

Braille Messenger: Adaptive Learning Based Non-Visual
Touch Screen Text Input for the Blind Community Using

Braille
U B H S Udapola

Department of Statistics & Computer Science
Faculty of Science

University of Kelaniya
+94 71 415 1818

hansiudapola2@gmail.com

S R Liyanage

Department of Software Engineering
Faculty of Computing and Technology

University of Kelaniya
+94 71 649 8614

sidath@kln.ac.lk

ABSTRACT

‘Braille Messenger’ is an Android application (app) that is designed

to facilitate the communication between users via the Braille

alphabet through the medium of Short Messaging Services (SMS).

This application is mainly envisaged to be used by the visually

handicapped community. The proposed method is comprised of

three gesture types for braille communication. The gestures can be

generated with either two fingers, three fingers or six fingers. The

app can be used by the blind and blind-deaf users with tactile

feedback in the form of vibrations. Simple drawing patterns were

selected as commands instead of long-tap and double tap

operations. The app automatically suggests a word with the highest

auto completion probability when a user types five characters,

using vibration methods. A standard 6-bit encoding scheme was

used to convert braille characters to text. A novel static algorithm

was introduced in this research to detect drawn patterns by users. A

feed-forward algorithm was formulated using the K-NN algorithm

to detect the input fingers when a braille character is typed, and the

K-Means algorithm was used to track the user’s input fingers with

time. ‘Braille Messenger’ was tested at different typing speeds.

Average typing speed and accuracy were analysed on a sample of

five blind users. The maximum typing speeds for the designs with

two fingers, three fingers and six fingers were 5.4WPM, 9.6WPM

and 18.9WPM respectively. The average typing speeds were

recorded as 3.74WPM, 7.28WPM and 13.29WPM for the designs

with two fingers, three fingers and six fingers respectively. An

accuracy of 97.4% was recoded for braille character detection when

using Bayesian Touch Distance with Nearest Neighbour and K-

Mean algorithms. An accuracy of 94.86% was recorded for the

drawn pattern commands with the proposed static mathematical

algorithm. The proposed method currently only supports English

language communication. The basic standard for Grade-II Braille

alphabet commonly used by the blind community in Sri Lanka was

used in this research. Future work would include implementing the

app as a system wide keyboard, introducing error correction and

support for other languages.

Categories and Subject Descriptors

H.5.2 [Information interfaces and presentation]: Graphical user

interfaces (GUI) – Input devices and strategies, screen design and

user centered design.

I.2.2 [Applications and Expert Systems]: Natural Language

Interfaces

Keywords

Blind, Braille, Smart Mobile Devices, Text Entry Method,

Universal Design.

1. INTRODUCTION
In present day, mobile phone has become an essential tool of

communication in life. Among the plethora of different techniques

for communication, SMS is the most pervasive. However, this

method is challenging for the blind and visually impaired (VI)

users. Looking at the history of the smartphone, the Ericsson GS88

(Mccarty, 2017) was the first which was manufactured with a

physical keyboard in 1997. Therefore, blind users could manage to

use the phone if they could physically feel the keys. The difficulties

faced by the blind users increased with the advent of the Touch

Sensitive Displays as they lost their sensitivity of keys that were

there on a physical keyboard. A special accessibility feature for the

blind community became an essential part of the mobile phone

when they were introduced to the market.

There were solutions introduced by the companies that developed

operating systems alongside 3rd party developers (Bonner, Brudvik,

Abowd, & Edwards) (Mascetti, Bernareggi, & Belotti, 2011)

(Hatzigiannakoglou & Kampouraki, 2016). All the solutions were

however restricted to the technical capabilities of the smartphone.

The main restriction was the number of multi-touch inputs that

could be detected by the phone.

Voiceover in iOS by Apple (iPhone - Accessibility, 2017), Narrator

in Windows by Microsoft (Windows phone accessibility, 2017) and

Talkback in Android by Google (Android accessibility , 2017) are

some of examples that were introduced by the leading software

companies who developed the Operating Systems for the leading

brands in the world. When the accessibility function is activated, a

user should double tap on any button to execute a task instead of a

single tap, as the single tap just reads screen view.

The initial stages of the proposed App before the initial testing was

published in (Udapola & Liyanage, 2016). In this study, a novel

method for the Blind and VI users to communicate using the Braille

Alphabet is proposed. The app features the ability to customize the

UI according to the preferences of the user and the technical

specifications of the device. As most of the previously developed

Apps were specifically aimed for the devices with 6 multi touch

inputs, ‘Braille Messenger’ initially checks the number of multi

touch inputs supported by the device using a calibration procedure.

Even though there are several mobile apps developed for blind and

VI users such as, (Bonner, Brudvik, Abowd, & Edwards)

(Mascetti, Bernareggi, & Belotti, 2011) (Hatzigiannakoglou &

Kampouraki, 2016) blind-deaf users were unable to use them since

those apps were designed with the screen reading/Text-To-Speech

(TTS) Manager. ‘Braille Messenger’ includes a method to facilitate

blind-deaf users to read and write messages using braille with

tactile feedback in the form of vibrations. Moreover ‘Braille

Messenger’ facilitates any type of Multi-touch mobile device

holders to type in Braille by introducing three different non-visual

touch screen text entry methods by considering the number of touch

points available in their mobiles.

1.1 Objectives
 Major objectives of the proposed system is to provide a more

accurate, more user friendly, high speed, user customizable typing

mechanisms for the blind and blind community with different

disabilities, depending on the multi-touch capability of a mobile

device.

An integrated app with three different gestures was developed to

achieve these objectives by introducing three different methods of

typing (using one-hand design with two or three fingers and using

two-hand design with six fingers). Some simple pattern drawing

commands were introduced to execute basic tasks in lieu of taping

on a button.

1.2 Current Study
In the current study, a self-updating blind dictionary (B-Dictionary)

was developed. When a user adds a word that has more than five

letters, the most matching and most frequent word is suggested. If

the word is not available in the dictionary’s data file, the typed word

is added to the dictionary.

2. RELATED WORK
The related work for this research considered looking into the

literature on current implementations for blind and VI users, UI and

UX, text entry methods, input finger detection and K-NN

classifications.

2.1 Universal Design
Blindness can be divided into two types, (Vision 2020 Sri Lanka,

n.d.) which are full and partial blindness. Full Blindness means,

inability to see anything at all, and partial blindness refers to having

limited vision. The fully blind identifies the environment by

touching because they do not possess any sense of dimensions or

objects located around them. The mobile technology in the modern

society has become such an essential part of human day to day life.

Most of the mobile apps are designed for sighted people.

Nevertheless, 'Design for Usability' clears that difference without

considering the user’s visibility (Sierra & Togores, 2012). Under

the concept of 'Low Vision Mobile App Portal', some authors have

provided a way to access mobile applications for visually impaired

users. This research mainly focusses on the concept of “Universal

Design” which is widely used in several areas/fields. Universal

Design concept is closely related to the meaning of accessibility or

usability. This does not imply only about the accessibility to a

computer or a mobile device, but with the fast-developing

technology, accessibility of the blind can be extended to include

computers and mobile devices.

In 1999, the Web Accessibility Initiative [WAI] published the Web

Content Accessibility Guidelines [WCAG] to improve the

accessibility of disabled people. But with the development of

mobile phones with touch displays, accessibility of mobile for

visually impaired & blind users was fell due to the loss of

physically feedback. So, some (Sierra & Togores, 2012)

researchers have designed special apps for visually impaired or

blind users to access the touch screen mobile devices. Low Vision

Mobile Portal is one of the mobile apps that provide the facility to

access important apps such as phone calls, messages, contacts, and

calculator etc.

2.2 Human-Computer Interaction Design
In line with the concept of ‘Mobile Accessibility’, designing the

user interface (UI) was given high priority. Application of

Human/User -Computer Interaction Design concepts assist in

designing effective User Interfaces especially for blind users

(Arrigo & Cipri, 2010). Apple with iOS operating system, have

considered the concepts of user experience and accessibility in

mobile apps, when designing apps for the blind or VI users. (Sierra

& Togores, 2012).

User experience refers to observing and analyzing the users’

experiences to evaluate the effectiveness of a product design.

Which is considered the most valuable aspect of Human-Computer

Interaction (Marcus, 2013)

Accessibility in mobile apps generally implies that the app should

be accessible by as many users as possible. For instance, narrator,

voice over, voice control, speak recognition, auto text and tactile

buttons are some of features that have been introduced to users with

special needs to access the mobile (Craddock).

D. McGookin et al. have suggested a set of guidelines for mobiles

with touch displays (McGookin, Brewster, & Jiang, 2008) that can

be applied to maximize accessibility.

2.3 Text Entry Methods
All the apps that have been described above relate to the blind or

VI people. But these apps were rarely used by blind users and

regarding to an online survey (Leporini, Buzzi, & Buzzi, 2012),

blind users mostly use mobiles (iPad/iOS) to take mobile calls

(92.7%), read SMS (90.9%), write SMS (87.3%) and to listen to

music (80%). But most of them (52.7%) are not satisfied about the

usability of the keypad and 72.7% of blind users preferred an

editing mode with a single tap.

According to Leporini et al. blind users prefer to the QWERTY

keyboard rather than using multi tap keyboards (Leporini, Buzzi, &

Buzzi, 2012). However, there are many text entry methods such as,

Multi Tap. Nav Touch, Braille Type (Oliveira, Guerreiro, Nicolau,

Jorge, & Goncalves, 2011) and Robust Entry Technique which

were used in Eyes-Free Text Entry type in No-Look Notes (Bonner,

Brudvik, Abowd, & Edwards).

QWERTY

In the basic QWERTY method, a user has to move his/her finger

on the touch keypad, and then the system reads the letter that the

user has touched, and the double tap types the letter.

There is another approach using the digital QWERTY keyboard

that is used in iPhones known as ‘Voiceover’ (Oliveira, Guerreiro,

Nicolau, Jorge, & Goncalves, 2011). In this approach the user

should set his/her finger on the desired key and then tap anywhere

on the screen with a second finger. Afterwards, lift the first finger

and then double tap anywhere on the screen. These are the steps

that must be followed to enter a letter using voice over (iPhone -

Accessibility, 2017).

Multi-Tap

In multi-tap method also, a mechanism similar to QWERTY is

employed. But here the targeted number of keys on screen are less

than QWERTY. The user must select the group of keys by double

tap and multi-tap to select a letter.

Navigational Touch

In the method of navigational touch, the user needs to move the

finger up and down (vertically) to select a group of letters and move

the finger left and right (horizontally) to select a letter. Here letters

are grouped into five and each group starts with a vowel ‘a, e, i, o,

u’.

Eyes-Free Text Entry

In the eyes-free text entry method, a user must tap on a group to

enter a letter. As an example, if user needs to input ‘B’ then user

need to select ‘ABC’ group by touching on that particular group of

letters. To select a specific letter through the group or to open a

group the user should tap a second finger anywhere on the screen.

The next screen shows all the letters in a given group category

vertically. Then user can move his/her finger up or down to select

the individual letter. The user must tap his/her second finger

anywhere on the screen to confirm the selection.

Braille Type

The Braille type method is the most familiar method for the blind

and variants of Braille type input method can be found. This is

known as the first approach with having less number of screen

targets and here each cell known as braille cell and user should long

touch on cell to mark the cell and the double tap anywhere on the

screen to tell that single braille character has finished the typing.

When user marked a cell then it denotes a single bit otherwise 0.

Braille type has been applied in (Alnfiai & Sampalli, 2016) with an

extension known as ‘SingleTapBraille’. In the Braille type design,

a user should mark on the virtual cell area. But, in SingleTapBraille

design, user does not need to find a specific location or area to mark

the cell (Oliveira, Guerreiro, Nicolau, Jorge, & Goncalves, 2011).

Here they developed their algorithm by using the factors of Number

of dots in each character, the x, y coordinates of the touch points

and distances between two points. As an example, if user need to

input ‘b’ then user need to mark two points vertically anywhere on

the screen. The relationship per the number of dots activated by

input are as follows:

• Character with 1 tap anywhere on the screen - always

known as letter ‘a’ or number 1.

• Character with 2 taps - |X1-X2|<error; D is a specific

value for this status.

• Character with 3 taps - |X1-X2|<error; |Y1Y3|<error; D

is a specific value for this status.

• Character with 4 taps - |X1-X2|<error; |X3-X4|<error;

X2<X3; |Y1-Y3|<error; |Y2-Y4|<error; Y3<Y2, D is a

specific value for this status.

• Character with 5 taps - |X1-X2|<error; |X3-X2|<error;

|X4-X5|< error; |Y1-Y4|<error; |Y2-Y5|< error; D is a

specific value for this status.

So, using the above results the typed character can be classified and

output. A ‘Sliding Rule’ is also used in this method to run special

characters such as, New Line [Enter], White Space, Backspace,

Switch keyboards among Uppercase keyboard, Numerical

keyboard, lowercase keyboard and symbols (punctuation marks)

key board.

Furthermore, there are more approaches to type braille letters on

screen. One of them is ‘PerkInput Text Entry Method’ (Azenkot,

Wobbrock, Prasain, & Ladner, 2012). This is similar to Perkin

Braille Device input method. A user must put 6 fingers on the

screen and long touch on screen to add the point. The screen is

shown in Figure 1.

Figure 1 - PerkInput method in touch screen

In PerkInput, Azenkot et al. have introduced the theoretical concept

of IFD ‘Input Finger Detection’ which is based on a multi-touch

signal detection technique. In this method, a single finger input is

denoted as one bit ‘1’ or ‘0’. These methods can be used with either

both hands or with a single hand. If the user needs to use both hands,

then the user has to touch on screen only once to enter a single

braille character, otherwise a user has to touch twice to enter a

single braille character.

There is another new technique to type in braille in touch screen

which known as ‘TypeInBraille’. In this technique (Mascetti,

Bernareggi, & Belotti, 2011) a user needs to input pairs of dots at a

time as shown in figure 2.

Figure 2 - Technique of TypeInBraille

In ‘TypeInBraille’ method a user has to touch three times to enter

a single letter. Usually a single braille letter is denoted with a 3 x 2

matrix. A user must fill a single row in this method. When

considering a single row, a single dot is denoted using a single

touch in left/right side. If a row has both dots, then two fingers

touch and no dots for a row are denoted by three fingers. A

flick/slide rule is used to denote ‘End Character’ and ‘Blank space’.

Figure 3 - Technique of BrailleOne text entry method

As well as ‘BrailleOne’ (Hatzigiannakoglou & Kampouraki, 2016)

the research team of Paul, also an extension of this techniques. In

this method, a user needs to touch twice to enter a single letter. In

blue it represented one, two and three inputs. And in red it

represented four, five and six. This method also has done in a

previous research (Azenkot, Wobbrock, Prasain, & Ladner, 2012)

however using in different way of Input detecting. In BrailleOne

they input was detected by view wise. Assume a user names a

Linear Layout A, B & C from left to right, then if a user taps on

Linear Layout A then it detects it as 1 or 4 inputs due to group of

categories (1,2,3 & 4,5,6). Similarly, if user taps on Linear Layout

B then it detects it as 2 & 5. But in ‘PerkInput Braille’ (Azenkot,

Wobbrock, Prasain, & Ladner, 2012) method use IFD technique.

Here once user touch on screen with his/her 3 fingers then it detects

its (x, y) coordinates of reference point and then using Maximum

Likely Hood function they corrected the next time touch points with

the previously touched reference point.

‘Braille Key’ (Subash, Nambiar, & Kumar , 2012 4th International)

is another approach of typing braille. In this approach, they have

divided the screen into four parts as 2 x 2. The first line is reserved

for text entry and the left area, one touch selects the point one, two

touches, the point two, and long touch, the point three. The same

applies to the right, for points four, five and six. The ENTER and

DELETE buttons are on second line.

In Google Play Store, there is an alternative keyboard known as

“Swift Braille” by the Swift Team. In this method, the user need to

draw the patterns from one dot to another.

Figure 4 - Typing letter 'e' using Swift Braille

Figure 4 shows how user type braille character ‘e’ using Swift

Braille. Here user starting at dot 1 position and then move his/her

finger to the dot 5.

First two methods of QWERTY and Multi Tap that are described

above are much difficult for blinds that is why researchers

introduced new techniques just like third and fourth methods that

are mentioned and they have analysed each method on factors of

fast/speedy and easy/user friendliness.

Nav Touch & No-Look Notes are much different when compared

with normal text entry methods of QWERTY & Multi Tap. Per

their analysed data No-Look Notes (Bonner, Brudvik, Abowd, &

Edwards) has proved their method is faster than ‘Voice Over

method’ (Text entry speeds are 0.66 WPM for Voiceover and 1.32

WPM for No-Look Notes) and QWERTY (Oliveira, Guerreiro,

Nicolau, Jorge, & Goncalves, 2011) is the fastest method (2.1

WPM with 0.7 of SD) of typing. Slowest method (1.49 WPM with

0.43 of SD) is typing braille (a user need to touch 6 times at

maximum to enter a single braille character). But typing braille was

the most accurate way of typing letters. However, they have come

up with some difficulties for each method and ‘Timeouts & Lose

track of text’ were identified difficulties for typing braille.

In (Siqueira & Silva, 2016) has analysed the most of braille

methods which exists on today. Per their research ‘Braille Touch’

the method of typing braille using 6 fingers simultaneously and the

‘TypeInBraille’ are the fastest way of braille typing. But ‘Braille

Touch’ has the maximum of error rate and ‘PerkInput’ method is

most accurate way.

2.4 Input Finger Detection (IFD)
Input through the touch screen can be modelled for transmission of

information through the noisy channel (Azenkot, Wobbrock,

Prasain, & Ladner, 2012). In IFD mechanism at the first user should

set his/her n reference points on the screen. As an example, when

user insert long press by inserting n fingers Then, the user transmits

a message into the device by encoding the message into multi-point

touches, each representing a binary sequence with n bits. If user’s

ith finger touch the screen for pre-given target point, then bit of that

point will be one (1) otherwise will be zero (0). As mentioned

earlier touch input given to the device with some inconsistency,

since the user will not hit exact reference point with every

subsequent touch. The device receives the noisy, encoded message

which analogous from inconsistency through noisy channel and the

input method decodes it using their detection algorithms.

There are three sources of noise in their model:

1. Hand repositioning. When the user repositions the hand on the

screen, the current touch points are no longer near the reference

points. This was addressed by simply set new reference points that

reflect the new position of her hand.

2. Touch-point inconsistency. As with mouse clicks around a target,

there is natural error that occurs when a user attempts to touch a

consistent point on the screen. The Maximum Likelihood (ML) to

detect which finger corresponds to which point while accounting

for the distribution of points around the target reference points.

3. Hand drift. When user touches the screen repeatedly usually our

fingers moving little bit (drifting) from the target point. This was

addressed by tracking the reference points after each touch to

minimize the error of decoding.

2.5 Character Classification
Usually a Braille character is denoted as a 3 x 2 matrix and it is

numbered 1 to 6 from top to bottom, left to right as shown in Figure

5. In PerkInput typing method fingers are numbered as in Figure 6.

Figure 5 - Braille Cell

Figure 6 - Mapping Fingers in one hand and both hands

2.6 Tracking Reference Points
When the Hand Drift was addressed in the previous Section 2.4,

ML functions were used for target selection criteria. They have

assumed that users keep their hands next to the reference points.

But this is not true in reality. Therefore, in this solution ‘First-Order

Phased-Locked Loop’ has been used to track references points.

After the input finger is detected, where each touch reference points

were moved by a fraction of distance between touch point and the

corresponding reference point. Here they assumed that each

individual finger touch is correlated with the other fingers.

Therefore, the concept has been formalized into the following

equation:

𝑅𝑛+1 = 𝑘. 𝐶. 𝐸𝑛 + 𝑅𝑛

Equation 1

, where Rn is the vector of references points at time n, En is the

vector of differences between references point and touch point at

time n, k is a scalar constant which known as ‘adaption coefficient’

(Smaller values of k are reducing the effect of tracking) & C is the

‘correlation coefficient matrix’.

k and C values, are they derived through the experiments and they

as follow;

𝑘 = 0.1 𝐶 = [
1 0.4 0.4

0.4 1 0.4
0.4 0.4 1

]

Equation 2

2.7 Sensor Vibration
Blind-deaf communication is more important when a message is

received through a smart touch phone as most apps are built only

to read the message through system voice feedback.

Blind-Shell (Svobodnik, Novak, & Cerman, 2013) is a launcher app

that is created especially for the visually impaired. Through this

facility is provided for the blind to perform basic operations such

as SMS, Contacts and setting an alarm.

V-Braille (Jayant, Acuario, Johnson, Hollier, & Ladner, 2010) is a

technique that is capable of reading Braille letters through a fully

touch screen using vibrations. Jayant et al. have used different

signals for Braille cells. The Figure 7 shows how vibration signals

work when reading Braille letters. The dotted line has low vibration

than a straight-line vibration.

Figure 7 - Reading the lowercase letter ‘p’ (V-Braille) (Jayant,

Acuario, Johnson, Hollier, & Ladner, 2010)

‘Braille Scan’, ‘Braille Rhythm’ and ‘Braille Sweep’ (Rantala, et

al., 2009) also embody different methods to read Braille characters.

Braille Scan is similar to V-Braille above mentioned, where when

a user moves his finger from top to bottom the vibration happens

only once per dot and again go back to the top and the last 3 dots of

braille character in 2nd column are read. ‘Braille Sweep’ method is

almost like the Braille Scan method but here the braille dots’

positioning is different from the Braille Scan method. Here dots are

positioned as three, two and one dots horizontally as well as four,

five and six placed horizontally. Here the reading direction is

different from the Braille Scan as this method uses vertical finger

movement to read the text. Figure 8– (a) represents the numerical

order of braille dots for Braille Rhythm method. In the Braille

Rhythm method, the characters are read using temporal tactile

patterns. This produces tactile pulses in numerical order from one

to six (1-6/left to right).

(a)

(b)

Figure 8 - (a) Braille Sweep numerical order & (b) Braille

Rhythm (Braille Sweep) (Rantala, et al., 2009)

Figure 8 – (b) denotes the pattern/ Rhythm for braille character ‘c’.

Character ‘c’ consists of dots one (1) and four (4). However, one

and four has a higher pulse than other dots. Due to their data

analysing part mean recognition accuracies and the mean reading

time (Character Per Seconds) are as follows. ‘Braille Scan’ is more

accurate, but ‘Braille Rhythm’ is a much faster method.

Table 2-1 - Analysis of Data after 3 sessions (Rantala, et

al., 2009)

Method of

Braille Reading

Recognition

Accuracy (%)

Reading Time

(cps)

Braille Scan 97 0.18

Braille Sweep 91 0.20

Braille Rhythm 92 0.27

3. METHODOLOGY

3.1 Typing Braille Characters
Under the literature from the previous chapter, several types of text

entry methods were developed for touch screens to blinds or VI

people by researchers. Among them ‘Perk-In-Brailler’ (Azenkot,

Wobbrock, Prasain, & Ladner, 2012) is the fastest way of to insert

characters. Nevertheless, due to the proposed system, three types of

different gestures were developed to use with two, three or six

fingers.

Design A: Type a single braille character using two fingers & needs

to tap thrice to insert a single braille character. Target the devices

which have only basic multi-touch capability of points of two.

Design B: Type a single braille character using three fingers &

needs to tap twice to insert a single Braille character. Target the

devices which have multi-touch capability with less than six points

but greater than two points.

Design C: Type a single braille character using 6 fingers & by a

single tap can insert a single Braille character. Target the devices

which have best multi-touch capability of points of ten or more than

6 points.

With the customizable UIs, the restriction of hand positioning on

the screen in Design B & C is avoided. Therefore, user has the

freedom to register the reference points (Dots of a Braille character)

as they were preferred. Following Figure 9 shows sample UI with

references points (Design B & C) for each design.

Figure 9 - Text Entry methods (Design A, B, C)

3.2 Input Finger Detection
In each design, tapped finger need to be identified and two different

ways were used in design A and design B&C. In design A, simply

screen is divided into two spaces and if left side is tapped, then it

counted as left column and if right side is tapped then it counted as

right column. And if a row has no marked cell then draw pattern

command to denote empty cell row. Thrice a time, inserted braille

code is converted into the alphanumeric text characters. Following

Figure 10 demonstrates an example of inserting a braille character

‘m’.

Figure 10 - insert braille character ‘m’

With the increases of number of fingers which were used to insert

a braille character in design B & C, above mentioned simple

method cannot be used further. Therefore, more user friendly and

accurate method is introduced. For that, K-NN classification

algorithm is used to detect finger which is inserted by the user.

3.2.1 K-NN Classifier
K-NN classifier is a non-parametric method that is used to classify

the objects. In design B, three different classes have been defined

and user’s registered references points have taken as centroid of

each class.

Figure 11 - Classify Point A & B using Nearest Neighborhood

algorithm

Different types of distances have been used with K-NN

classification algorithm to calculate distance between user touch

points and reference points, namely Euclidean distance, city block

distance and Bayesian touch distance.

Euclidian Distance

Let A (x, y) be the user touch point and registered reference point

Pi (xi, yi) for class i (where i=1,2,3). Then calculate Euclidean

distance using following equation.

𝑑(𝐴, 𝑃𝑖) = √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2

Equation 3

City Block Distance

Let B (x, y) be the user touch point and registered reference point

Pi (xi, yi) for class i (where i=1,2,3). Then calculate city block

distance using following equation.

𝑑(𝐵, 𝑃𝑖) = |𝑥𝑖 − 𝑥| + |𝑦𝑖 − 𝑦|

Equation 4

Bayesian Touch Distance

s- coordinates of the finger touch, t- target, W- Width of the t, c-

center of the t

α & σa
2 are constants which they find out through separate

experiments.

𝐵𝑇𝐷(𝑠, 𝑡) =
(𝑠 − 𝑐)2

2(𝛼𝑊2 + 𝜎𝑎
2)

+
1

2
𝑙𝑛(𝛼𝑊2 + 𝜎𝑎

2)

Equation 5 (Zhai & Bi, 2013)

With some simplifications, they have generalized above equation

up to 2-dimentional circular targets. Also, here they have used the

proved results which ‘distribution of 2-dimentional target

selections approximately follow a bivariant ‘Gaussian

Distribution’. Then above equation has become to BTD2(s, t) as

follows.

𝐵𝑇𝐷2 =
1

2
[
(𝑠𝑥 − 𝜇𝑥)2

𝜎𝑥
2 +

(𝑠𝑦 − 𝜇𝑦)2

𝜎𝑦
2] + 𝑙𝑛𝜎𝑥 + 𝑙𝑛𝜎𝑦

Equation 6 (Zhai & Bi, 2013)

 Then they have replaced µx, µy, σx & σy with some estimations as

follows.

𝐵𝑇𝐷2 =
1

2
[

(𝑠𝑥 − 𝑐𝑥)2

𝛼𝑥𝑑2 + 𝜎𝑎𝑥

2 +
(𝑠𝑦 − 𝑐𝑦)2

𝛼𝑦𝑑2 + 𝜎𝑎𝑦

2] +
1

2
𝑙𝑛(𝛼𝑥𝑑2 + 𝜎𝑎𝑥

2)

+
1

2
𝑙𝑛 (𝛼𝑦𝑑2 + 𝜎𝑎𝑦

2)

Equation 7 (Zhai & Bi, 2013)

Where αx, σax, αy & σay are constants that they have obtained by

separated experiments. Those values are as follows.

Table 3-1 (Zhai & Bi, 2013)

αx 𝜎𝑎𝑥

2 αy 𝜎𝑎𝑦

2

0.0075 1.68 0.0108 1.33

Zhai & Bi (Zhai & Bi, 2013) has introduced this distance for target

selection. When converted that model into my problem model,

targets are known as registered reference points. That distance can

be calculated using Equation 7. d (width of target) in Equation 7 is

taken as 1 for each reference points.

Among the distances which are mentioned above, BTD is selected

to classify the class using Nearest Neighbour Classifier due to the

higher accuracy that have been recorded.

3.3 Tracking Finger Points
Cause of finger drifting there would be a greater error between

previously registered references points and the currently touched

point d. Therefore, two different algorithms were used to update

reference points. They were K-Mean and First-Order Phased-

Locked loop algorithms.

K-Means algorithm

K-means algorithm is generally used to cluster noisy data, to

constraint data to lie on the surface of a high dimensional unit

sphere and for directional noisy data. General k-mean algorithm is

an iteratively running process to partition ‘n’ number of observed

data into number of given groups. (Ramler, 2008) Moreover,

among different types of clustering algorithms K-Mean is the most

simplest algorithm (Complexity - O(n)) and, K Means is found to

work well when the shape of the clusters is hyper spherical

(Kaushik, n.d.). Even though KNN classifier known as a lazy

learner By combined with K-Mean centroid of the clusters updated

and classes

Let’s assume that observed references points (centroid of each

clusters) at time n are ȓ1,n, ȓ ȓ2,n, ȓ 3,n, ȓ 4,n, ȓ 5,n, ȓ 6,n. In General form,

this can be denoted as ȓi,n for i = 1, 2, 3, 4, 5, 6 and let’s take dn as

the newly taped point and assume it belongs to the class j then by

k-mean algorithm updated the reference point (centroid of the class

j) ȓj,n+1 as follows;

𝑟̅𝑗,𝑛+1 = (
𝑚𝑟̅𝑗,𝑛 + 𝑑𝑛

𝑚 + 1
)

Equation 8

Where r̅j,n is; r̅j,n =
∑ 𝑟𝑗,𝑘

𝑚
𝑘=1

𝑚
 ; m ≤ n;

m – number of members belongs to class j at time n.

First-Order Phased-Locked Loop

First-order phased-locked loop was used by Azenkot (Azenkot,

Wobbrock, Prasain, & Ladner, 2012) and Equation 1 & Equation 2

were used to updated references points. In this case, they have

considered each finger are correlated with other fingers.

Both algorithms’ accuracies have been equal and therefore K-mean

algorithm was selected as reference points tracking algorithm cause

of its simplicity.

3.4 Sense of vibration to read text
When ‘Blind-Deaf’ mode is activated, vibration patterns were used

to read text and to give the feedback of typed text. The ‘Braille

Rhythm’, a vibration technique (Rantala, et al., 2009) was used to

input character and to read character. Following time periods and

breakpoints patterns were implemented to build vibration patterns

for each braille character.

Figure 12 - Vibration Patterns with Break-Points

In this approach, basically 7.13 - 9.53 (seconds) time was taken to

read a character. In Chapter 7, I have described the correctly

identifying rate with participation of pseudo blind-deaf.

3.5 Braille Character Classification
In braille conversion, 6-bit (Figure 5) encoding scheme has been

used to convert braille to text and sixty-three (63) braille characters

which categorized under 7 lines in braille system has been used in

‘Braille Messenger’ including nineteen (19) punctuation marks &

ten (10) digits. (Appendix)

The numerals 0-9 and the English characters “a, b, c, d, e, f, g, h, i,

j” has the same braille characters. Numerals are distinguished from

the above English characters with the presence of the “⠼” braille

character. If “⠼” character appears prior to a braille character, it

must be considered as a number (activate number mode) and after

every WHITE SPACE or NEW LINE number mode will turn off.

3.6 Detecting Drawn Patterns

3.6.1 Using Gesture Detector
In Android Developing Environment there is an inbuilt function to

detect draw patterns which known as ‘Gesture Detector’. In this

approach, there was an app called ‘Gesture Builder’ which

developed by Google to save patterns as .txt file and then load that

.txt file into Gesture Library in Android Studio. Then calculate the

prediction score for drawn pattern compared to saved gestures.

When returning predicted pattern, it delayed around 1.5 seconds.

Also, accuracy of the predicted pattern from Android-inbuild

feature was less than the accuracy of predicted pattern from

mathematical algorithm that was introduced in this research. Cause

of prediction delay most of the times, braille inserting task not

performed correctly.

3.6.2 Using Static Mathematical Algorithm

Figure 13 - Drawing Commands A, B, C, D, E, F

The proposed mathematical algorithm consists of the following

steps to detect drawing pattern commands.

1. Store the all the points of drawing commands

2. By considering first and the last point of drawing command,

check whether drawing lines moving side. Here considered

slope between first and last points as well as difference between

2 points.

Take difx as the difference between the x coordinates of the first

and last points, and dify as the difference between the y coordinates

of the first and last points. Let m be the magnitude value of the

gradient of the line drawn between first and last points of drawn

command. The right, left, up, down and angle variable can be set

using the following criteria as shown in Figure 14 – a;

If m less than or equal 0.5

 If difx is negative

 Right is True

 Else

 Left is True

 End If

Else If m less than 3.0

 Angle is True

Else

If dify is negative

 Down is True

 Else

 Up is True

 End If

End If

End If.

3. If ANGLE is true, then check for command C & D, if left is true

then check for command F, if right is true then check for

command E, if down is true then check for command A, if up

is true then check for command B.

4. As examples, ‘Checking for command C’ (Figure 14 - concept

of detecting drawing command patterns - b) & ‘Checking for

command B’ have been considered.

a. Checking for command C – Here find out the breaking

point as shown in (Figure 14 - concept of detecting

drawing command patterns-b). x-coordinates of pattern

before the breaking point should lie between the [x1-e,

x1+e] limit and y-coordinates of pattern after the breaking

point should lie between the [yn-e, yn+e] limit. Otherwise

variable OUTOFSHAPE set to be true. Moreover, here

have been checked for reverse drawn lines and if it was,

REVERSE set to be true.

b. Checking for command B – Here x-coordinates of all points

in drawn line should lie between the [x1-e, x1+e] limit

otherwise OUTOFSHAPE set to be true. And here also have

been checked for reverse drawn lines and if it was,

REVERSE set to be true.

5. Then by using the Boolean values of variables UP, DOWN,

LEFT, RIGHT, ANGLE, REVERSE & OUTOFSHAPE detect

the command or not and if it was a command then returned the

command name.

Figure 14 - concept of detecting drawing command patterns

4. RESULTS AND DISCUSSION
In this section, the proposed design with three customized gestures

are discussed. Figure 9 - Text Entry methods (Design A, B, C). In

this scenario, different algorithms were tested to detect the input

finger for design B and design C. K-NN classifier with K=1

(Nearest Neighbor Classifier) using different distance

measurements were attempted.

BTD, Euclidean and City Block three different distance measures

that were used to calculate the distances in the Nearest Neighbor

classifier. The app was implemented and tested for speed of typing,

average typing speed and for accuracy with a sample of 5 blind

users. Highest accuracy was recorded for the BTD at 97.54%. For

other distances, Euclidean & City-Block distances observed

accuracy at 95.38% & 92.3% respectively. Moreover, we can

conclude that the accuracy level of the BTD is in between 93.63%

and 97.14% at 95% level of confidence.

Figure 15 - Distances Vs text entry accuracy rate

After the evaluation of accuracy, Bayesian Touch Distance has

been selecting as the distance for nearest neighbour classifier. Then

accuracies were tested against the method which is used Maximum

Likelihood function and 96.89% of accuracy was recorded for ML.

Since accuracy of Nearest Neighbour Classifier with BTD was

higher than the method that used ML function, the Nearest

Neighbour Classifier with Bayesian Touch distance was chosen to

implement in the algorithm to detect input finger when inserting

braille characters for design B and C.

4.1 Text Entry Speed
After 5 sessions of testing with participation of 5 users, the

maximum speed of each text entry was recorded at 5.4WPM,

9.6WPM and 18.9WPM for designs with finger 2 (Design A), 3

(Design B) and 6 (Design C) respectively. Results of the

experiment were concluded that the typing speed of Design-A (one-

hand 2 finger) lies between 3.37WPM and 4.11WPM, Design-B

(one-hand 3 finger) lies between 6.58WPM and 7.98WPM and

Design-C (two-hand 6 finger) lies between 11.69WPM and

14.89WPM at 95% level of confidence.

Figure 16 - Entry rate over sessions

As is observed from the graph, text entry speeds of each design

have gradually increased over the number of sessions. Each design

is observed highest speed at the session 5 and at that session speed

has been increased by 19%, 9% and 45% when compared to the

session 1 for design A, B, and C respectively. Which is concluded

a higher learnability of my proposed app.

4.2 Accuracy of Text Entry
In this section, uncorrected error rates for each design is analysed

over the time (number of sessions). Below Figure 17 demonstrates

the error rates over the time. For the design A, 99.99% of accuracy

(error rate = 0.01%) was recorded. Likewise, for average

uncorrected testing, 2.46% of uncorrected error rate for design C

and 1.15% of uncorrected error rate for design B were recorded.

And, as is observed from the graph, there is a decline in Design-C

and B. This showed that, this approach improves the learnability of

the proposed app.

Figure 17 - Uncorrected Error rate over time

4.3 Drawn Pattern Detection
In proposed solution, some of drawing pattern commands were

introduced to execute commands. As Android was chosen for the

development, there was an in-built functionality to detect drawing

patterns. So, in this study, the accuracy for the novel mathematical

algorithm was measured and checked against its accuracy against

the Android in-built functionality of ‘Gesture-Detector’. Figure 18

represents the accuracy level for the ‘Drawn Pattern Commands’

for the mathematical algorithm that was introduced in this research

while Figure 19 represents the accuracy level for the ‘Drawn

Pattern Commands’ for the Android in-built functionality of

‘Gesture-Detector’.

Figure 18 - Accuracy rate of drawing command patterns for

mathematical algorithm

Figure 19 - Accuracy rate of drawing command patterns for

Android Gesture Detector

Figure 20 - Accuracy Level of Gesture Detector over

Mathematical Algorithm

When comparing the accuracy level of mathematical algorithm

over the Android’s inbuilt feature ‘Gesture Detector’ there is no

significant difference between them. Also, 94.86% accurately

detect the drawn patterns from the proposed novel mathematical

algorithm. But when considering the time taken to detect, Gesture

Detector took more time to detect drawn pattern commands than

the proposed method. Moreover, using gesture detector leads to

increased error rates in typing when tested on blind users.

Therefore, novel mathematical algorithm is used to detect drawn

pattern commands.

5. CONCLUSION
‘Braille Messenger’ is an integrated mobile application which is

designed to send and receive text messages using Braille via short

message service. The app can support both blind and the blind-deaf

communities.

The app is designed with the user in mind, giving the user a chance

to select any gesture what they preferred and through this entry

method could to reach higher typing speed than other ordinary

typing methods that blinds using.

K-NN and K-Means algorithms were employed with Bayesian

Touch Distance to classify the inserted braille character on gesture.

A novel static algorithm was also implemented to execute drawn

pattern commands. The app demonstrated a higher accuracy for

character and pattern detection and recognition. Furthermore, the

app is able to predict words when a user types more than 5 letters.

The Braille Messenger recognized and converted the Braille to text

with an accuracy of 97.54% while the drawn pattern commands

were detected and recognized at an accuracy of 94.86%. When

considered about the learnability, a higher rate of learnability was

observed within a limited number of sessions.

In this research, ‘Braille Messenger’ was implemented as an

integrated application to send and receive text messages using SMS

Manager. But this customizable typing views can also be developed

as a customizable keyboard. Thus, enabling a blind user to type

with Braille when using any application on the phone.

Currently the app supports only English language, which can be

extended to more languages like Sinhala and Tamil.

Error correction functionality is another important task that can be

useful for the blind community when typing Braille. In future, the

app can be implemented with an error correction functionality in an

effective way.

6. References
Alnfiai, M., and Sampalli, S. (2016). SingleTapBraille: Developing

a text entry method based on braille patterns using a

single tap. The 11th International Conference on Future

Networks and Communications (FNC 2016).

Android accessibility . (2017, June). Retrieved from Android -

Google Support:

https://support.google.com/accessibility/android/answer/

6006564?hl=en

Arrigo, M., and Cipri, G. (2010). Mobile Learning for All. Journal

of the Research Center for Educational Technology

(RCET), 6(1), 94-102.

Azenkot, S., Wobbrock, J. O., Prasain, S., and Ladner, R. E. (2012).

Input Finger Detection for Nonvisual Touch Screen Text

Entry in Perkinput . Graphics Interface Conference.

Toronto, Ontario, Canada.

Bonner, M., Brudvik, J., Abowd, G., and Edwards, W. K. (n.d.).

No-Look Notes: Accessible Eyes-Free Multi-Touch Text

Entry. Atlanta, USA.

Craddock, G.M. ed., 2003. Assistive Technology: Shaping the

Future: AAATE'03 (Vol. 11). IOS press.

Hatzigiannakoglou, P. D., & Kampouraki, M. T. (2016). An

Accessible Keyboard for Android Devices as a Means for

Promoting Braille Literacy . IJIM, 10(2), 77-78.

iPhone - Accessibility. (2017, June). Retrieved from Apple official

web site: https://www.apple.com/accessibility/iphone/

Jayant, C., Acuario, C., Johnson, W. A., Hollier, J., & Ladner, R.

E. (2010). VBraille: Haptic Braille Perception using a

Touch-screen and Vibration on Mobile Phones. Orlando,

Florida, USA: ASSETS'10.

Leporini, B., Buzzi, M. C., & Buzzi, M. (2012). Interacting with

Mobile Devices via VoiceOver: Usability and

Accessibility Issues. OZCHI.

Marcus, A. (2013). Design, User Experience, and Usability: Design

Philosophy, Methods, and Tools. Second International

Conference, DUXU 2013. Las Vegas, NV, USA, July 21-

26, 2013.

Mascetti, S., Bernareggi, C., & Belotti, M. (2011). TypeInBraille :

A Braille-based Typing Application. Dundee, Scotland,

UK: ASSETS’11.

Mccarty, B. (2017, May). The History of Smartphones. Retrieved

from Thenextweb:

https://thenextweb.com/mobile/2011/12/06/the-history-

of-the-smartphone/#

McGookin, D., Brewster, S., & Jiang, W. (2008). Investigating

Touchscreen Accessibility for People with Visual

Impairments . Lund, Sweden: NordiCHI 2008.

Oliveira, J., Guerreiro, T., Nicolau, H., Jorge, J., & Goncalves, D.

(2011). Blind People and Mobile Touch-based Text-

Entry: Acknowledging the Need for Different Flavors.

Dundee, Scotland, UK: ASSETS’11.

Ramler, I.P., 2008. Improved statistical methods for k-means

clustering of noisy and directional data. Iowa State

University.

Rantala, J., Raisamo, R., Lylykanas, J., Surakka, V., Raisamo, J.,

Salminen, K., Hippula, A. (2009). Methods for

Presenting Braille Characters on a Mobile Device with a

Touchscreen and Tactile Feedback. IEEE

TRANSACTIONS ON HAPTICS, 2(1), 28-39.

Sierra, J. S., & Togores, J. S. (2012). Designing Mobile Apps for

Visually Impaired and Blind Users. ACHI 2012 : The

Fifth International Conference on Advances in

Computer-Human Interactions.

Siqueira, J., & Silva, C. R. (2016). Braille Text Entry on

Smartphones: A Systematic Review of the Literature.

IEEE 40th Annual Computer Software and Applications

Conference.

Subash, N., Nambiar, S., & Kumar , V. (2012 4th International).

Braillekey: An alternative braille text input system:

Comparative study of an innovative simplified text input

system for the visually impaired. Intelligent Human

Computer Interaction (IHCI).

Svobodnik, P., Novak, D., & Cerman, M. (2013). BlindShell - User

Interface for Visually Impaired Users. Karlovo Namesti

13, Prague 2 120 00, Czech Republic .

Udapola, U. S., and Liyanage, S. R. (2016). Braille Messenger:

SMS Sending Mobile App for Blinds Using Braille.

Kelaniya International Conference on Advances in

Computing and Technology (KICACT - 2016), (pp. 68-

69). Colombo.

Vision 2020 Sri Lanka. (n.d.). Retrieved 5 20, 2016, from

http://www.vision2020.lk/blindness&vision.html

Windows phone accessibility. (2017, June). Retrieved from

Microsoft official web site:

https://support.microsoft.com/en-

us/help/10664/windows-phone-accessibility-on-my-

phone

Ye, H., Malu, M., Oh, U., & Findlater, L. (2014). Current and

Future Mobile and Wearable Device Use by People With

Visual Impairments . Toronto, Ontario, Canada.:

Copyright © 2014 ACM 978-1-4503-2473-1/14/04.

Zhai, S., & Bi, X. (2013). Bayesian Touch – A Statistical Criterion

of Target Selection with Finger Touch. UIST’13. St.

Andrews, United Kingdom.

