Hao-Jun Michael Shi

Hao-Jun Michael Shi
  • PhD Student at Northwestern University

About

16
Publications
7,694
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
444
Citations
Introduction
Skills and Expertise
Current institution
Northwestern University
Current position
  • PhD Student

Publications

Publications (16)
Article
The goal of this paper is to investigate an approach for derivative-free optimization that has not received sufficient attention in the literature and is yet one of the simplest to implement and parallelize. In its simplest form, it consists of employing derivative-based methods for unconstrained or constrained optimization and replacing the gradie...
Preprint
A common approach for minimizing a smooth nonlinear function is to employ finite-difference approximations to the gradient. While this can be easily performed when no error is present within the function evaluations, when the function is noisy, the optimal choice requires information about the noise level and higher-order derivatives of the functio...
Preprint
The goal of this paper is to investigate an approach for derivative-free optimization that has not received sufficient attention in the literature and is yet one of the simplest to implement and parallelize. It consists of computing gradients of a smoothed approximation of the objective function (and constraints), and employing them within establis...
Preprint
This paper describes an extension of the BFGS and L-BFGS methods for the minimization of a nonlinear function subject to errors. This work is motivated by applications that contain computational noise, employ low-precision arithmetic, or are subject to statistical noise. The classical BFGS and L-BFGS methods can fail in such circumstances because t...
Preprint
Modern deep learning-based recommendation systems exploit hundreds to thousands of different categorical features, each with millions of different categories ranging from clicks to posts. To respect the natural diversity within the categorical data, embeddings map each category to a unique dense representation within an embedded space. Since each c...
Preprint
Full-text available
With the advent of deep learning, neural network-based recommendation models have emerged as an important tool for tackling personalization and recommendation tasks. These networks differ significantly from other deep learning networks due to their need to handle categorical features and are not well studied or understood. In this paper, we develop...
Article
Full-text available
The standard L-BFGS method relies on gradient approximations that are not dominated by noise, so that search directions are descent directions, the line search is reliable, and quasi-Newton updating yields useful quadratic models of the objective function. All of this appears to call for a full batch approach, but since small batch sizes give rise...
Article
Full-text available
This monograph presents a class of algorithms called coordinate descent algorithms for mathematicians, statisticians, and engineers outside the field of optimization. This particular class of algorithms has recently gained popularity due to their effectiveness in solving large-scale optimization problems in machine learning, compressed sensing, ima...
Article
This letter is focused on quantized Compressed Sensing, assuming that Lasso is used for signal estimation. Leveraging recent work, we provide a framework to optimize the quantization function and show that the recovered signal converges to the actual signal at a quadratic rate as a function of the quantization level. We show that when the number of...
Preprint
This letter is focused on quantized Compressed Sensing, assuming that Lasso is used for signal estimation. Leveraging recent work, we provide a framework to optimize the quantization function and show that the recovered signal converges to the actual signal at a quadratic rate as a function of the quantization level. We show that when the number of...
Article
We propose two practical non-convex approaches for learning near-isometric, linear embeddings of finite sets of data points. Following Hegde, et. al. [6], given a set of training points $\mathcal{X}$, we consider the secant set $S(\mathcal{X})$ that consists of all pairwise difference vectors of $\mathcal{X}$, normalized to lie on the unit sphere....
Article
In this paper, we compare and catalog the performance of various greedy quantized compressed sensing algorithms that reconstruct sparse signals from quantized compressed measurements. We also introduce two new greedy approaches for reconstruction: Quantized Compressed Sampling Matching Pursuit (QCoSaMP) and Adaptive Outlier Pursuit for Quantized It...

Network

Cited By