar. Six features were extracted from the 

Doppler spectrogram.  An SVM was then trained using the measurement features to classify 

the activities.  The multi-class classification was implemented using a decision tree structure. 

The classification accuracy based on the six features was found to be above 90%.  

While the results shown in the this paper are promising, we also briefly investigated the 

possibility of classifying human activities over an extended time duration, at oblique angles 
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with respect to the radar and through a wall.  Among the three issues, through-wall human 

classification remains the most challenging problem.  The low SNR in our measurements 

made the use of microDoppler signatures very difficult.  Improved hardware is needed to 

overcome the transmitter jamming issue.  Additional studies of the wall phenomenology are 

also needed to understand the effect of different walls on the microDoppler features. 

We found that a 30-degree oblique approach angle with respect to the radar did not 

significantly impact the classification results.  However, more severe degradation may occur 

at larger angles.  It may be necessary to consider distributed Doppler sensors to classify the 

activities of human moving in any direction. 

Finally, the classification of a sequence of human activities when observed over an 

extended period of time was investigated.  Using a moving window approach, we were able to 

use the developed classifier to successfully classify activities on a continuous basis.  This 

approach may be a good first step toward determining the intent of a human by a sequence of 

basic activities.  
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