
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

An Efficient Liveness Analysis Method for Petri
Nets via Maximally Good-Step Graphs

Hao Dou , Graduate Student Member, IEEE, MengChu Zhou , Fellow, IEEE,
Shouguang Wang , Senior Member, IEEE, and Aiiad Albeshri

Abstract—Liveness is among the most significant properties
when Petri net (PN) models of automated systems are analyzed,
which ensures systems’ deadlock-freeness. Traditionally, the
liveness analysis methods based on reachability graphs (RGs)
of PNs often suffer from state-space explosion problems. In
this article, we propose a novel liveness-analysis method for PN
based on maximally good-step graphs (MGs), namely, the reduced
form of RGs, which can effectively alleviate such problems in
liveness analysis. First, we introduce the concept of sound steps
and establish an algorithm for assessing the soundness of an
enabled step at the current marking from a practice point of
view. Second, we propose a definition of maximal sound steps
and construct an algorithm for calculating a maximal-sound-
step set at each marking whose computational complexity grows
polynomial with the number of places and transitions. Then,
we introduce a definition for good steps and an algorithm for
generating maximally good step graphs of PN; and discuss its
computational complexity with respect to the net size and initial
marking. Next, we for the first time answer how to evaluate the
liveness of PN by using MGs. Experiments in diverse large-scale
automated manufacturing systems demonstrate that the proposed
method significantly reduces state space and time consumption
in the liveness analysis of network systems.

Index Terms—Automated manufacturing systems (AMSs), live-
ness analysis, maximal strongly connected components (maximal
SCC), maximally good-step graphs (MGs), Petri nets (PNs).

I. INTRODUCTION

SYSTEMS operating through discrete events and char-
acterized by discrete states are referred to as discrete

event systems (DESs) [1], [2], [3]. In our real life, many
man-made systems can fall under the category of DES,
including communication systems, automated manufacturing

Manuscript received 31 October 2023; accepted 21 February 2024. This
work was supported in part by the Public Technology Research Plan
of Zhejiang Province under Grant LGJ21F030001; in part by the Fundo
para o Desenvolvimento das Cienciase da Tecnologia (FDCT) under
Grant 0047/2021/A1; and in part by the Institutional Fund Projects pro-
vided by the Ministry of Education and King Abdulaziz University under
Grant IFPIP-1480-611-1443. This article was recommended by Associate
Editor C. Zhang. (Corresponding authors: Shouguang Wang; MengChu Zhou.)

Hao Dou is with the Macau Institute of Systems Engineering, Macau
University of Science and Technology, Macau, China (e-mail: haodou1@
foxmail.com).

MengChu Zhou and Shouguang Wang are with the School of Information
and Electronic Engineering, Zhejiang Gongshang University, Hangzhou
310018, China (e-mail: mengchu@gmail.com; wsg5000@hotmail.com).

Aiiad Albeshri is with the Department of Computer Science, King
Abdulaziz University, Jeddah 21481, Saudi Arabia (e-mail: aaalbeshri@
kau.edu.sa).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSMC.2024.3372941.

Digital Object Identifier 10.1109/TSMC.2024.3372941

systems (AMSs) [4], [5], [6], [7], [8], and computer systems.
The design of DES usually involves optimization, control,
modeling, analysis, and performance evaluation. Among the
crucial properties evaluated in DES performance, liveness
stands out, as a paramount concern for researchers. The
absence of liveness can lead to the underlying system’s low-
operational efficiency, economic loss, and security incidents
in the real world. Consequently, ensuring this property within
DES holds significant importance.

Some major mathematical tools employed in liveness anal-
ysis are Petri nets (PNs) [9], [10], and automata [2], [3]. PN
are particularly prevalent since they are powerful in simulating
and assessing many DES characteristics, such as resource
sharing, asynchronism, concurrency, liveness, and deadlocks.
If all transitions (events) can be triggered under markings
(states) reachable from the initial one, then a PN is considered
as “live.” PN have many variants, such as ordinary, general,
colored, and timed ones. This article mainly focuses on
ordinary PN since all their properties can be retained in several
other PN variants with minor modifications [11].

A. Literature Review

In the realm of liveness analysis for PN, two principal
techniques emerge: one relies on structural objects, such as
siphons [13], [14], [15], [16], [17], [18], [19], resource-
transition circuits [20], and perfect activity circuits [21], while
the other is grounded in reachability graphs (RGs) [10], [22].
The efficacy of these methods is evaluated through two crucial
factors: 1) computational complexity and 2) structural com-
plexity. The former techniques exhibit limited applicability,
primarily suited for specific classes of PN, making them
suboptimal solutions. In contrast, the latter may provide a more
comprehensive view of system behavior and can be applied
to a broader spectrum of PN. The challenge with reachability
analysis lies in its known exponential [23] or even Ackermann-
complete complexity [24], [25]. To overcome this challenge,
various techniques have been proposed, including partial order
methods [26], [27], [28], [29], [30], [31], symmetries, and
compositional verification. Among these, partial order meth-
ods have demonstrated the greatest effectiveness in practical
applications [30].

Partial order techniques can be split into two categories:
1) covering step graphs [31] and 2) partial order reduction
methods [33]. The target of these techniques is to simplify the
state space of net systems and allow for the verification of

2168-2216 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 19,2024 at 11:40:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2697-6274
https://orcid.org/0000-0002-5408-8752
https://orcid.org/0000-0002-8998-0433
https://orcid.org/0000-0003-3796-0294

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

system properties through partial interleavings of concurrent
executions rather than all of them [30]. Partial order reduction
methods, such as persistent sets [32], stubborn sets [29],
and sleep sets [30], primarily concentrate on decreasing the
breadth of the state space while covering step graph techniques
emphasize the reduction of depth. Researchers often seek
to enhance the efficiencies of the state space reduction and
computation process by combining both types of methods,
aiming to achieve superior outcomes compared to using either
method in isolation. It is noteworthy that the combination of
persistent set methods and covering step graphs merits special
attention, as persistent set methods are a typical case of partial
order reduction techniques [33].

In Ribet et al. [32] proposed hybrid persistent step graphs
(HPSGs) that integrate covering step graphs and persistent sets
to fulfill the state-space reduction in both breadth and depth.
Despite being proven to maintain the deadlocks of PN, the
method has limitations in handling concurrent relations among
events, thus potentially missing opportunities for further state-
space reduction. Subsequently, Barkaoui et al. [33] put forward
a weak-persistent step graph method, introducing a novel
concept of weak-persistent sets. They reclassify the persistent
sets proposed by [34] as strong-persistent sets, thereby broad-
ening the scope of persistent sets and allowing for a greater
number of transitions to be fired simultaneously. The applica-
tion of this method results in a more substantial state-space
reduction compared to HPSG. Despite resolving the issue
of the state-space explosion to some degree, can we further
reduce such complicated state-space? To answer it, we have
proposed new concepts of sound steps and good steps in [35]
after better-comprehending concurrency and conflict relations
among transitions. The generation of good steps at each state
enables an extreme reduction in state space since good steps
cover the scope of covering steps, strong- and weak-persistent
sets. Moreover, the maximal good step graph (MGSG) method
presented in [35] demonstrates superior efficiency in state-
space reduction compared to existing techniques.

B. Motivations and Contributions of This Work

Despite partial order methods sharing the fundamental
principle of examining partial interleaving of concurrent
executions rather than exhaustively considering all possible
interleavings to verify the properties of net systems, they
vary in their implementation details. Specifically, each method
evaluates the tradeoffs among computational complexity,
running-time consumption, and the number of states it can
reduce. In essence, the pursuit of the best-reduction method
becomes impractical since the preservation of deadlocks in
PN is a crucial requirement for partial order methods, and
the detection of deadlocks has been proven to be a PSPACE-
complete problem [36]. It is reasonable that some methods
yield a better result in state-space reduction while requiring
more complicated operations and consuming more time than
others. Hence, the first motivation behind our method is
exploring a more reduced state space than that generated
by existing partial order methods with the lowest-possible
computational complexity.

To the best of our knowledge, the majority of partial order
methods are adept at detecting deadlocks of net systems,
while very few preserve system liveness. Hence, investigating
a compact state space to confirm the liveness of net systems
is a valuable pursuit, which serves as the second motivation
of our work.

Considering the power of MGSGs in alleviating the state-
space explosion issues, we improve MGSG into maximally
good-step graphs (MGs) and apply the improved version to
explore the liveness analysis issue for PN. Through this article,
we intend to bring forward the following novel and unique
contributions.

1) We enhance the definitions of sound transitions, maxi-
mal sound steps, and good steps, which are significant
components to construct MG of PN. Furthermore, we
introduce the constraint that each sound step contains
only two transitions, thus facilitating the exploration of
maximal sound ones at the current marking with a low-
computational effort.

2) We propose an algorithm to verify whether an enabled
step is sound under a current marking, which is
applied to construct the algorithms of a) calculating a
maximal-sound-step set under a reachable marking and
b) generating MG.

3) We illustrate that the improved MGSG, i.e., MG, can
detect deadlocks of a PN. Besides, we prove that MG
can preserve the liveness of net systems. Notably, we
introduce, for the first time, a necessary and sufficient
condition for conducting liveness analysis on a PN using
MG.

Relative to RG and the existing partial order methods, we
demonstrate the effectiveness of our proposed method in both
state-space reduction and the liveness analysis of net systems
through the modeling of several large-scale plants. However, a
primary limitation of our work lies in the exclusive application
of our proposed method to ordinary PN. Although such
nets can provide significant modeling solutions for various
problem domains, they may encounter challenges in modeling
certain complex systems, unless additional diverse elements
are incorporated into them [12].

C. Outline of This Article

This article can be summarized as follows: Section II
reviews fundamental knowledge of graph theory and PN.
Section III presents some definitions and properties associated
with MG and proposes a new liveness-analysis method via MG
of PN. Section IV showcases the efficiency of our proposed
method in simplifying the state space and analyzing the
liveness of net systems through several manufacturing-oriented
PN. In Section V, this work gets a conclusion accompanied
by insights into future research directions.

II. PRELIMINARIES

This section provides an overview of the essential concepts
in graph theory and PN, guided by established references, such
as [32], [37], and [38].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 19,2024 at 11:40:20 UTC from IEEE Xplore. Restrictions apply.

DOU et al.: EFFICIENT LIVENESS ANALYSIS METHOD FOR PN VIA MAXIMALLY GOOD-STEP GRAPHS 3

A. Petri Nets

In the ensuing discussion, � represents a nonempty, finite
set of notations referred to as an alphabet. �∗ denotes the
set of all finite strings of notations in �, including an empty
string ε. Another set of notation strings, �+, excludes ε. We
have �∗ = {ε} ∪ �+. For instance, if � = {α, β}, then �∗
= {ε, α, β, αα, αβ, ββ, · · · } and �+ = {α, β, αα, αβ, ββ,
· · · }.

A 4-tuple N = (P, T , F, W) defines a general PN. P and T
represent sets of places and transitions, separately. These sets
are both finite and nonempty and they do not overlap. The
directed arcs connecting places to transitions or transitions to
places represent the flow relation, defined as F ⊆ (P × T) ∪
(T × P). The function W: F → N

+ assigns a positive integer
weight to each directed arc, implying that ∀ f ∈ F, W(f) ≥
1, where N

+ = {1, 2, 3, · · · }. For any node x in N, where x
∈ P ∪ T , the preset and post-set of x are defined as •x = {y
∈ P ∪ T | (y, x ∈ F)} and x• = {y ∈ P ∪ T | (x, y ∈ F)},
respectively. For any set X ⊆ P ∪ T , we have •X = ∪x∈X

•x
and X• = ∪x∈X x•. A PN N = (P, T , F, W) is an ordinary PN
if ∀ f ∈ F, W(f)=1. In this case, the net can be represented
concisely as N = (P, T , F).

A Marking M: P→ N is defined as a function that associates
each place in the set P with a non-negative integer from N.
Typically, for brevity, a multiset �p∈PM(p)p is represented by
a vector M, where M(p) indicates the number of tokens held by
p. For example, a marking M = [3, 1, 2, 9]T can be expressed
as M = 3p1 + p2+2p3+9p4. When a PN N is equipped with
its initial marking M0, the combination is referred to as a net
system or marked net, represented by the notation (N, M0).

A symbol M[t〉 denotes that t ∈ T can be fired at a marking
M if ∀ p ∈ •t, M(p) ≥ W(p, t), while M[t〉M′ represents that a
new marking M′ is immediately yielded after firing t. In such a
case, we have ∀ p ∈ •t, M′(p) = M(p)−W(p, t)+W(t, p). E(M)
is a set contains all enabled transitions at M, and E(M) = ∅
means that M is a deadlock marking. M[σ 〉 defines that σ can
be firable under M, where σ is a sequence of transitions with
σ = t1t2, . . .tn. Specifically, there exist several intermediate
markings M1, M2, . . ., Mn−1 such that M[t1〉M1 ∧ M1[t2〉M2
∧ . . . ∧ Mn−1[tn〉. If there is a marking M′′ s.t. Mn−1[tn〉M′′,
then we have M[σ 〉M′′, i.e., M′′ is a reachable marking of M.
M[ε〉M denotes that an empty sequence ε can be fired at M.
The reachability set R(N, M0) of a net system (N, M0) is used
to store all markings reachable from the initial one.

An enabled step τ represents a collection of enabled
transitions that can all be fired together under a reachable
marking M, denoted by M[τ 〉, where M(p) ≥ ∑

t∈τ W(p, t)
∀p ∈ •τ . This implies that there are sufficient tokens to
fire all transitions within step τ simultaneously at M. The
notation M[τ 〉M′ signifies that the firing of τ at M results
in marking M′. We define Es(M) as the set of enabled steps
at M, expressed by Es(M) = {τ ⊆ E(M)|M[τ 〉, where M ∈
R(N, M0)}. The cardinality of τ is denoted by |τ |, meaning
the number of transitions it includes.

The notation t ⊥ t′ denotes that transitions t and t′ are in
conflict relation if: 1) t• ∩ t′• �= •t ∩ •t′ and 2) •t ∩ •t′ �= ∅.
A set of transitions conflicting with t is represented by C(t)

(b) (c)

(a)

Fig. 1. (a) PN (N1, M0), (b) its RG, and (c) subgraph of its RG.

= {t′ ∈ T|t ⊥ t′}. The symbol t � t′ means that t and t′ are
independent with each other since •t ∩ •t′ = ∅ or •t ∩ •t′ = t•
∩ t′•. Equivalent sequences can be denoted as σ1 ≡ σ2, where
their Parikh vectors are identical. If σ1 ≡ σ2 and M[σ1〉M1 ∧
M[σ2〉M2, where σ1, σ2 ∈ T∗ and M ∈ R(N, M0), then we
have M1 = M2. The set of transitions included in a sequence
σ ∈ T∗ is denoted by ||σ || = {t ∈ T|∃σ1, σ2 ∈ T∗, σ1tσ2 ≡ σ }.
For instance, if σ = t1t3t2, then ||σ || = {t1, t2, t3}.

Given a marked net (N, M0), t ∈ T is live at M0 if ∀ M ∈
R(N, M0), ∃ M′ ∈ R(N, M), M′[t〉. (N, M0) is called live if ∀
t ∈ T , t is live at M0. (N, M0) is called dead if ∃ M ∈ R(N,
M0), � t ∈ T , M[t〉. (N, M0) is deadlock-free (or weakly live)
if ∀ M ∈ R(N, M0), ∃ t ∈ T , M[t〉. (N, M0) is k-bounded if ∃
k ∈ N ∀ M ∈ R(N, M0) ∀ p ∈ P, M(p) ≤ k.

In the following sections of this article, we concentrate on
ordinary and bounded PN. For clarity, the PN mentioned refer
exclusively to marked ones.

B. Graph Theory

Definition 1: A directed graph is a two-tuple G = (V , E),
where 1) V is a node-set and 2) E ⊆ V × V represents a set
of directed edges of G.

Definition 2: A directed graph G′ = (V ′, E′) is called a
subgraph of G = (V , E) if V ′ ⊆ V and E′ ⊆ E. This is denoted
as G′ ⊆ G.

Example 1: G′ = (V ′, E′) shown in Fig. 1(c) is regarded as
a subgraph of G = (V , E) depicted in Fig. 1(b), i.e., G′ ⊂ G.
We have V ′ = {M0, M1, M2, M5} ⊂ V and E′ = {(M0, M1),
(M1, M0), (M0, M2), (M2, M5), (M5, M2)} ⊂ E.

In a directed graph G = (V , E), a path from node v1 to
vk, denoted as ρ(v1, vk), is a sequence of nodes such that (vi,
vi+1) ∈ E, where i ∈ {1, 2, . . ., k−1}. The path is referred to
as a cycle if v0 = vk. If the nodes in a path are all distinct, it
is called an elementary path.

Definition 3: A subgraph G′ = (V ′, E′) of a directed graph
G = (V , E) is strongly connected if there is a path between
each pair of nodes in the subgraph. G′ is called a maximal
strongly connected component (maximal SCC) of G if there

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 19,2024 at 11:40:20 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

(c)(b)

(a)

Fig. 2. (a) PN (N2, M0), (b) its RG, and (c) its MG.

is no other strongly connected subgraph G′′ = (V ′′, E′′) of G

with V ′ � V ′′. The maximal SCC is denoted as
↔
U, where U

⊆ V .
Specifically, a maximal SCC can consist of a single node if

the subgraphs it is located in are not strongly connected.

III. LIVENESS ANALYSIS METHOD

A. Maximally Good-Step Graphs

Definition 4 [33]: Let M be a reachable marking of a PN
(N, M0) and π ⊆ E(M) be a set of enabled transitions. π is
persistent at M if all transitions in π meet the conditions.

1) E(M) �= ∅ ⇔ π �= ∅.
2) ∀t ∈ π ∀ω ∈ (T−π)+, M[ω〉 ⇒ M[ωt〉.
3) ∀t ∈ π ∀ω ∈ (T−π)+, M[ωt〉 ⇒ M[tω〉.
Intuitively, Condition 1 means that a persistent set π

consists of enabled transitions at M. If π is an empty set,
then there is no enabled transition under M and (N, M0) is
dead. Condition 2 implies that all transitions of π cannot
be forbidden by any firable sequence ω as long as it does
not contain transitions in π . Condition 3 signifies that if any
transition t of π is enabled under M after firing ω that does
not contain transitions in π , then the sequence ω shall also be
firable at M after t. For a PN (N2, M0) shown in Fig. 2(a),
t1, t2, and t3 are all enabled transitions of an initial marking
M0, i.e., E(M0) = {t1, t2, t3}. According to Definition 4, t3 is
disabled after firing t2t4 at M0 (i.e., M0[t2t4〉 and ¬M0[t2t4t3〉),
thus {t3} is not persistent at M0.

After defining persistent sets, we introduce a concept of
sound steps, which plays a crucial role in reducing the state
space of PN. Note that sound steps and maximal sound
steps proposed in this article are slightly different from the
corresponding ones in [35]. To mitigate the computation of

determining sound steps in practical systems, we limit the
number of transitions within a sound step τ to two, i.e., |τ |
= 2. This avoids constructing redundant transition sequences,
consequently decreasing the overall calculation cost.

Definition 5 Let M ∈ R(N, M0) be a reachable marking and
τs ∈ Es(M) an enabled step at M with |τs| = 2. A transition t
∈ τs is sound at M w.r.t. t′ = τs\{t}, denoted as t‖t′, if:

1) ∀ σ ∈ (T\{t})+, (M[t′σ 〉 ∧ ¬M[t′σ t〉) ⇒
a) ∃ ta ∈ E(M)\τs, ∃ σa ∈ (T\{t})∗, s.t. M[t′σ taσat〉;

or
b) ∃ t1 ∈ (E(M) ∩ ||σ ||)\τs, ∃ σ 1 ∈ (T\{t})∗, s.t.

(t1σ 1 ≡ σ) ∧ M[t1t′σ 1〉.
2) ∀ σ ∈ (T\{t})+, M[t′σ t〉 ⇒ ∃σ ′ ∈ (T\{t})+, s.t. (σ ≡

σ ′) ∧ M[tt′σ ′〉.
Intuitively, Condition 1 indicates that even if a sequence

t′σ starting with t′ disables t at M, it does not necessar-
ily imply that t is unsound for t′ unless the transitions
fail to meet Condition 1(a) or 1(b). Condition 1(a) ensures
that t is re-enabled after firing an inserted sequence taσa,
i.e., M[t′σ taσat〉, where ta is an enabled transition outside
of τs under M. Condition 1(b) states that there is an enabled
transition t1 in ||σ || located outside of τs such that a sequence
equivalent to t′σ starting with t1 can be firable at M, meaning
that the forbidden sequence t′σ can also be firable via its
equivalent sequence t1t′σ1. Condition 2 indicates that the firing
of t and t′ cannot interfere with each other.

Definition 6 Given a marking M, an enabled step τs at M
is a sound step if: 1) |τs| = 2 and 2) ∃t ∈ τs, (t‖t′) ∧ (t′‖t),
where t′ = τs\{t}. An enabled step τms with |τms| ≥ 2 is a
maximal sound step under M if: 1) ∀ τs ⊆ τms where |τs| = 2,
τs is a sound step at M and 2) � t′′ ∈ E(M)\τms ∀t ∈ τms,
{t, t′′} is a sound step at M.

An enabled step consisting of only two transitions that are
sound for each other is considered a sound step at the current
marking. An enabled step containing more than two transitions
is called a maximal sound step if all pairs of transitions within
it are sound for each other and no enabled transition outside
of it exhibits mutual soundness with any transition in the step.

Example 2: In the PN (N2, M0) depicted in Fig. 2(a), the
transition t3 is sound for t2 under M0 = p1+p2+p3. This is
because, even if the sequence t2t4 disables t3 at M0 (i.e., M0[t2
4〉 and ¬M0[t2 4t3〉), we can find 1 ∈ E(M0)\{t2, t3} such that
firing 1 re-enables t3 at M0 (i.e., M0[t2t4 1t3〉). The maximal
sound step under M0 is { 1, t2, t3} since any two different
transitions within it are sound for each other.

Consider a PN (N3, M0) depicted in Fig. 3(a). Assuming
that a transition t0 is sound for t1 under the marking M0 =
[1, 2, 1, 1]T , we have the sequence t1t2t3t1 firable at M0 while
t0 unenabled after firing this sequence at M0 (i.e., M0[t1t2t3t1〉
and ¬M0[t1t2t3t1t0〉). There exists an equivalent sequence with
t1t2t3t1, starting with an enabled transition outside of {t0, t1}
at M0 (i.e.,t2t1t3t1), which can be fired at M0. Thus, the
hypothesis is valid.

Considering a PN (N4, M0) of Fig. 4(a), t2 is not sound
for t0 under M0 = [1, 1, 1, 0, 0, 0, 0]T . After firing t0t1t3
under M0, the transition t2 can be fired (i.e., M0[t0t1t3t2〉).
However, the equivalent sequence with t0t1t3t2 is not firable
at M0 (i.e., ¬M0[t2t0t1t3〉). �

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 19,2024 at 11:40:20 UTC from IEEE Xplore. Restrictions apply.

DOU et al.: EFFICIENT LIVENESS ANALYSIS METHOD FOR PN VIA MAXIMALLY GOOD-STEP GRAPHS 5

(b)(a)

Fig. 3. (a) PN (N3, M0) and (b) its MG.

(b)(a)

Fig. 4. (a) PN (N4, M0) and (b) its MG.

We introduce Algorithm 1 to verify whether an enabled
transition is sound in relation to another at the present marking.
In this algorithm, ρ(x, y) signifies a path from node x to node
y in PN, where x, y ∈ P∪T . Each stage in Algorithm 1 aligns
with a specific condition of Definition 5. In brief, steps 10–20
correspond to Condition 1.a, steps 10 and 21–25 correspond
to Condition 1.b, and steps 15–19 and 27–33 correspond to
Condition 2.

The Complexity of Algorithm 1: PN is considered to be a
directed graph with |P| + |T| nodes. Computing the conflict
transitions of transition t (step 6) has complexity O(nc), where
nc is the number of conflict transitions of t. The complexity of
calculating paths from one node to another (steps 8 and 13) is
O(V+E) in the worst case (e.g., by using Depth-first search),
which is O(|P| · |T|) in PN. Therefore, the total complexity of
Algorithm 1 is O(nc(|P| · |T|)2).

We develop Algorithm 2 to calculate a maximal-sound-step
set under a marking. In such an algorithm, IsSound is defined
as a decision function. Specifically, given an enabled step {t, t′}
of a marking M, IsSound(M, {t, t′}) yields a “true” result if
both t and t′ satisfy the soundness criteria for each other at M
according to the rules delineated in Algorithm 1.

In Algorithm 2, we first check the soundness of each pair
of transitions within τ (steps 5 and 6) at the marking M. If an
enabled transition t is not sound for t′ at the current marking,
then we proceed to partition τ into two sets of transitions, one
excluding t and the other excluding t′ (steps 7–9). Repeat this
procedure until all transitions in each divided set are sound for
each other. In the worst case, no transition is mutually sound
with others. Let n be the size of τ . The algorithm needs to
explore at most (n−1) sets under (n−2) levels. As a result,

Algorithm 1: Verifying Whether an Enabled Transition t
Is Sound for t′ Under the Current Marking

Input: An original Petri net N = (P, T, F), a reachable marking
M ∈ R(N, M0), and two enabled transitions t and t′ at M

Output: “t is sound/not sound for t′ at M”
1 Let tc, ta, and te be transitions;
2 Let σ ′, σe, and σ ′c be sequences of transitions;
3 if t does not have any conflict transition then
4 Output “t is sound for t′ at M” and Exit;
5 end
6 for all tc ∈ T s.t. tc ⊥ t do
7 if there is a path from t′ to tc then
8 for each path ρ(t′, tc) do
9 σc ← ρ(t′, tc)\(P ∪ {t′});

10 if M[t′σc〉 ∧ ¬M[t′σct〉 then
11 pc ← •t ∩ •tc;
12 if ∃ta ∈ E(M)\{t, t′, tc} s.t. there is a path from

ta to pc and there is no path from ta to t′ then
13 Choose a path ρ(ta, pc);
14 σa ← ρ(ta, pc)\P;
15 if M[t′σcσat〉 and ∃σ ′ ≡ σcσa s.t. M[tt′σ ′〉

then
16 Continue;
17 else
18 Output “t is not sound for t′ at M”

and Exit;
19 end
20 end
21 if ∃te ∈ (E(M) ∩ ||σc||)\{t, t′} s.t.

(teσe ≡ σc) ∧M[tet′σe〉 then
22 Continue;
23 else
24 Output “t is not sound for t′ at M” and Exit;
25 end
26 end
27 if M[t′σc〉 ∧M[t′σct〉 then
28 if ∃σ ′c ≡ σc s.t. M[tt′σ ′c〉 then
29 Continue;
30 else
31 Output “t is not sound for t′ at M” and Exit;
32 end
33 end
34 end
35 end
36 end
37 Output “τ is sound at M” and Exit;

the complexity of splitting τ is O(n2). The maximal size of
τ is |E(M)|. Since the complexity of IsSound is O(nc(|P| ·
|T|)2), the overall complexity of Algorithm 2 is bounded by
O(n̂c(|E(M)| · |P| · |T|)2), where n̂c is the maximal number of
conflict transitions for transition t in E(M).

Definition 7 Let M ∈ R(N, M0) be a reachable marking,
τms a maximal sound step at M, and τg a subset of τms, i.e., τg

⊆ τms. The set τg is called a good step at M if it is persistent
under M. A maximal good step τmg of M is a step such that
there is no good step τmg

′ with τmg ⊂ τmg
′.

Algorithm 3 is developed to build a PN’s MG, which mainly
contains two stages.

1) Stage 1, Steps 10–28: Compute the enabled transi-
tions or steps that are firable at the current marking
M. Specifically, step 10 is used to compute a
maximal-sound-step set MSS(M) under M according to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 19,2024 at 11:40:20 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Algorithm 2: Calculating a Maximal-Sound-Step Set of
the Current Marking

Input: A reachable marking M ∈ R(N, M0)
Output: A maximal-sound-step set MSS(M) under M

1 Let t and t′ be transitions;
2 Let τ , τ1, and τ2 be sets of transitions;
3 MSS(M) ← {E(M)};
4 MSS′(M) ← MSS(M);
5 for each τ ∈ MSS′(M) do
6 if ∃ t, t′ ∈ τ , t �= t′ s.t. ¬IsSound(M, {t, t′}), then
7 τ1 ← τ\{t};
8 τ2 ← τ\{t′};
9 MSS′(M) ← (MSS′(M)\{τ}) ∪ {τ1, τ2};

10 end
11 end
12 if ∀τ ∈ MSS′(M), |τ | ≥ 2 then
13 MSS(M) ← MSS′(M);
14 else
15 MSS(M) ← ∅;
16 end
17 Output: MSS(M).

Algorithm 2. If MSS(M) is not empty, we need to
explore whether there exists a maximal good step at
M (steps 11–23). The algorithm in [30] computes the
smallest persistent set for each enabled transition at
the current marking (step 12). Those persistent sets
containing only a single enabled transition are initially
paired with each other and subsequently combined with
other persistent sets to create maximal persistent sets for
each enabled transition (steps 13 and 14). If a maximal
persistent set is included within a maximal sound step, it
qualifies as the maximal good step at the current marking
(by Definition 7) and can be fired (steps 15–17). In
cases where certain persistent sets comprise only one
transition, these sets should be merged and fired at the
marking (steps 18–19). Otherwise, all maximal sound
steps occur at the marking (steps 20–22). Furthermore,
if there does not exist a sound step under M, we have
to explore whether there is an enabled transition that is
structurally independent of other transitions. If such a
transition exists, it can occur at M since its firing does
not impede other transitions (steps 24–25). Otherwise,
all enabled transitions are fired (steps 26–28).

2) Stage 2, Steps 29–43: Add nodes, directed edges
between nodes, and labels of directed edges to MG. The
structure of this stage is similar to that of Algorithm 1
in [35]. Its detailed explanation is omitted for the sake
of brevity.

In Algorithm 3, step 10 calculates a maximal-sound-step
set under the current marking M, with a worst-case complex-
ity of O(n̂c(|E(M)| · |P| · |T|)2). Steps 11–23 involve [30,
Algorithm 1], whose computational complexity is O(|E(M)|2)
in the worst case. Steps 29–43 explore the yielded markings
from M by firing enabled transitions (steps 24–28) or steps
(steps 15–22). To construct MG, all markings in MG should be
explored until � contains no elements (step 6). Let nm denote
the number of markings in MG. In summary, the complexity
of building MG is expressed as O(

∑
i∈1,2,...,nm

n̂ci(|E(Mi)| ·

Algorithm 3: MG Generation of a PN
Input: A PN (N, M0)

Output: An MG � = (M,E,L, M0)

1 Given a root node v0 and its marking M0 of MG;
2 �← (v0); /*� is defined as a stack to store nodes.*/
3 �← {M0}; /*Each marking in � corresponds to a node.*/
4 ← ∅; /* is a set of directed edges between nodes.*/
5 �← ∅; /*� is a set of transitions and enabled steps that label directed

edges.*/
6 while � �= () do
7 v← pop(�); /*Remove the last node v from �.*/
8 Define Mv as the corresponding marking of the node v;
9 if E(Mv) �= ∅ then

10 Compute the set MSS(Mv) of maximal sound steps under Mv;
/*Refer to Algorithm 2.*/;

11 if MSS(Mv) �= ∅ then
12 Compute the persistent set for each transition t of E(Mv)

and let P(Mv) store persistent sets of E(Mv); /*Refer to
[30, Fig. 4.2].*/

13 τg ← ⋃

π∈P(Mv),|π |=1
π ;

14 Q(Mv)← {τg ∪ π |∀π ∈ P(Mv), |π | �= 1};
15 if ∃π ∈ Q(Mv) ∀τms ∈ MSS(Mv) s.t. π ⊆ τms then
16 �← � ∪ {π}; /*π is a maximal good step at Mv.*/
17 end
18 if τg �= ∅ then
19 �← � ∪ {τg};
20 else
21 �← � ∪ MSS(Mv); /*since there is no maximal

good step at Mv, all maximal sound steps of Mv are
fired.*/

22 end
23 end
24 if ∃t ∈ E(Mv)∀t′ ∈ T − {t} s.t. t � t′ then
25 �← � ∪ {t};
26 else
27 �← � ∪ E(Mv);
28 end
29 for each ξ ∈ � do
30 Compute the yielded marking Mw s.t. Mv[ξ〉Mw;
31 if Mw /∈ � then
32 Create a node w;
33 ← ∪ {(v, w)};
34 Label (v, w) by ξ ;
35 Define Mw as a marking of w;
36 �← � ∪ {Mw};
37 �← push(�, w); /*Add w into � as the last node.*/
38 else
39 Obtain the node w of Mw;
40 ← ∪ {(v, w)};
41 Label (v, w) by ξ ;
42 end
43 end
44 end
45 end
46 E← ;
47 L← �;
48 Output: � = (M, E, L, M0).

|P| · |T|)2), where E(Mi) denotes the set of enabled transitions
at the marking Mi in MG and n̂ci is the maximal number of
conflict transitions of t in E(Mi).

The complexity of generating MG connects to the net size
and the number of markings in MG. In the worst case, where
there are no sound steps and no structurally independent
enabled transitions at each marking, the set of reachable
markings in MG is the same as RG, i.e., M(N, M0) =
R(N, M0), and its complexity mirrors that of establishing RG,
where the number of markings grows exponentially with the
net size and initial marking. Since maximal sound steps or

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 19,2024 at 11:40:20 UTC from IEEE Xplore. Restrictions apply.

DOU et al.: EFFICIENT LIVENESS ANALYSIS METHOD FOR PN VIA MAXIMALLY GOOD-STEP GRAPHS 7

structurally independent enabled transitions can usually be
explored at multiple markings, the size of MG, i.e., the number
of reachable markings in MG, is generally smaller than that of
RG, namely, |M(N, M0)| < |R(N, M0)|. In other words, MG
performs much better than RG at the state space required to
represent them, providing a more efficient approach.

B. Liveness Analysis With MG

According to [35, Th. 2], MGSG can detect all deadlock
markings in a PN. Algorithm 3 is utilized to construct MG by
exploring maximal sound or good steps at each marking. Since
we have modified the definitions of sound steps, maximal
sound steps, and good steps proposed in [35], it is essential to
prove that the enhanced version of MGSG, i.e., MG, has all
deadlock markings in a PN if existing.

Theorem 1 Exploring maximal sound steps at each marking
can detect all deadlock markings in PN.

Proof: The exploration of maximal sound steps refers to a
generating procedure that can recursively compute maximal-
sound-step sets under the initial marking and all the succeeding
markings that are reachable by firing these steps. If X is a
deadlock state of a PN and is reachable by firing sequence ξ

at some marking M, i.e., M[ξ 〉X. Let MSS(M) be a maximal-
sound-step set at M. We shall prove by induction on the
length of ξ that X is reachable from M through the referred to
generating procedure. For the sake of convenience, the length
of ξ is denoted by |ξ | in this proof.

1) If |ξ | = 0, then M is a deadlock marking X.
2) If ξ = t and ∃ τms ∈ MSS(M), t ∈ τms, then X is not a

deadlock marking since |τms| ≥ 2 by Definition 6.
3) If ξ = t and ∀ τms ∈ MSS(M), t /∈ τms, then X is not

a deadlock marking since transitions of τms may be enabled
after firing t at M.

4) If ξ = tt′ and ∃ τms ∈ MSS(M), then either X is not a
deadlock marking (if {t, t′} ⊂ τms) or X is reachable from M
through the generating procedure (if {t, t′} = τms).

5) Assume that Theorem 1 holds for |ξ | = m, where m ∈
N
+. Then, we shall prove that it holds for |ξ | = m+1. There

are two cases.
a) If ∀ τms ∈ MSS(M), transitions of τms are not contained

in ξ , then X is not a deadlock marking since at least a
transition of τms can occur after the firing of ξ at M,
i.e., X can yield another marking.

b) If ∃ τms ∈ MSS(M), all transitions of τms are contained
in ξ , then there exist an equivalent sequence ξ ′ whose
prefix is the transitions in τms. It means that a marking
M1 is yielded after firing τms at M, i.e., M[τms〉M1,
and X is reachable from M1 by ξ1, i.e., M1[ξ1〉X,
where τmsξ1 ≡ ξ . Since |τms| ≥ 2, we have ξ1 < m,
which satisfies the induction hypothesis (Condition 5).
It implies that X is reachable from M1 and then from M
through the generating procedure.

Theorem 2 MG returned by Algorithm 3 can preserve all
existing deadlock markings in a PN.

Proof: Algorithm 3 provides the generation rule of MG.
Under each reachable marking M, there exist three cases. The

notation MSS(M) denotes a maximal-sound-step set under M
and G(M) represents a set of good steps at M.

1) If MSS(M) = ∅, there are two cases.
a) If �t ∈ E(M) ∀t′ ∈ E(M)\{t}, s.t. t � t′, then MG is

equivalent to RG of a PN. It can detect all deadlock
markings of a PN.

b) If ∃t ∈ E(M) ∀t′ ∈ E(M)\{t}, s.t. t � t′, then only t is fired
at M according to step 25 of Algorithm 3. We refer to t
as a structurally independent transition. In this case, the
generated MG can detect all deadlock markings in a PN
since the firing of structurally independent transitions
cannot interfere with the firing of other transitions.

2) If MSS(M) �= ∅, we compute the maximal persistent sets
for all enabled transitions at the current marking (steps 12–14
of Algorithm 3) to determine whether the maximal good step
exits at this marking. There are two possible outcomes.

a) If each maximal sound step at M shares the same
persistent set, as determined in step 15 of Algorithm 3,
such a set is called a maximal good step according
to Definition 7. Otherwise, all structurally independent
and enabled transitions at M can be amalgamated into
a maximal good step, as shown in steps 18–19 of
Algorithm 3. Since each transition in such a step must be
sound with respect to the others within the step, and the
firing of maximal sound steps can detect all deadlocks
of PN, as per Theorem 1, the exploration of maximal
good steps can also preserve deadlocks.

b) Alternatively, if there is no maximal good step at M,
then all maximal sound steps should occur under M, as
indicated in step 21 of Algorithm 3. By Theorem 1, the
exploration of maximal sound steps can detect PN’s all
deadlock markings.

Next, we shall propose a new liveness analysis method.
Before giving the criteria about how to check the liveness of
PN via MG, a basic concept is proposed.

Definition 8 Given a directed graph G = (V , E) and its

maximal SCC
↔
U with U ⊆ V ,

↔
U is called a leaf strongly

connected component if ∀ u ∈ U, � v ∈ V\U such that there
is a path from u to v.

For instance, there are two maximal SCC
↔
U1 and

↔
U2 in

Fig. 5(c), where U1 = {M0} and U2 = {M1, M3, M4}.
↔
U1 is

not a leaf strongly connected component since M0 ∈ U1, ∃ M1
/∈ U1 such that there is a path from M0 to M1. By Definition 8,

its leaf strongly connected component is
↔
U2.

Theorem 3 Given a PN (N, M0), � = (M, E, L, M0) is
its MG. (N, M0) is live iff for any leaf strongly connected
component of �, there are sets γ1, . . ., γn that label the n
edges in each leaf strongly connected component of �, such
that

⋃
i∈{1,...,n} γi = T .

Proof: To prove that (N, M0) is live, we shall prove that
∀ t ∈ T , t is live at M0. In other words, for each t in T , the
condition ∀ M ∈ R(N, M0), ∃ M′ ∈ R(N, M) s.t. M′[t〉 should
be satisfied.

(if) Let
↔
U be a leaf strongly connected component of �,

where U ⊆ M. Since
↔
U is a subgraph of MG, we can also

use �u = (U, Eu, Lu, M0) to represent
↔
U. According to the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 19,2024 at 11:40:20 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

(c)

(a)

(b)

Fig. 5. (a) PN (N5, M0), (b) its RG, and (c) its MG.

generating rule of MG, for any marking M in U, ∃ δ ∈ T∗
such that M0[δ〉M. Suppose that ∀ ei ∈ Eu is labeled by γi

with
⋃

i∈N+ γi = T . We have a labeling function Lu: Eu →
�, where � = {γi | i∈ N

+}. Note that
↔
U is a leaf strongly

connected component of �, thus there is no child node of

nodes in
↔
U and ∀ M′ ∈ R(N, M), M′ ∈ U. For any γ in

�, ∃ μ ∈ �∗ s.t. M[μ〉M′ and M′[γ 〉 hold. Besides ∀ t ∈
γ , γ ′ = γ−{t}, ∃ M′′ ∈ R(N, M′) s.t. M′[γ ′〉M′′[t〉 holds.
Since we have known that

⋃
γi∈�,i∈N+ γi = T , the conclusion

M′′[t〉 with ∃ M′′ ∈ R(N, M′) is true for each transition t of T .
Similarly, this can be done for other leaf-strongly connected
components in �. In summary, we conclude that (N, M0) is
live.

(only if) The precondition is that (N, M0) is live. By
contradiction, if there is a leaf strongly connected component↔
U where the sets γ1, . . ., and γn that label the n edges in

↔
U

satisfy
⋃

i∈N+ γi �= T with U ⊆ M, we must consider two
cases.

Case 1: There is no edge in
↔
U s.t.

⋃
i∈N+ γi = ∅.

There exists at least a deadlock node in MG. According to
Theorem 1, (N, M0) is deadlock, which is contradictory to the
precondition.

Case 2:
⋃

i∈N+ γi � T . Let a subgraph �u = (U, Eu,

Lu, M0) define a leaf strongly connected component
↔
U of �.

Obviously, the labeling function is Lu: Eu → �, where � =
{γi | i∈ N

+}. In this case,
⋃

γi∈�,i∈N+ γi � T means that there
exist some but not all transitions in T enabled at a marking in
U, i.e., ∃ t ∈ T ∀ M ∈ R(N, M0), ∃ M′ ∈ R(N, M) with M′
∈ U such that M′[t〉. In other words, ∃ t ∈ T , t is not live at
M0, which also contradicts the precondition. �

Example 3: Considering MG of (N1, M0) shown in Fig. 6(a),

its leaf strongly connected component is
↔
U, where U = {M2,

M5}. The directed edge (M2, M5) is labeled by t2 and (M5,
M2) is labeled by t1. By Theorem 3, (N1, M0) is deadlock-free
since {t1} ∪ {t2} = {t1, t2} �= T . Regarding MG of (N5, M0)

(b)(a)

Fig. 6. (a) MG of (N1, M0) with circle-labeled maximal SCCs and (b) MG
of (N5, M0) with a circle-labeled leaf strongly connected component.

(b)(a)

Fig. 7. (a) Layout of AMS and (b) PN model (N6, M0) of AMS.

shown in Fig. 6(b), the leaf strongly connected component is↔
U, where U = {M1, M3, M4}. The union of enabled steps,

which label directed edges of
↔
U, is {t1, t2} ∪ {t2, t3} ∪ {t1,

t3} = T . Thus, (N3, M0) is live.
When assessing the computational complexity of analyzing

the liveness of PN, it is beneficial to search for maximal
SCC in MG. The complexity of computing maximal SCC in
a directed graph G = (V , E) has been efficiently solved as
O(V+E) (e.g., by Tarjan algorithm), which is O(|M(N, M0)|+
|E(N, M0)|) in MG, where M(N, M0) and E(N, M0) are the
sets of markings and directed edges between markings in MG,
respectively. Except for the worst case, MG’s state space is
much more compact than RG regarding the number of arcs
and nodes. Roughly speaking, generating MG’s maximal SCC
performs better than RG from the viewpoint of computational
complexity. Concrete details about the evaluation results are
shown in Section IV.

IV. EVALUATION RESULTS ON LIVENESS ANALYSIS

We use an AMS [41] to discuss the practicability of our
method. The system’s layout is shown in Fig. 7(a). There exist
two robots R1 and R2, two machines M1 and M2, and three
unidirectional conveyors C1–C3. Raw materials are transported
to a machine M1(M2) via a conveyor C2(C1), and a finished
product is unloaded to C3 from M1(M2) by a robot R1(R2).
The PN is depicted in Fig. 7(b), where p1, p4, and p7 represent
M1, M2, and robots, separately. Tokens in p1, p4, and p7 denote
that each machine can handle at most two materials and each
robot grabs one product at a time.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 19,2024 at 11:40:20 UTC from IEEE Xplore. Restrictions apply.

DOU et al.: EFFICIENT LIVENESS ANALYSIS METHOD FOR PN VIA MAXIMALLY GOOD-STEP GRAPHS 9

Fig. 8. MG of (N6, M0) with rectangle-labeled maximal SCC.

TABLE I
METHODS COMPARISON IN LIVENESS ANALYSIS

For this net model, its RG consists of 61 reachable markings
and 178 arcs among markings. Its MG with a rectangle-labeled
maximal SCC is displayed in Fig. 8. MG comprises only
6 markings and 6 directed arcs connecting these markings,
significantly smaller than RG. According to Theorem 3,
(N6, M0) is live since all transitions t1 − t7 are encompassed
in the maximal SCC. Thus, all raw materials loaded into the
system can be successfully processed.

The existing partial order methods can also effectively
reduce the state space of net systems, but some have not proven
that they can be applied to evaluate PN’s liveness. To show the
differences between MG and several partial order methods, we
report the comparison results in Table I, where PG is persistent
graphs [30], CSG means covering step graphs [31], and HPSG
represents HPSG [32].

It can be seen that all methods can be used to detect
deadlocks, and CSG may check the liveness of a net system.
Unfortunately, it does not give a specific method about how
to analyze liveness via CSG in [31]. Besides, it is proven that
CSG is E-live iff RG is E-live [31], where E represents a
subset of T . E-live indicates that each transition of E is firable
at each reachable marking. Clearly, the T-liveness of a PN
means that the net is live.

Subsequently, we shall test these methods on several real-
istic systems with large sizes to evaluate their effect on
state-space reduction and property analysis. Four models
applicated by experiments are detailed.

1) In AMS depicted by Fig. 7(a), we can treat a single
conveyor, robot, and machine as a unified entity. AMS(n)
represents an expanded system model that incorporates
n additional encapsulated entities into the system.

2) FMS is the abbreviation for flexible manufacturing
systems. To distinguish systems depicted in [42, Fig. 1]
and [43, Fig. 1], we use FMS1 and FMS2 to label
them, respectively. The PN modeling FMS1 and FMS2

are shown separately in [42, Fig. 7] and [43, Fig. 2].
FMS1(n) denotes a PN model of FMS1 where there are
n tokens in p10−p14, p24, px6, px8, py1, py2, py4, py5,
and py8. FMS2(n) is a PN model of FMS2, where n
represents the number of tokens in p20, p21, and p22.

3) ||nAMS is a model of a concurrent system containing
several parallel AMS instances [41], where n means the
number of parallel PN used to model AMS.

Experimental results are exhibited in Table II. Graphs,
namely, RG, PG, CSG, and HPSG, are computed by a tool
TINA from http://projects.laas.fr/tina//home.php. The experi-
ments concerning MGSG and MG are performed on a PC with
an Intel i7-9700K 3.6 GHz CPU and 32 GB memory under
Ubuntu 18.04 operating system.

In Table II, nodes and directed edges denote the numbers of
markings and arcs between markings in corresponding graphs.
Time (in seconds) for RG, PG, CSG, and HPSG is reported by
TINA. The time consumption of MGSG and MG represents
the total real-time usage of their respective programs. Such
programs run multiple times for each measurement and then
calculate an average value to avoid the unstable I/O loading
time. Besides, “NC” means “no computation” since we cannot
obtain the corresponding information. “NR” means “no result”
since the tool cannot output results due to the state-space
explosion problems. Note that “AZ” seconds imply that the
time consumption is lower than the negative quadratic of ten
and thus is approximated to zero in TINA.

In Table II, the bolded content indicates the superior result
among the compared elements. According to the results exhib-
ited in this table, some observations can be made regarding
the respective effect of PG, CSG, HPSG, MGSG, and MG on
state-space reduction and liveness analysis.

1) PG works well on reducing the number of reachable
markings and arcs between markings. Unfortunately, its
liveness-analysis result is incorrect in some cases. For
instance, ||2AMS and ||3AMS are live nets through the
analysis of their RG, while PG returns that they have
deadlocks.

2) CSG delivers a much less impressive state-space reduc-
tion result than the existing partial order techniques and
MG. Besides, by using TINA, CSG cannot return the
liveness-analysis results of net systems.

3) The MGSG method performs better in reducing the
state space of systems than the established classical
partial order techniques like PG, CSG, and HPSG.
Nevertheless, the time required to generate MGSG
may be longer than that needed to construct PG or
HPSG, which depends upon the MGSG generation algo-
rithm [35] and the input PN structure. For instance, in
FMS2(n), each transition has a multitude of conflict tran-
sitions. Moreover, considering the complex processes
within the system, an array of firing sequences exists
between different transitions in the PN model, resulting
in significant time overhead when attempting to identify
sound steps for each marking. The worst-case scenario
entails the exhaustive exploration of firing sequences
without discovering any sound step.

4) In this study, we have revised the algorithm for iden-
tifying maximal sound steps at each marking, thus

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 19,2024 at 11:40:20 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE II
EVALUATION RESULTS IN PROPERTIES ANALYSIS FOR MANUFACTURING-ORIENTED PN

reducing the computational complexity compared to the
algorithm presented in [35]. Thanks to these algorithmic
improvements, the generation time for MG is shorter
than that for MGSG. Furthermore, MG exhibits a more
compact size than MGSG, owing to the methodological
enhancements.

5) MG offers the most substantial reduction in the number
of reachable markings and arcs between markings.
Moreover, the time required for liveness analysis of
PN via MG is 10 to 1000 times faster than RG,
and the state space of MG is much smaller than

that of RG. Under some circumstances, e.g., FMS1(4),
FMS1(5), ||4AMS–||6AMS, AMS(16), and AMS(26),
state-space explosion issues prevent RG from accurately
exploring the properties of PN. Besides, HPSG and
MGSG cannot be employed to attain the liveness-
analysis result of net systems. Fortunately, MG proves
to be a useful approach for checking the liveness of net
systems.

In general, MGs can significantly decrease the state space
and the time consumption needed to analyze the liveness of
net systems. Thus, the proposed MG method performs well

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 19,2024 at 11:40:20 UTC from IEEE Xplore. Restrictions apply.

DOU et al.: EFFICIENT LIVENESS ANALYSIS METHOD FOR PN VIA MAXIMALLY GOOD-STEP GRAPHS 11

when applied in verifying the properties of some large-size
realistic systems.

V. CONCLUSION AND FUTURE WORK

This work introduces a MG that represents an improved
version of the previously proposed MGSGs [35]. MG
serves as the basis for a new method to analyze the live-
ness of PN, specifically by leveraging the maximal SCC
within MG. Although there exist some partial order meth-
ods [30], [31], [32] capable of reducing the state space of
PN, they achieve a less significant state-space reduction than
MG does. Furthermore, these techniques have not demon-
strated efficacy in checking the liveness of PN. Experimental
results using several manufacturing-oriented PN show that our
proposed method performs better in the state-space reduction
and liveness analysis than the existing partial order methods
and RG.

This article concentrates on ordinary and bounded PN with
precise information. Some directions for future work include:
1) Investigating the state-space reduction issues for some
complex PN like general and unbounded PN [44], [45], [46],
[47], [48], [49] and 2) measuring the complexity of state-
space reduction for some PN with imprecise information like
uncertainty, ambiguity, and missing [50]. Furthermore, we
attempt to analyze some other reachability properties and
synthesize liveness-enforcing controllers [51], [52], [53] by
using MGs of PN.

REFERENCES

[1] C. Chen, A. Raman, H. S. Hu, and R. S. Sreenivas, “On liveness
enforcing supervisory policies for arbitrary Petri nets,” IEEE Trans.
Autom. Control, vol. 65, no. 12, pp. 5236–5247, Jan. 2020.

[2] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1,
pp. 206–230, Jan. 1987.

[3] P. J. Rampage and W. M. Wonham, “The control of discrete event
systems,” Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[4] J. L. Luo, Y. X. Wan, W. M. Wu, and Z. W. Li, “Optimal Petri-
net controller for avoiding collisions in a class of automated guided
vehicle systems,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 11,
pp. 4526–4537, Nov. 2020.

[5] X. J. Wang, H. S. Hu, and M. C. Zhou, “Discrete event approach to
robust control in automated manufacturing systems,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 52, no. 1, pp. 123–135, Jan. 2022.

[6] J. C. Luo, Z. Q. Liu, S. G. Wang, and K. Y. Xing, “Robust deadlock
avoidance policy for automated manufacturing system with multiple
unreliable resources,” IEEE/CAA J. Automatica Sinica, vol. 7, no. 3,
pp. 812–821, May 2020.

[7] N. Du, H. S. Hu, and M. C. Zhou, “Robust deadlock avoidance and
control of automated manufacturing systems with assembly operations
using Petri nets,” IEEE Trans. Automat. Sci. Eng., vol. 17, no. 4,
pp. 1961–1975, Oct. 2020.

[8] N. Q. Wu and M. C. Zhou, “Modeling and deadlock avoidance
of automated manufacturing systems with multiple automated guided
vehicles,” IEEE Trans. Syst., Man, Cybern., Part-B, Cybern., vol. 35,
no. 6, pp. 1193–1202, Dec. 2005.

[9] C. A. Petri, “Kommunikation mit automaten,” Ph.D. dissertation, Faculty
Math. Phys., Univ. Bonn, Bonn, Germany, 1962.

[10] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[11] R. David and H. Alla, “Petri nets for modeling of dynamic systems: A
survey,” Automatica, vol. 30, no. 2, pp. 175–202, Feb. 1994.

[12] V. Gehlot and C. Nigro, “An introduction to systems modeling and
simulation with colored Petri nets,” in Proc. Winter Simul. Conf.,
Baltimore, Maryland, USA, 2010, pp. 104–118.

[13] S. G. Wang, X. Guo, O. Karoui, M. C. Zhou, D. You, and A. Abusorrah,
“A refined siphon-based deadlock prevention policy for a class of
Petri nets,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 1,
pp. 191–203, Jan. 2023.

[14] D. You, O. Karoui, and S. G. Wang, “Computation of minimal
siphons in Petri nets using problem partitioning approaches,” IEEE/CAA
J. Automatica Sinica, vol. 9, no. 2, pp. 329–338, Feb. 2022.

[15] O. Oanea, H. Wimmel, and K. Wolf, “New algorithms for deciding the
siphon-trap property,” in Proc. 31st Int. Conf. Appl. Theory Petri Nets,
Brage, Portugal, 2010, pp. 267–286.

[16] S. G. Wang, D. You, and M. C. Zhou, “A necessary and sufficient
condition for a resource subset to generate a strict minimal siphon in
S4PR,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 4173–4279,
Aug. 2017.

[17] B. Huang, M. C. Zhou, C. Wang, A. Abusorrah, and Y. Al-Turki,
“Deadlock-free supervisor design for robotic manufacturing cells with
uncontrollable and unobservable events,” IEEE/CAA J. Automatica
Sinica, vol. 8, no. 3, pp. 597–605, Mar. 2021.

[18] T. Nishi, Y. Watanabe, and M. Sakai, “An efficient deadlock prevention
policy for noncyclic scheduling of multicluster tools,” IEEE Trans.
Automat. Sci. Eng., vol. 15, no. 4, pp. 1677–1691, Oct. 2018.

[19] S. G. Wang et al., “Computation of an emptiable minimal siphon in
a subclass of Petri nets using mixed-integer programming,” IEEE/CAA
J. Automatica Sinica, vol. 8, no. 1, pp. 219–226, Jan. 2021.

[20] L. B. Han, K. Y. Xing, M. C. Zhou, H. X. liu, and F. Wang, “Two-
stage deadlock prevention policy based on resource-transition circuits,”
in Proc. IEEE Int. Conf. Automat. Sci. Eng., Seoul, South Korea, 2012,
pp. 741–746.

[21] Y. X. Feng, K. Y. Xing, M. C. Zhou, F. Tian, and H. X. Liu, “Structural
liveness analysis of automated manufacturing systems modeled by
S4PRs,” IEEE Trans. Automat. Sci. Eng., vol. 16, no. 4, pp. 1952–1959,
Oct. 2019.

[22] M. Notomi and T. Murata, “Hierarchical reachability graph of bounded
Petri nets for concurrent-software analysis,” IEEE Trans. Softw. Eng.,
vol. 20, no. 5, pp. 325–336, May 1994.

[23] R. Lipton, “The reachability problem requires exponential space,”
Rep. 62, Dept. Comput. Sci., Yale Univ., New Haven, CT, USA, 1976.

[24] L. Jérôme and S. Sylvain, “Reachability in vector addition systems is
primitive-recursive in fixed dimension,” in Proc. 34th Annu. ACM/IEEE
Symp. Log. Comput. Sci., Vancouver, BC, Canada, 2019, pp. 1–13.

[25] W. Czerwiński, S. Lasota, R. Lazić, J. Leroux, and F. Mazowiecki, “The
reachability problem for Petri nets is not elementary,” J. ACM, vol. 68,
no. 1, pp. 1–28, Dec. 2020.

[26] P. Godefroid, “Using partial orders to improve automatic verification
methods,” in Proc. 2nd Int. Conf. Comput. Aided Verificat., New
Brunswick, New Jersey, USA, 1990, pp. 176–185.

[27] P. Godefroid, D. Peled, and M. Staskauskas, “Using partial-order
methods in the formal validation of industrial concurrent programs,”
IEEE Trans. Software Eng., vol. 22, no. 7, pp. 496–507, Jul. 1996.

[28] D. Peled and T. Wilke, “Stutter-invariant temporal properties are express-
ible without the next-time operator,” Inf. Process. Lett., vol. 63, no. 5,
pp. 243–246, Sep. 1997.

[29] A. Valmari and H. Hansen, “Can stubborn sets be optimal?” Fundamenta
Informaticae, vol. 113, nos. 3–4, pp. 377–397, Jan. 2011.

[30] P. Godefroid, J. van Leeuwen, J. Hartmanis, G. Goos, and
P. Wolper,Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem, vol. 1032,
(Lecture Notes Computer Science). Berlin, Germany: Springer,
Jan. 1996.

[31] F. Vernadat, P. Azema, and F. Michel, “Covering step graph,” in
Proc. 17th Int. Conf. Appl. Theory Petri Nets, Osaka, Japan, 1996,
pp. 516–535.

[32] P. O. Ribet, F. Vernadat, and B. Berthomieu, “On combining the
persistent sets method with the covering steps graph method,” in Proc.
22nd IFIP WG 6.1 Int. Conf. Formal Techn. Netw. Distrib. Syst.,
Houston, TX, USA, 2002, pp. 344–359.

[33] K. Barkaoui, H. Boucheneb, and Z. W. Li, “Exploiting local persistency
for reduced state-space generation,” Innovat. Syst. Softw. Eng., vol. 16,
no. 2, pp. 181–197, Feb. 2020.

[34] P. Godefroid and D. Pirottin, “Refining dependencies improves partial-
order verification methods,” in Proc. 5th Int. Conf. Comput. Aided
Verificat., Elounda, Greece, 1993, pp. 438–449.

[35] H. Dou, K. Barkaoui, H. Boucheneb, X. N. Jiang, and S. G. Wang,
“Maximal good step graph methods for reducing the generation of the
state space,” IEEE Access, vol. 7, pp. 155805–155817, 2019.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 19,2024 at 11:40:20 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

[36] Z. H. Ding, M. C. Zhou, and S. G. Wang, “Ordinary differential
equation-based deadlock detection,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 44, no. 10, pp. 1035–1454, Apr. 2014.

[37] D. B. West, Introduction to Graph Theory. Upper Saddle River, NJ,
USA: Prentice Hall, 2001.

[38] Z. W. Li and M. C. Zhou, Deadlock Resolution in Automated
Manufacturing Systems: A Novel Petri Net Approach. London, U.K.:
Springer, 2009.

[39] M. C. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event
Control of Manufacturing Systems. New York, NY, USA: Springer, 2012.

[40] G. Frey, “Automatic implementation of Petri net based control algo-
rithms on PLC,” in Proc. Am. Control Conf., Chicago, IL, USA, 2000,
pp. 2819–2823.

[41] Y. F. Chen and Z. W. Li, Optimal Supervisory Control of Automated
Manufacturing Systems. New York, NY, USA: CRC Press, 2013.

[42] M. C. Zhou, K. McDermott, and P. A. Patel, “Petri net synthesis and
analysis of a flexible manufacturing system cell,” IEEE Trans. Syst.,
Man, Cybern., vol. 23, no. 2, pp. 523–531, Apr. 1993.

[43] Z. W. Li, M. C. Zhou, and N. Q. Wu, “A survey and comparison of
Petri net-based deadlock prevention policies for flexible manufacturing
systems,” IEEE Trans. Syst., Man, Cybern., Part-C, Appl. Rev., vol. 38,
no. 2, pp. 173–188, Feb. 2008.

[44] Y. X. Feng, K. Y. Xing, M. C. Zhou, X. N. Wang, and H. X. Liu,
“Robust deadlock prevention for automated manufacturing systems with
unreliable resources by using general Petri nets,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 50, no. 10, pp. 3515–3527, Oct. 2020.

[45] C. Chen and H. S. Hu, “Extended place-invariant control in automated
manufacturing systems using Petri nets,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 52, no. 3, pp. 1807–1822, Mar. 2022.

[46] K. Barkaoui and H. Boucheneb, “On persistency in time Petri nets,” in
Proc. 16th Int. Conf. Formats, Beijing, China, 2018, pp. 108–124.

[47] F. M. Lu, Q. T. Zeng, M. C. Zhou, Y. X. Bao, and H. Duan,
“Complex reachability trees and their application to deadlock detection
for unbounded Petri nets,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 49, no. 6, pp. 1164–1174, Jun. 2019.

[48] J. Li, X. L. Yu, and M. C. Zhou, “Analysis of unbounded Petri net with
lean reachability trees,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 50,
no. 6, pp. 2007–2016, Jun. 2020.

[49] S. G. Wang, M. D. Gan, and M. C. Zhou, “Macro liveness graph and
liveness of ω-independent unbounded nets,” Sci. China Inf. Sci., vol. 58,
no. 3, pp. 1–10, Mar. 2015.

[50] M. Y. Cai, Y. Z. Lin, B. Han, C. J. Liu, and W. J. Zhang, “On a simple
and efficient approach to probability distribution function aggregation,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 9, pp. 2444–2453,
Apr. 2016.

[51] W. J. Zhang, Z. M. Bi, and X. F. Zha, “A generic Petri net model for
flexible manufacturing systems and its use for FMS control software
testing,” Int. J. Prod. Res., vol. 38, no. 5, pp. 1109–1131, Nov. 2000.

[52] K. Y. Xing, F. Wang, M. C. Zhou, H. Lei, and J. C. Luo, “Deadlock
characterization and control of flexible assembly systems with Petri
nets,” Automatica, vol. 87, pp. 358–364, Jan. 2018.

[53] Z. L. Zhang, G. Y. Liu, K. Barkaoui, and Z. W. Li, “Adaptive deadlock
control for a class of Petri nets with unreliable resources,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 52, no. 5, pp. 3113–3125, May 2022.

Hao Dou (Graduate Student Member, IEEE)
received the B.S. degree in communication engi-
neering and the M.S. degree in information and
communication engineering from the School of
Information and Electronic Engineering, Zhejiang
Gongshang University, Hangzhou, China, in 2017
and 2020, respectively. She is currently pursuing
the Ph.D. degree in intelligent science and systems
with the Institute of Systems Engineering, Macau
University of Science and Technology, Macau,
China.

Her current research interests include Petri nets and supervisory control of
discrete event systems.

MengChu Zhou (Fellow, IEEE) received the B.S.
degree in control engineering from the Nanjing
University of Science and Technology, Nanjing,
China, in 1983, the M.S. degree in automatic
control from the Beijing Institute of Technology,
Beijing, China, in 1986, and the Ph.D. degree in
computer and systems engineering from Rensselaer
Polytechnic Institute, Troy, NY, USA, in 1990.

He joined the Department of Electrical and
Computer Engineering, New Jersey Institute of
Technology, Newark, NJ, USA, in 1990, and has

been a Distinguished Professor since 2013. He has over 1200 publications,
including 17 books, over 800 journal papers, including over 650 IEEE
TRANSACTIONS papers, 31 patents, and 32 book-chapters. His recently
coauthored books include Learning Automata and their Applications to
Intelligent Systems (IEEE Press/Wiley, Hoboken, NJ, 2024, with J. Zhang) and
Device-Edge-Cloud Continuum Paradigms, Architectures and Applications
(Springer Nature, 2023, with C. Savaglio, G. Fortino, and J. Ma). His
interests are in intelligent automation, robotics, Petri nets, Internet of Things,
edge/cloud computing, and big data analytics.

Dr. Zhou is a recipient of Excellence in Research Prize and Medal
from NJIT, the Humboldt Research Award for U.S. Senior Scientists from
Alexander von Humboldt Foundation, and the Franklin V. Taylor Memorial
Award and the Norbert Wiener Award from IEEE Systems, Man, and
Cybernetics Society, and the Edison Patent Award from the Research and
Development Council of New Jersey. He is Fellow of International Federation
of Automatic Control, American Association for the Advancement of Science,
Chinese Association of Automation, and National Academy of Inventors.

Shouguang Wang (Senior Member, IEEE) received
the B.S. degree in computer science from the
Changsha University of Science and Technology,
Changsha, China, in 2000, and the Ph.D. degree
in electrical engineering from Zhejiang University,
Hangzhou, China, in 2005.

He is currently a Professor with the School of
Information and Electronic Engineering, the Director
of the Discrete-Event Systems Group, and the Dean
of System Modeling and Control Research Institute,
Zhejiang Gongshang University, Hangzhou. He was

with the University of Cagliari, Cagliari, Italy, and a Visiting Professor with
the New Jersey Institute of Technology, Newark, NJ, USA.

Prof. Wang serves as an Associate Editor for IEEE/CAA JOURNAL OF

AUTOMATICA SINICA.

Aiiad Albeshri received the M.S. and Ph.D. degrees
in information technology from the Queensland
University of Technology, Brisbane, QLD, Australia,
in 2007 and 2013, respectively.

He has been an Associate Professor with the
Department of Computer Science, King Abdulaziz
University, Jeddah, Saudi Arabia, since 2018. His
current research focuses on information security,
trust in cloud computing, big data, and HPC.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Macau Univ of Science and Technology. Downloaded on April 19,2024 at 11:40:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

