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Abstract—Multi-step citywide crowd flow prediction (MsC-
CFP) is to predict the in/out flow of each region in a city in
the given multiple consecutive periods. For traffic control and
public safety protection, it can provide a long term view for
taking measures. However, the spatial and temporal correlations
in crowd movements and the lack of information make MsCCFP
challenging. In this paper, a deep-learning based prediction
model with spatial-temporal attention mechanism is proposed
for MsCCFP. The model, called ST-Attn for short, follows the
general encoder-decoder framework for modeling sequential data
but adopts a multiple-output strategy to preserve the correlations
characterizing between each predicted step. The spatial-temporal
attention mechanism learns to globally determine the focus on
those parts of the city at certain periods that are more relevant
to the predicted region and time period. Besides, a pre-predicted
result calculated by spatiotemporal kernel density estimation is
fed to ST-Attn, which provides a reference for further accurate
predicting. Experiments on three real-world datasets are carried
out to verify ST-Attn’s performance and the results show that
ST-Attn outperforms the baselines in terms of MsCCFP.

Index Terms—crowd flow prediction; multi-step ahead predic-
tion; attention mechanism; deep neural network; spatio-temporal
analysis;

I. INTRODUCTION

Predicting the movement of crowds in a city is of great

importance for traffic control, risk assessment, and public

safety protection [1]. Compared with doing next-step predic-

tion, the multi-step citywide crowd flow prediction (MsCCFP)

providing long term view is more preferred in practice. As

shown in Fig.1, MsCCFP is to predict the in/out flow (the

crowds entering/leaving) of each region in a city (divided by

rectangular-grids) in the given multiple consecutive periods.

Generally speaking, doing earlier and more accurate predic-

tion of citywide crowd flow prevent it from shortsighted or

impulsive when taking measures for traffic control and public

safety protection [2].

However, the spatial and temporal correlations and the lack

of information make MsCCFP challenging. Nowadays, people

can conveniently go anywhere in the city due largely to the

modern transportation systems. The long-range spatial correla-

tions between regions comes into being in crowd movements

and it is difficult to understand the temporal correlations in

crowd flow if not viewing many time slices back and forth.
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Fig. 1: Multi-step citywide crowd flow prediction.

Besides, for those subsequent steps prediction in MsCCFP, the

available information becomes less and less since there is no

ground truth from pre-steps.

To tackle such issues, we propose a prediction model

based on deep neural networks (DNNs) with spatial-temporal

attention mechanism for MsCCFP, called ST-Attn for short.

ST-Attn follows the general encoder-decoder framework but

with a multiple-output strategy. The contributions of our study

are three-fold:

(1) The spatial-temporal attention mechanism (ST-AM)

layer. It learns to globally determine the focus on those parts

of the city at certain periods that are more relevant to the

predicted region and time period. Except for 2-dimensional

convolutional neural networks (2D-CNNs) and 1D-CNNs in

ST-Attn, ST-AM layers expand the receptive field further

to learn the long-range spatial and the long-term temporal

correlations in the crowd flow.

(2) Feeding a pre-predicted result to the prediction model.

The pre-predicted result is calculated by spatiotemporal kernel

density estimation (STKDE)[3] and fed to ST-Attn. It is

provided as reference information of future in-out flow filling

up the lack of ground truth from pre-steps for those subsequent

steps prediction in MsCCFP, which is simple but effective.

(3) Experiments on three real-world datasets are carried out

to verify ST-Attn’s performance and the results show that ST-

Attn outperforms the baselines in terms of MsCCFP.

II. RELATED WORK

Crowd flow prediction can be viewed as a kind of spatial-

temporal data prediction problem [2]. Similar work includes

taxi passenger demands prediction [2, 4], metro ridership

prediction [5, 6], bike-sharing demands prediction [7], geo-

sensory time series prediction [8] and so on.
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Viewing crowd flow as sequential data, many works on

MsCCFP are recently inspired by those studies of neuro-

linguistic programming [9]. The encoder-decoder frameworks

and recurrent neural networks (RNNs) are generally employed

due to RNNs’ flexibility in dealing with variable length of

input and output sequential data. Most existing works use

ConvLSTM/ConvGRU, variants of RNNs, as improvement

taking both spatial and temporal correlations into consideration

[2, 10]. However, the iterative process (each step depends on

the previous predicted step) usually makes the training low-

efficient and cannot handle long-term correlations well [11].

In the recent researches, attention mechanism shows its

success in handling general sequence-to-sequence problems

[9]. The intuition behind is that some parts of the input can

be more relevant compared to others when generating the

output. It expands receptive field directly by constructing long-

term/long-range correlations and selecting relevant contents,

which conform to the trend of deep learning [11]. Applied on

MsCCFP, [2] and [10] introduce attention model to incorporate

the representative patterns or periodic patterns of citywide

crowd flow into prediction. Although these works are among

the first to employ attention mechanism to MsCCFP, the spatial

and temporal attention mechanisms are separated or applied

only on external features and RNNs are still in use. Different

from these methods for MsCCFP, we design hybrid spatial-

temporal attention mechanism in the prediction model without

RNNs.

III. PROBLEM DEFINITION

As shown in Fig.1, a city is first divided into p × q grid

map according to the longitude and latitude. Thus, a city can

be denoted as G=[grc]p×q , where grc denotes a grid, i.e. a

region of the city, lies at the rth row and the cth column.

Definition 1. Observing time unit. τ is the observing time
unit for aggregating the in-out flow count, e.g. 30 minutes. Let
T=[τ0, ..., τi, ..., τn−1] is the whole observing time period.

Definition 2. In-out flow. Xout
τi = [xout,τi

rc ]p×q ∈ N
p×q

records the out-flow count from each grid during time period
τi. Similarly, Xin

τi = [xin,τi
rc ]p×q records the in-flow count.

Let Xτi = [(xout,τi
rc , xin,τi

rc )]p×q ∈ N
p×q×2 stack Xout

τi ,Xin
τi

together as one in-out flow record of time period τi.

Problem: MsCCFP problem. Given the historical observa-

tions {Xτi |i ∈ [0, 1, ..., n − 1]}, predict {X̂τj |j ∈ [n, n +
1, ..., n+lout−1]}, aiming to minimize the Root Mean Square

Error (RMSE):

RMSE =

√√√√ 1

lout

n+lout−1∑
j=n

‖ X̂τj − Xτj ‖2 (1)

where Xτj is the ground truth at τj , lout denotes the time steps

count to predict.

IV. THE PROPOSED METHOD

People can conveniently go anywhere in the city due largely

to the modern transportation systems. Except for the the

regions adjacent to the predicted region and the last observing

time unit, the regions further away and the earlier observing

time units should receive more or less attention. Due to the

uneven activity level in the city and the daily fluctuation, it is

the point to determine the focus on those parts of the city at

certain periods that are more relevant to the predicted region

grc at the predicted time period τj . Inspired by such view, we

design the model for MsCCFP in conjunction with spatial-

temporal attention mechanism, which is the biggest difference

from other MsCCFP models.
Fig.2 shows the architecture of ST-Attn. It predicts the de-

sired lout steps of the in-out flow {X̂τj |j ∈ [n, ..., n+lout−1]}
according to lin last steps {Xτi |i ∈ [n − lin, ..., n − 1]}.
The pre-predicted result calculated by STKDE (see IV-B)

{Pτj |j ∈ [n, ..., n+ lout − 1]} corresponding to the predicted

period is used as additional information. The widely used

encoder-decoder framework with a multiple-output strategy is

adpoted. It first encodes the input sequence of in-out flow

tensors into fixed dimensional states and then decodes the

states with the pre-predicted result to predict the desired

sequence of future in-out flow tensors.
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Attention

Feed Forward

Spatial-Temporal
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Fig. 2: The architecture of ST-Attn for MsCCFP.

A. Encoder and Decoder
Encoder: The encoder is a stack of a spatial-temporal

attention mechanism layer (ST-AM layer, see IV-C and Fig.3)

and a fully connected feed-forward layer (FC-FF layer, see

IV-D). It outputs two encoded states: Tin ∈ R
lin×dt attn and

Sin ∈ R
p×q×ds attn , where ds attn is the specified channels

of encoded spatial states and dt attn is the specified channels

of encoded temporal states. Tin maintains all input temporal

information with its first dimension equal to lin , while Sin

maintains the spatial information with its first two dimensions

equal to p × q. A residual connection followed by layer

normalization is employed before outputing the encoded states,

i.e., LayerNorm(x + ST FF(x)), where ST FF(x) denotes the

concatenation of the ST-AM layer and the FC-FF layer.
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Decoder: Similar to the encoder, it stacks two ST-AM

layers and a FC-FF layer. The first ST-AM layer takes the

pre-predicted result (see IV-B) as input and outputs two

temporary decoded states: Tout and Sout. The second ST-

AM layer takes the encoded and decoded states as inputs. The

implementation of these two ST-AM layers integratedly selects

the relevant contents of lin last steps crowd flow information

and the pre-predicted result to compute the output. The pre-

predicted result is provided as a reference to facilitate the

final accurate predicting. A residual connection followed by

layer normalization is also employed before outputing the final

decoded states: Tout ∈ R
lout×dt attn and Sout ∈ R

p×q×ds attn .

To facilitate all the connections, the inputs and outputs

of each layer in the encoder are tensors with same shape:

Sin ∈ R
p×q×ds attn and Tin ∈ R

lin×dt attn . It is similar in

the decoder: Sout ∈ R
p×q×ds attn and Tout ∈ R

lout×dt attn .

Besides, two FC-FF layers with reshape operations are respec-

tively applied on the input sequence of in-out flow tensors and

the periodic pattern. Finally, a fusion layer (see IV-E) merges

the decoded states: Tout and Sout to output the predicted

sequence of future in-out flow tensors.

B. The pre-predicted result calculated by STKDE

For those subsequent steps prediction in MsCCFP, the

available information becomes less and less since there is no

ground truth from pre-steps. Usually, prediction models based

on encoder-decoder framework adopt an iterative process to

predict step by step, that is to execute the decoder lout
times predicting each step through utilizing the prediction

result and hidden state from the previous predicted step, like

[2, 12]. However, the errors accumulate as the iterative process

going on step by step. Besides, it overlooks the spatial and

temporal correlations information in crowd flow from the

whole predicted time periods, since only the information of

those predicted steps can be utilized [13].

To tackle such issue, we propose to input the decoder with

a pre-predicted result, which is calculated by STKDE and

provided as reference information of the future in-out crowd

flow. Incorporation with the ST-AM layers (see IV-C) and the

adopted multiple-output strategy (see IV-E), ST-Attn will have

an overall view on the recent, current and future crowd flow

while doing MsCCFP.

As a matter of fact, kernel density estimation (KDE) meth-

ods are applied to create density surfaces that discribe the

spatial distributions of a set of data. To perform KDE on

both space and time, we use STKDE proposed in [3] to

prepare the pre-predicted result {Pτj |j ∈ [n, ..., n+ lout−1]},
where Pτj = [(p

out,τj
rc , p

in,τj
rc )]p×q ∈ R

p×q×2. The out-flow

estimation result of grc at τj :

pout,τjrc =
1

nh2
sht

n∑
i=1

kst(
r − ri
hs

,
c− ci
hs

,
τj − τi
ht

), (2)

where hs, ht are kernel bandwidths in space and time, kst is

the kernel function [3]. The in-flow estimation p
in,τj
rc is similar

without elaboratation due to the limitation of space.

C. Spatial-Temporal Attention Mechanism Layer

An attention mechanism layer can be described as mapping

a query and a set of key-value pairs to an output. The output is

computed as a weighted sum of the values, where the weight

assigned to each value is computed by a compatibility function

of the query with the corresponding key [11]. That is to say, it

selects relevant contents of an input to compute each position

of the output representation. Taking each value of the input

into consideration to determine the focus, the receptive field of

the attention mechanism layer is expanded directly compared

with CNNs or RNNs.

Intuitively, as time flies, the out-flow from a region flows

into other regions that are farther and farther, and the in-

flow probably originates from those regions far away. Due

to such dynamic spatial-temporal correlations in the citywide

crowd flow, ST-AM layer is designed to learn the correlation

between the predicted in-out flow of each grid grc at τj and

all inputs in both spatial and temporal domain. It is composed

of a temporal attention (T-Attn) branch and a spatial attention

(S-Attn) branch (Fig.3).

Spatial-Temporal Attention

Spatial Attention

spatial-
features

maps

valuekeyquery

attention map

spatial attention
outputs

Temporal Attention

temporal-
features

maps

valuekeyquery

attention map

temporal attention
outputs

reshape and concatenate matrix multiplication

T ( )f T T ( )g T T ( )h T S( )f S S( )g S S( )h S

T T T( ) ( ) ( )f g hT T T S S S( ) ( ) ( )f g hS S S1D-CNNs layers 2D-CNNs layers

T SExchange-ST

Fig. 3: The Spatial-Temporal Attention Mechanism Layer.

Temporal Attention: The temporal attention branch takes

the encoded state Tin or the decoded state Tout as input. They

are first transformed into three temporal-feature maps: query,

key and value by 1D-CNNs layers (kernel size 3): fT (T)=1D-
CNNs(T), gT (T)=1D-CNNs(T), hT (T)=1D-CNNs(T).

The 1D-CNNs layers capture the temporal features locally.

Then an attention map is calculated by a softmax layer:

Softmax(fT (T),gT (T)), to determine the weight assigned to

each value of query according to key. The temporal attention

outputs is Softmax(fT (T),gT (T))·hT (T).

Spatial Attention: Similarly, the spatial attention branch

takes the encoded state Sin or the decoded state Sout as input.

611



They are first transformed into spatial-feature maps: query, key
and value by 2D-CNNs layers (kernel size 3×3): fS(S)=2D-
CNNs(S), gS(S)=2D-CNNs(S), hS(S)=2D-CNNs(S).

The 2D-CNNs layers capture the spatial features locally.

Then an attention map is calculated by a softmax layer:

Softmax(fS(S),gS(S)), to determine the weight assigned to

each value of query according to key. The spatial attention

outputs is Softmax(fS(S),gS(S))·hS(S).

Exchange-ST: To mix up information from spatial and tem-

poral domain, the results of S-Attn and T-Attn are exchanged

and concatenated. Taking the T-Attn branch in the encoder

as an example, state Sin ∈ R
p×q×ds attn is first transformed

with 2D-CNNs layer (kernel size 1×1) to S’in ∈ R
p×q×lin

and reshaped as S”in ∈ R
lin×pq , then concatenated to Tin ∈

R
lin×dt attn . The operations are similar in the S-Attn branch.

D. Fully Connected Feed-Forward

The feed forward layers are used to facilitate the residual

connection connections. It consists of a linear transformation

with a ReLU activation.

FC − FF (x) = max(0; xW + b) (3)

Another way of describing this is as 1D-CNNs (kernel size 1)

for the T-Attn branch and 2D-CNNs (kernel size 1×1) for the

S-Attn branch.

E. Fusion

Multiple-output strategy: Those models for MsCCFP with

RNNs can only predict step by step iterately due to the

transmission of hidden states. It overlooks the spatial and

temporal correlations information in crowd flow from the

whole predicted time periods, since only the information of

those predicted steps can be utilized. Since no RNNs in ST-

Attn, the multiple-output strategy can be adpoted to predict

the future in-out crowd flow of each region at all given

consecutive periods at once. That is to preserve the spatial-

temporal correlations of crowd flow between regions and

between observing time units. Due to the multiple-output

strategy adopted, the decoder’s input is the pre-predicted

result instead of iterately using the pre-steps predicted results.

Thus, while doing MsCCFP, the decoder of ST-Attn has an

overall view on the recent, current and future crowd flow:

i.e., {Xτi |i ∈ [n− lin, ..., n− 1]}, [Tin, Sin] and {Pτj |j ∈
[n, ..., n+ lout − 1]} respectively.

Fusion: Finally, to produce {X̂τj |j ∈ [n, n + 1, ..., n +
lout− 1]}, the decode states Tout and Sout are directly fused.

Concretely, Tout ∈ R
lout×dt attn is first transformed with 1D-

CNNs layer (kernel size 1) to T’out ∈ R
lout×pq and reshaped

to T”out ∈ R
p×q×2lout ; Sout ∈ R

p×q×ds attn is transformed

with 2D-CNNs layer (kernel size 1×1) to S’out ∈ R
p×q×2lout ;

then a linear transformation (2D-CNNs with kernel size 1×1)

of S’out+T”out with a ReLU activation and reshape operation

is performed:

{X̂τj |j ∈ [n, n+ 1, ..., n+ lout − 1]}
=Reshape(max[0; 2D − CNNs(S’out + T”out)])

(4)

.

V. EXPERIMENTS

Experiments to verify ST-Attn’s performance on three

datasets are conducted in this section.

A. Datasets

The datasets are: (1) Beijing taxi trajectories (BJTaxi) [1]:

Beijing taxis GPS data; (2) New York City Taxi trip record

data (NYCTaxi)[14]: the yellow taxi trip records from NYC

Taxi and Limousine Commission (TLC); (3) Citibike Trip data

from New York City (Citibike)[15]: the bike-sharing trip data

of Citibike in New York City. The datasets are respectively

aggregated as in-out flow according to time interval and grid

map size. The details are presented in Table.I.

TABLE I: Details of the datasets.

dataset Timespan Time interval Grid map size

BJTaxi 2013.7.1-2013.10.30
2014.3.1-2014.6.30
2015.3.1-2015.6.30
2015.11.1-2016.4.10

30 minutes 32*32

NYCTaxi 2013.7.1-2016.6.30 1 hour 32*32

CitiBike 2014.1.1-2016.6.30 1 hour 16*16

The last three weeks of each dataset are chosen as testing

data, the three weeks before that as validating data, and the

rest as training data.

B. Parameter Setting of ST-Attn

• The time steps used to predict lin: 6

• The time steps to predict lout: 6

• The channels of spatial states ds attn: 16

• The channels of temporal states dt attn: 64

• The length of weeks used to calculate a pre-predicted

result m: 4

• Loss function: Mean Square Error (MSE)

• Optimizer: Adam-optimizer [16]

• Teminated condition: The training reaches 300 iterations,

and the model at the epoch that ST-Attn achieves best

performance on the validating data is saved as the final

prediction model.

C. Baselines & Metric

In order to confirm the effectiveness of ST-Attn, we conduct

experiments to compare ST-Unet with five baselines:

• ST-ResNet[1]: The first next-step prediction model based

on deep residual CNNs for crowd flow prediction.

Learned representations are merged in a fusion process

along with external information such as date property

meta-data and weather data.

• ST-UNet[17]: An improved version of ST-ResNet by

replacing the deep CNNs structure with UNet structure.

It is also a next-step prediction model and better in

combination of local-global features.

• sConvLSTM[2]: A sequence-to-sequence model for

MsCCFP with two layers of ConvLSTM both in the

encoder and decoder. There are two layers of 2D-CNNs
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following the ConvLSTMs in the decoder, same as ahead

of the ConvLSTMs in the encoder.

• AttConvLSTM[2]: sConvLSTM with an attention mech-

anism branch to incorporate the hidden states from the

decoder with the crowd flow representative patterns (the

clustering result of historical citywide crowd flow reflect-

ing the latent mobility regularities).

• PCRN[10]: A prediction model based on pyramidal

convolutional recurrent network architecture. It adopts

multiple-output strategy for MsCCFP. It uses a loop-back

attention mechanism branch to dynamically incorporating

the periodic representations of crowd flow, which is the

stored hidden states from the top layers of the pyramidal

ConvGRUs.

• ST-UNet+: ST-UNet with multiple-outupt predicting

strategy to do MsCCFP.

• ST-UNet-: ST-UNet with direct predicting strategy to do

MsCCFP.

To do the multi-step ahead prediction, ST-ResNet and ST-
UNet are tested with iterative predicting strategy. The input

and output steps count of sConvLSTM, AttConvLSTM,

PCRN are equal to 6, same as ST-Attn. The parameter setting

of all baselines conforms to those in the corresponding papers.

All models are conducted 5 times to measure the their average

performance. The metrics we adopt to measure the results is

RMSE, as depicted in equation1.

D. Results

Table.II shows the average performance of all prediction

models predicting 6-steps output with 6-steps input on the

three datasets. In each row, the number colored grey and

underlined is the best and second-best results. Table.III shows

the parameters count of each model on the datasets. As the

grid map of BJTaxi and NYCTaxi are the same, the prediction

models’ parameters count on both are the same too (there is

a little difference for PCRN).

TABLE II: RMSE of all models performing 6-steps output

with 6-steps input.

BJTaxi NYCTaxi CitiBike

ResNet 31.613 8.211 25.805

UNet 30.884 8.101 25.572

ST-Unet+ 29.609 7.443 24.74

ST-Unet- 29.806 7.478 25.013

ConvLSTM 27.687 7.657 24.463

AttConvLSTM 27.496 7.412 23.803

PCRN 25.581 9.035 25.814

ST-Attn 25.112 6.598 23.497

In Table.II, it shows that ST-Attn outperforms all baselines

on the average performance. Certainly, the performance of

PCRN on BJTaxi is almost the same to ST-Attn, while

AttConvLSTM on NYCTaxi is almost the same to ST-
Attn. On dataset Citibike, ST-Attn performs much better

TABLE III: The parameters count of each model.

BJTaxi NYCTaxi Citibike

ST-Attn 181376 181376 68480
PCRN 1300912 1300912 957904

sConvLSTM 343130 343130 343130
AttConvLSTM 84859778 84859778 21945218

than other baselines, reaching 11% improvement at least

beyond the second-best AttConvLSTM. Since PCRN also

performs not so well on dataset Citibike, we look into the

data. With analysis of Citibike, we think that the large

relative standard deviation of Citibike should be the reason.

In Table.III, it shows that the parameters count in ST-Attn
is much less than that in AttConvLSTM and PCRN, almost

1/8 of PCRN’s parameters count. Compared to sConvLSTM,

the great amount of parameters in AttConvLSTM is due to

the attention mechanism branch introducing the crowd flow

representative patterns, which includes fully-connected layers.

Different from AttConvLSTM, ST-Attn simply feeds the

decoder with a pre-predicted reslut calculated by STKDE. ST-
Attn is ‘slim’ but preserves good prediction performance.

Fig.4abc show each predicting step’s RMSE of all prediction

models on the datasets respectively. It shows that ST-Attn
achieves better performance in most predicting steps. For those

first step prediction, ST-Attn is not the best. We think that

should be due to the adopted multiple-output strategy. It aims

to achieve optimization on the whole instead of on single step.

Similar situation can be found in the results of ST-UNet+ and

ST-UNet-. The first or second step prediction results of ST-
UNet+ is a little worse than ST-UNet-, which adopts a direct

predicting strategy to do MsCCFP. For those subsequent steps

prediction, ST-Attn outperforms other baselines and achieves

a better overall results (see Table.II).

From each predicting step’s RMSE, we can figure out that

ST-Attn outperforms a bit better than PCRN due large to

the first 3 steps prediction. Similarly, ST-Attn outperforms a

bit better than AttConvLSTM due largely to the first 2 steps

prediction. For those subsequent steps prediction, however, the

RMSEs tends to be the same. We think it may due to the bad

estimation in the later part of the pre-predicted result input to

ST-Attn. In the experiments, ST-Attn shows its effectiveness

and outperforms other baselines though remaining some issues

to be further explored.

VI. CONCLUSION AND DISCUSION

In this paper, we propose a spatial-temporal attention

mechanism based model, named ST-Attn, to do the multi-

step citywide crowd flow prediction. The general encoder-

decoder framework for sequence-to-sequence modeling is

adopted. Instead of using RNNs or its variants (ConvLSTM

or ConvGRU), a spatial-temporal attention mechanism layer is

designed to directly select the relevant contents in both spatial

and temporal domain to compute each predicted value, which

is equal to gain a global receptive field on the input. Due to no

RNNs in our prediction model, a multiple-output predicting
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Fig. 4: Each predicting step’s RMSE of all prediction models

on dataset (a) BJTaxi, (b) NYCTaxi, (c) Citibike.

strategy is adopted and a pre-predited result calculated by

STKDE is fed to the decoder to provide a reference for further

accurate predicting, which is simple but effective. Compared

with several baselines, ST-Attn performs well on the whole in

the experiments and shows its effectiveness on MsCCFP. Due

to the limitation of space, how the ST-AM layers work and

how ST-Attn’s variants (such as replacing the decoder’s input)

would perform differently remains to be explored. In the future

work, we will consider how ST-Attn can be modified and

applied to do station-level multi-step crowd flow prediction.
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