Hao FeiNational University of Singapore | NUS · School of Computing
Hao Fei
Doctor of Philosophy
Looking for collaborations on NLP, Multimedia, and LLMs.
About
156
Publications
12,325
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,761
Citations
Introduction
A Research Fellow of NExT++ research center at NUS. Working on Natural Language Processing, Vision-Language Learning, Structural Modeling, Language Modeling, Information Extraction, Affective Computing.
Skills and Expertise
Additional affiliations
August 2022 - August 2023
September 2016 - December 2021
Publications
Publications (156)
Multimodal information extraction (IE) tasks have attracted increasing attention because many studies have shown that multimodal information benefits text information extraction. However, existing multimodal IE datasets mainly focus on sentence-level image-facilitated IE in English text, and pay little attention to video-based multimodal IE and fin...
Producing emotionally dynamic 3D facial avatars with text derived from spoken words (Emo3D) has been a pivotal research topic in 3D avatar generation. While progress has been made in general-purpose 3D avatar generation, the exploration of generating emotional 3D avatars remains scarce, primarily due to the complexities of identifying and rendering...
Referring Image Segmentation (RIS) has been extensively studied over the past decade, leading to the development of advanced algorithms. However, there has been a lack of research investigating how existing algorithms should be benchmarked with complex language queries, which include more informative descriptions of surrounding objects and backgrou...
Few-shot named entity recognition (NER) exploits limited annotated instances to identify named mentions. Effectively transferring the internal or external resources thus becomes the key to few-shot NER. While the existing prompt tuning methods have shown remarkable few-shot performances, they still fail to make full use of knowledge. In this work,...
In recent times, Vision-Language Models (VLMs) have been trained under two predominant paradigms. Generative training has enabled Multimodal Large Language Models (MLLMs) to tackle various complex tasks, yet issues such as hallucinations and weak object discrimination persist. Discriminative training, exemplified by models like CLIP, excels in zero...
In the visual spatial understanding (VSU) area, spatial image-to-text (SI2T) and spatial text-to-image (ST2I) are two fundamental tasks that appear in dual form. Existing methods for standalone SI2T or ST2I perform imperfectly in spatial understanding, due to the difficulty of 3D-wise spatial feature modeling. In this work, we consider modeling the...
In the rapidly evolving field of conversational AI, Ontology Expansion (OnExp) is crucial for enhancing the adaptability and robustness of conversational agents. Traditional models rely on static, predefined ontologies, limiting their ability to handle new and unforeseen user needs. This survey paper provides a comprehensive review of the state-of-...
In the realm of video dialog response generation, the understanding of video content and the temporal nuances of conversation history are paramount. While a segment of current research leans heavily on large-scale pretrained visual-language models and often overlooks temporal dynamics, another delves deep into spatial-temporal relationships within...
Dialogue disentanglement aims to detach the chronologically ordered utterances into several independent sessions. Conversation utterances are essentially organized and described by the underlying discourse, and thus dialogue disentanglement requires the full understanding and harnessing of the intrinsic discourse attribute. In this paper, we propos...
Grammar Induction could benefit from rich heterogeneous signals, such as text, vision, and acoustics. In the process, features from distinct modalities essentially serve complementary roles to each other. With such intuition, this work introduces a novel \emph{unsupervised visual-audio-text grammar induction} task (named \textbf{VAT-GI}), to induce...
The swift advancement in Multimodal LLMs (MLLMs) also presents significant challenges for effective knowledge editing. Current methods, including intrinsic knowledge editing and external knowledge resorting, each possess strengths and weaknesses, struggling to balance the desired properties of reliability, generality, and locality when applied to M...
The multimodal emotion-cause pair extraction (MECPE) task aims to detect the emotions, causes, and emotion-cause pairs from multimodal conversations. Existing methods for this task typically concatenate representations of each utterance from distinct modalities and then predict emotion-cause pairs directly. This approach struggles to effectively in...
Event extraction (EE) is a critical direction in the field of information extraction, laying an important foundation for the construction of structured knowledge bases. EE from text has received ample research and attention for years, yet there can be numerous real-world applications that require direct information acquisition from speech signals,...
While existing Aspect-based Sentiment Analysis (ABSA) has received extensive effort and advancement, there are still gaps in defining a more holistic research target seamlessly integrating multimodality, conversation context, fine-granularity, and also covering the changing sentiment dynamics as well as cognitive causal rationales. This paper bridg...
Structured Sentiment Analysis (SSA) was cast as a problem of bi-lexical dependency graph parsing by prior studies. Multiple formulations have been proposed to construct the graph, which share several intrinsic drawbacks: (1) The internal structures of spans are neglected, thus only the boundary tokens of spans are used for relation prediction and s...
Current universal segmentation methods demonstrate strong capabilities in pixel-level image and video understanding. However, they lack reasoning abilities and cannot be controlled via text instructions. In contrast, large vision-language multimodal models exhibit powerful vision-based conversation and reasoning capabilities but lack pixel-level un...
While pre-training large-scale video-language models (VLMs) has shown remarkable potential for various downstream video-language tasks, existing VLMs can still suffer from certain commonly seen limitations, e.g., coarse-grained cross-modal aligning , under-modeling of temporal dynamics, detached video-language view. In this work, we target enhancin...
This paper introduces EmpathyEar, a pioneering open-source, avatar-based multimodal empathetic chatbot, to fill the gap in traditional text-only empathetic response generation (ERG) systems. Leveraging the advancements of a large language model, combined with multimodal encoders and generators, EmpathyEar supports user inputs in any combination of...
Multimodal Large Language Models (MLLMs) have demonstrated exceptional capabilities in processing vision-language tasks. One of the crux of MLLMs lies in vision tokenization, which involves efficiently transforming input visual signals into feature representations that are most beneficial for LLMs. However, existing vision tokenizers, essential for...
In the field of information extraction (IE), tasks across a wide range of modalities and their combinations have been traditionally studied in isolation, leaving a gap in deeply recognizing and analyzing cross-modal information. To address this, this work for the first time introduces the concept of grounded Multimodal Universal Information Extract...
While the recent Chain-of-Thought (CoT) technique enhances the reasoning ability of large language models (LLMs) with the theory of mind, it might still struggle in handling logical reasoning that relies much on symbolic expressions and rigid deducing rules. To strengthen the logical reasoning capability of LLMs, we propose a novel Symbolic Chain-o...
Language Models (LMs) excel in understanding textual descriptions of proteins, as evident in biomedical question-answering tasks. However, their capability falters with raw protein data, such as amino acid sequences, due to a deficit in pretraining on such data. Conversely, Protein Language Models (PLMs) can understand and convert protein data into...
Existing research of video understanding still struggles to achieve in-depth comprehension and reasoning in complex videos, primarily due to the under-exploration of two key bottlenecks: fine-grained spatial-temporal perceptive understanding and cognitive-level video scene comprehension. This paper bridges the gap by presenting a novel solution. We...
This paper describes the architecture of our system developed for Task 3 of SemEval-2024: Multimodal Emotion-Cause Analysis in Conversations. Our project targets the challenges of subtask 2, dedicated to Multimodal Emotion-Cause Pair Extraction with Emotion Category (MECPE-Cat), and constructs a dual-component system tailored to the unique challeng...
While pre-training large-scale video-language models (VLMs) has shown remarkable potential for various downstream video-language tasks, existing VLMs can still suffer from certain commonly seen limitations, e.g.,
coarse-grained cross-modal aligning
,
under-modeling of temporal dynamics
,
detached video-language view
. In this work, we target...
Dialogue Aspect-based Sentiment Quadruple (DiaASQ) is a newly-emergent task aiming to extract the sentiment quadruple (i.e., targets, aspects, opinions, and sentiments) from conversations. While showing promising performance, the prior DiaASQ approach unfortunately falls prey to the key crux of DiaASQ, including insufficient modeling of discourse f...
In recent years, spectral graph neural networks, characterized by polynomial filters, have garnered increasing attention and have achieved remarkable performance in tasks such as node classification. These models typically assume that eigenvalues for the normalized Laplacian matrix are distinct from each other, thus expecting a polynomial filter to...
With the proliferation of dialogic data across the Internet, the Dialogue Commonsense Multi-choice Question Answering (DC-MCQ) task has emerged as a response to the challenge of comprehending user queries and intentions. Although prevailing methodologies exhibit effectiveness in addressing single-choice questions, they encounter difficulties in han...
Information retrieval (IR) is a fundamental technique that aims to acquire information from a collection of documents, web pages, or other sources. While traditional text-based IR has achieved great success, the under-utilization of varied data sources in different modalities (i.e., text, images, audio, and video) would hinder IR techniques from gi...
Dialogue relation extraction (DRE) that identifies the relations between argument pairs in dialogue text, suffers much from the frequent occurrence of personal pronouns, or entity and speaker coreference. This work introduces a new benchmark dataset DialogRE\(^{C+}\), introducing coreference resolution into the DRE scenario. With the aid of high-qu...
Text-to-video (T2V) synthesis has gained increasing attention in the community, in which the recently emerged diffusion models (DMs) have promisingly shown stronger performance than the past approaches. While existing state-of-the-art DMs are competent to achieve high-resolution video generation, they may largely suffer from key limitations (e.g.,...
Recent studies have shown that dense retrieval models, lacking dedicated training data, struggle to perform well across diverse retrieval tasks, as different retrieval tasks often entail distinct search intents. To address this challenge, in this work we introduce ControlRetriever, a generic and efficient approach with a parameter isolated architec...
In the text-to-image generation field, recent remarkable progress in Stable Diffusion makes it possible to generate rich kinds of novel photorealistic images. However, current models still face misalignment issues (e.g., problematic spatial relation understanding and numeration failure) in complex natural scenes, which impedes the high-faithfulness...
Video Semantic Role Labeling (VidSRL) aims to detect the salient events from given videos, by recognizing the predict-argument event structures and the interrelationships between events. While recent endeavors have put forth methods for VidSRL, they can be mostly subject to two key drawbacks, including the lack of fine-grained spatial scene percept...
It has been a hot research topic to enable machines to understand human emotions in multimodal contexts under dialogue scenarios, which is tasked with multimodal emotion analysis in conversation (MM-ERC). MM-ERC has received consistent attention in recent years, where a diverse range of methods has been proposed for securing better task performance...
Dialogue relation extraction (DRE) that identifies the relations between argument pairs in dialogue text, suffers much from the frequent occurrence of personal pronouns, or entity and speaker coreference. This work introduces a new benchmark dataset DialogRE^C+, introducing coreference resolution into the DRE scenario. With the aid of high-quality...
Structured Natural Language Processing (XNLP) is an important subset of NLP that entails understanding the underlying semantic or syntactic structure of texts, which serves as a foundational component for many downstream applications. Despite certain recent efforts to explore universal solutions for specific categories of XNLP tasks, a comprehensiv...
Dialogue disentanglement aims to detach the chronologically ordered utterances into several independent sessions. Conversation utterances are essentially organized and described by the underlying discourse, and thus dialogue disentanglement requires the full understanding and harnessing of the intrinsic discourse attribute. In this paper, we propos...
Few-shot named entity recognition (NER) exploits limited annotated instances to identify named mentions. Effectively transferring the internal or external resources thus becomes the key to few-shot NER. While the existing prompt tuning methods have shown remarkable few-shot performances, they still fail to make full use of knowledge. In this work,...
The existing emotion-cause pair extraction (ECPE) task, unfortunately, ignores extracting the emotion type and cause type, while these fine-grained meta-information can be practically useful in real-world applications, i.e., chat robots and empathic dialog generation. Also the current ECPE is limited to the scenario of single text piece, while negl...
Latest efforts on cross-lingual relation extraction (XRE) aggressively leverage the language-consistent structural features from the universal dependency (UD) resource, while they may largely suffer from biased transfer (e.g., either target-biased or source-biased) due to the inevitable linguistic disparity between languages. In this work, we inves...
In this work, we investigate a more realistic unsupervised multimodal machine translation (UMMT) setup, inference-time image-free UMMT, where the model is trained with source-text image pairs, and tested with only source-text inputs. First, we represent the input images and texts with the visual and language scene graphs (SG), where such fine-grain...
Unpaired cross-lingual image captioning has long suffered from irrelevancy and disfluency issues, due to the inconsistencies of the semantic scene and syntax attributes during transfer. In this work, we propose to address the above problems by incorporating the scene graph (SG) structures and the syntactic constituency (SC) trees. Our captioner con...
Existing research on multimodal relation extraction (MRE) faces two co-existing challenges, internal-information over-utilization and external-information under-exploitation. To combat that, we propose a novel framework that simultaneously implements the idea of internal-information screening and external-information exploiting. First, we represent...
Visual spatial description (VSD) aims to generate texts that describe the spatial relations of the given objects within images. Existing VSD work merely models the 2D geometrical vision features, thus inevitably falling prey to the problem of skewed spatial understanding of target objects. In this work, we investigate the incorporation of 3D scene...
While sentiment analysis systems try to determine the sentiment polarities of given targets based on the key opinion expressions in input texts, in implicit sentiment analysis (ISA) the opinion cues come in an implicit and obscure manner. Thus detecting implicit sentiment requires the common-sense and multi-hop reasoning ability to infer the latent...
While developing a new vision-language LLM (VL-LLM) by pre-training on tremendous image-text pairs from scratch can be exceedingly resource-consuming, connecting an existing LLM with a comparatively lightweight visual prompt generator (VPG) becomes a feasible paradigm. However, further tuning the VPG part of the VL-LLM still suffers from indispensa...
Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities toward certain aspects of products or services behind the social media texts or reviews, which has been a fundamental application to the real-world society. Since the early 2010s, ABSA has achieved extraordinarily high accuracy with various deep...
Universally modeling all typical information extraction tasks (UIE) with one generative language model (GLM) has revealed great potential by the latest study, where various IE predictions are unified into a linearized hierarchical expression under a GLM. Syntactic structure information, a type of effective feature which has been extensively utilize...