
Hao FeiNational University of Singapore | NUS · School of Computing
Hao Fei
Doctor of Philosophy
Looking for collaborations on NLP, Multimedia, and LLMs.
About
107
Publications
6,289
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,396
Citations
Introduction
A Research Fellow of NExT++ research center at NUS. Working on Natural Language Processing, Vision-Language Learning, Structural Modeling, Language Modeling, Information Extraction, Affective Computing.
Skills and Expertise
Additional affiliations
August 2022 - August 2023
September 2016 - December 2021
Publications
Publications (107)
Information retrieval (IR) is a fundamental technique that aims to acquire information from a collection of documents, web pages, or other sources. While traditional text-based IR has achieved great success, the under-utilization of varied data sources in different modalities (i.e., text, images, audio, and video) would hinder IR techniques from gi...
Dialogue relation extraction (DRE) that identifies the relations between argument pairs in dialogue text, suffers much from the frequent occurrence of personal pronouns, or entity and speaker coreference. This work introduces a new benchmark dataset DialogRE\(^{C+}\), introducing coreference resolution into the DRE scenario. With the aid of high-qu...
Text-to-video (T2V) synthesis has gained increasing attention in the community, in which the recently emerged diffusion models (DMs) have promisingly shown stronger performance than the past approaches. While existing state-of-the-art DMs are competent to achieve high-resolution video generation, they may largely suffer from key limitations (e.g.,...
Recent studies have shown that dense retrieval models, lacking dedicated training data, struggle to perform well across diverse retrieval tasks, as different retrieval tasks often entail distinct search intents. To address this challenge, in this work we introduce ControlRetriever, a generic and efficient approach with a parameter isolated architec...
In the text-to-image generation field, recent remarkable progress in Stable Diffusion makes it possible to generate rich kinds of novel photorealistic images. However, current models still face misalignment issues (e.g., problematic spatial relation understanding and numeration failure) in complex natural scenes, which impedes the high-faithfulness...
Video Semantic Role Labeling (VidSRL) aims to detect the salient events from given videos, by recognizing the predict-argument event structures and the interrelationships between events. While recent endeavors have put forth methods for VidSRL, they can be mostly subject to two key drawbacks, including the lack of fine-grained spatial scene percept...
It has been a hot research topic to enable machines to understand human emotions in multimodal contexts under dialogue scenarios, which is tasked with multimodal emotion analysis in conversation (MM-ERC). MM-ERC has received consistent attention in recent years, where a diverse range of methods has been proposed for securing better task performance...
Dialogue relation extraction (DRE) that identifies the relations between argument pairs in dialogue text, suffers much from the frequent occurrence of personal pronouns, or entity and speaker coreference. This work introduces a new benchmark dataset DialogRE^C+, introducing coreference resolution into the DRE scenario. With the aid of high-quality...
Structured Natural Language Processing (XNLP) is an important subset of NLP that entails understanding the underlying semantic or syntactic structure of texts, which serves as a foundational component for many downstream applications. Despite certain recent efforts to explore universal solutions for specific categories of XNLP tasks, a comprehensiv...
Bobo Li Hao Fei Fei Li- [...]
Donghong Ji
Dialogue disentanglement aims to detach the chronologically ordered utterances into several independent sessions. Conversation utterances are essentially organized and described by the underlying discourse, and thus dialogue disentanglement requires the full understanding and harnessing of the intrinsic discourse attribute. In this paper, we propos...
Few-shot named entity recognition (NER) exploits limited annotated instances to identify named mentions. Effectively transferring the internal or external resources thus becomes the key to few-shot NER. While the existing prompt tuning methods have shown remarkable few-shot performances, they still fail to make full use of knowledge. In this work,...
The existing emotion-cause pair extraction (ECPE) task, unfortunately, ignores extracting the emotion type and cause type, while these fine-grained meta-information can be practically useful in real-world applications, i.e., chat robots and empathic dialog generation. Also the current ECPE is limited to the scenario of single text piece, while negl...
Latest efforts on cross-lingual relation extraction (XRE) aggressively leverage the language-consistent structural features from the universal dependency (UD) resource, while they may largely suffer from biased transfer (e.g., either target-biased or source-biased) due to the inevitable linguistic disparity between languages. In this work, we inves...
In this work, we investigate a more realistic unsupervised multimodal machine translation (UMMT) setup, inference-time image-free UMMT, where the model is trained with source-text image pairs, and tested with only source-text inputs. First, we represent the input images and texts with the visual and language scene graphs (SG), where such fine-grain...
Unpaired cross-lingual image captioning has long suffered from irrelevancy and disfluency issues, due to the inconsistencies of the semantic scene and syntax attributes during transfer. In this work, we propose to address the above problems by incorporating the scene graph (SG) structures and the syntactic constituency (SC) trees. Our captioner con...
Existing research on multimodal relation extraction (MRE) faces two co-existing challenges, internal-information over-utilization and external-information under-exploitation. To combat that, we propose a novel framework that simultaneously implements the idea of internal-information screening and external-information exploiting. First, we represent...
Visual spatial description (VSD) aims to generate texts that describe the spatial relations of the given objects within images. Existing VSD work merely models the 2D geometrical vision features, thus inevitably falling prey to the problem of skewed spatial understanding of target objects. In this work, we investigate the incorporation of 3D scene...
While sentiment analysis systems try to determine the sentiment polarities of given targets based on the key opinion expressions in input texts, in implicit sentiment analysis (ISA) the opinion cues come in an implicit and obscure manner. Thus detecting implicit sentiment requires the common-sense and multi-hop reasoning ability to infer the latent...
While developing a new vision-language LLM (VL-LLM) by pre-training on tremendous image-text pairs from scratch can be exceedingly resource-consuming, connecting an existing LLM with a comparatively lightweight visual prompt generator (VPG) becomes a feasible paradigm. However, further tuning the VPG part of the VL-LLM still suffers from indispensa...
Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities toward certain aspects of products or services behind the social media texts or reviews, which has been a fundamental application to the real-world society. Since the early 2010s, ABSA has achieved extraordinarily high accuracy with various deep...
Universally modeling all typical information extraction tasks (UIE) with one generative language model (GLM) has revealed great potential by the latest study, where various IE predictions are unified into a linearized hierarchical expression under a GLM. Syntactic structure information, a type of effective feature which has been extensively utilize...
The rapid development of aspect-based sentiment analysis (ABSA) within recent decades shows great potential for real-world society. The current ABSA works, however, are mostly limited to the scenario of a single text piece, leaving the study in dialogue contexts unexplored. In this work, we introduce a novel task of conversational aspect-based sent...
Fengqi Wang Fei Li Hao Fei- [...]
Cai Bo
Relation Extraction (RE) is a fundamental task of information extraction, which has attracted a large amount of research attention. Previous studies focus on extracting the relations within a sentence or document, while currently researchers begin to explore cross-document RE. However, current cross-document RE methods directly utilize text snippet...
Conversation disentanglement aims to group utterances into detached sessions, which is a fundamental task in processing multi-party conversations. Existing methods have two main drawbacks. First, they overemphasize pairwise utterance relations but pay inadequate attention to the utterance-to-context relation modeling. Second, huge amount of human a...
Conversational semantic role labeling (CSRL) is a newly proposed task that uncovers the shallow semantic structures in a dialogue text. Unfortunately several important characteristics of the CSRL task have been overlooked by the existing works, such as the structural information integration, near-neighbor influence. In this work, we investigate the...
Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities towards certain aspects of products or services behind the social media texts or reviews, which has been a fundamental application to the real-world society. Within recent decade, ABSA has achieved extraordinarily high accuracy with various deep...
Emotion cause pair extraction (ECPE), as one of the derived subtasks of emotion cause analysis (ECA), shares rich inter-related features with emotion extraction (EE) and cause extraction (CE). Therefore EE and CE are frequently utilized as auxiliary tasks for better feature learning, modeled via multi-task learning (MTL) framework by prior works to...
Event extraction (EE) is an essential task of information extraction, which aims to extract structured event information from unstructured text. Most prior work focuses on extracting flat events while neglecting overlapped or nested ones. A few models for overlapped and nested EE includes several successive stages to extract event triggers and argu...
Multi-label emotion prediction, which aims to predict emotion labels from text, attracts increasing attention recently. It is ubiquitous that emotion labels are highly correlated in this task. Existing state-of-the-art models solve multi-label emotion prediction in sequence-to-sequence (Seq2Seq) manner, while such label correlations are merely leve...
Voice conversion is to generate a new speech with the source content and a target voice style. In this paper, we focus on one general setting, i.e., non-parallel many-to-many voice conversion, which is close to the real-world scenario. As the name implies, non-parallel many-to-many voice conversion does not require the paired source and reference s...
This paper studies the methodology of inferring bullish or bearish sentiments in the financial domain. The task aims to predict a real value to represent the sentiment intensity concerning a target (company or stock symbol) in a text. Previous researches have proved the validity of using deep neural networks to automatically learn semantic and synt...
Conversational semantic role labeling (CSRL) is a newly proposed task that uncovers the shallow semantic structures in a dialogue text. Unfortunately several important characteristics of the CSRL task have been overlooked by the existing works, such as the structural information integration, near-neighbor influence. In this work, we investigate the...
Recent research attention for relation extraction has been paid to the dialogue scenario, i.e., dialogue-level relation extraction (DiaRE). Existing DiaRE methods either simply concatenate the utterances in a dialogue into a long piece of text, or employ naive words, sentences or entities to build dialogue graphs, while the structural characteristi...
So far, aspect-based sentiment analysis (ABSA) has involved with total seven subtasks, in which, however the interactions among them have been left unexplored sufficiently. This work presents a novel multiplex cascade framework for unified ABSA and maintaining such interactions. First, we model total seven subtasks as a hierarchical dependency in t...
So far, named entity recognition (NER) has been involved with three major types, including flat, overlapped (aka. nested), and discontinuous NER, which have mostly been studied individually. Recently, a growing interest has been built for unified NER, tackling the above three jobs concurrently with one single model. Current best-performing methods...
Unified opinion role labeling (ORL) aims to detect all possible opinion structures of 'opinion-holder-target' in one shot, given a text. The existing transition-based unified method, unfortunately, is subject to longer opinion terms and fails to solve the term overlap issue. Current top performance has been achieved by employing the span-based grap...
The pair-wise aspect and opinion term extraction (PAOTE) task aims to extract aspect terms and opinion terms from reviews in the form of opinion pairs, which provides a global profile for reviews of goods or users. Up-to-date studies ignore the interaction between term detection and term pairing, which may be crucial for the PAOTE task. Other studi...
The state-of-the-art model for structured sentiment analysis casts the task as a dependency parsing problem, which has some limitations: (1) The label proportions for span prediction and span relation prediction are imbalanced. (2) The span lengths of sentiment tuple components may be very large in this task, which will further exacerbate the imbal...
So far, named entity recognition (NER) has been involved with three major types, including flat, overlapped (aka. nested), and discontinuous NER, which have mostly been studied individually. Recently, a growing interest has been built for unified NER, tackling the above three jobs concurrently with one single model. Current best-performing methods...
Aspect-based sentiment triplet extraction (ASTE) aims at recognizing the joint triplets from texts, i.e., aspect terms, opinion expressions, and correlated sentiment polarities. As a newly proposed task, ASTE depicts the complete sentiment picture from different perspectives to better facilitate real-world applications. Unfortunately, several major...
In this paper, we propose to enhance the pair-wise aspect and opinion terms extraction (PAOTE) task by incorporating rich syntactic knowledge. We first build a syntax fusion encoder for encoding syntactic features, including a label-aware graph convolutional network (LAGCN) for modeling the dependency edges and labels, as well as the POS tags unifi...
Pair-wise aspect and opinion terms extraction (PAOTE), aiming at detecting the pair of the correlated aspect and opinion terms jointly, recently has drawn increasing research attention in the community of sentiment analysis and opinion mining. Recent works largely employ joint methods for the task, while they do not sufficiently incorporate the ext...
Semantic role labeling (SRL) is one of the important tasks in natural language processing. Current end-to-end SRL, compared with traditional pipeline SRL, has achieved competitive performance via graph-based neural models. However, these are all first-order methods, where decisions for detecting predicate-argument pairs are made in isolation with l...
Hao Fei Donghong Ji Bobo Li- [...]
Fei Li
A majority of research interests in irregular (e.g., nested or discontinuous) named entity recognition (NER) have been paid on nested entities, while discontinuous entities received limited attention. Existing work for discontinuous NER, however, either suffers from decoding ambiguity or predicting using token-level local features. In this work, we...
End-to-end semantic role labeling (SRL) has been received increasing interest. It performs the two subtasks of SRL: predicate identification and argument role labeling, jointly. Recent work is mostly focused on graph-based neural models, while the transition-based framework with neural networks which has been widely used in a number of closely-rela...
Currently the unified semantic role labeling (SRL) that achieves predicate identification and argument role labeling in an end-to-end manner has received growing interests. Recent works show that leveraging the syntax knowledge significantly enhances the SRL performances. In this paper, we investigate a novel unified SRL framework based on the sequ...
In this paper, we propose to enhance the pair-wise aspect and opinion terms extraction (PAOTE) task by incorporating rich syntactic knowledge. We first build a syntax fusion encoder for encoding syntactic features, including a label-aware graph convolutional network (LAGCN) for modeling the dependency edges and labels, as well as the POS tags unifi...
The recognition of textual entailment (RTE) as the main text understanding task is crucial to the application in biomedical and clinical field, however, the developing of which has been hindered, due to the scarcity of the data annotation. In this work, we propose a domain adaptation framework for the cross-domain clinical RTE. We first construct a...
Attention has been shown highly effective for modeling sequences, capturing the more informative parts in learning a deep representation. However, recent studies show that the attention values do not always coincide with intuition in tasks, such as machine translation and sentiment classification. In this study, we consider using deep reinforcement...
End-to-end semantic role labeling (SRL) has been received increasing interest. It performs the two subtasks of SRL: predicate identification and argument role labeling, jointly. Recent work is mostly focused on graph-based neural models, while the transition-based framework with neural networks which has been widely used in a number of closely-rela...
While existing studies have established the relationship between electronic word-of-mouth (eWOM) and studio performance , limited research has been conducted to demonstrate how the attention-based model applies to the motion picture industry. In this study, examining a review corpus of seven Hollywood studios, we proved that deep learning with the...
Motivation
Entity relation extraction is one of the fundamental tasks in biomedical text mining, which is usually solved by the models from natural language processing (NLP). Compared with traditional pipeline methods, joint methods can avoid the error propagation from entity to relation, giving better performances. However, the existing joint mode...
Information extraction is one of the important tasks in the field of Natural Language Processing (NLP). Most of the existing methods focus on general texts and little attention is paid to information extraction in specialized domains such as legal texts. This paper explores the task of information extraction in the legal field, which aims to extrac...
Overlapping entity relation extraction has received extensive research attention in recent years. However, existing methods suffer from the limitation of long-distance dependencies between entities, and fail to extract the relations when the overlapping situation is relatively complex. This issue limits the performance of the task. In this paper, w...
Lexical chain consists of cohesion words in a document, which implies underlying structure of a text, and thus facilitates downstream NLP tasks. Nevertheless, existing work focuses on detecting the simple surface lexicons with shallow syntax associations, ignoring the semantic-aware lexical compounds as well as the latent semantic frames, (e.g., to...
Aggressive language detection (ALD), detecting the abusive and offensive language in texts, is one of the crucial applications in NLP community. Most existing works treat ALD as regular classification with neural models, while ignoring the inherent conflicts of social media text that they are quite unnormalized and irregular. In this work, we targe...
Aggressive language detection (ALD), detecting the abusive and offensive language in texts, is one of the crucial applications in NLP community. Most existing works treat ALD as regular classification with neural models, while ignoring the inherent conflicts of social media text that they are quite unnormalized and irregular. In this work, we targe...
Lexical chain consists of cohesion words in a document, which implies the underlying structure of a text, and thus facilitates downstream NLP tasks. Nevertheless, existing work focuses on detecting the simple surface lexicons with shallow syntax associations, ignoring the semantic-aware lexical compounds as well as the latent semantic frames, (e.g....
Current end-to-end semantic role labeling is mostly accomplished via graph-based neural models. However, these all are first-order models, where each decision for detecting any predicate-argument pair is made in isolation with local features. In this paper, we present a high-order refining mechanism to perform interaction between all predicate-argu...