Uncertainty in hydromorphological and ecological modelling of lowland river floodplains resulting from land cover classification errors

Menno W. Straatsmaa,b,+, Marcel van der Perkb,f, Aafke M. Schipperc,f, Reinier J.W. de Nooijd, Rob S.E.W. Leuvenc,f, Fredrik Huthoffe, Hans Middelkoopb,f

aDepartment of Earth System Analysis, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 6, 7500 AA Enschede, The Netherlands
bFaculty of Geosciences, Department of Physical Geography, Utrecht University, PO Box 80115, 3508 TC Utrecht, The Netherlands
cRadboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, PO Box 9010, 6500 GL Nijmegen, The Netherlands
dOptimal Planet Training and Consultancy, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
eWater Systems Modelling, HKV Consultants, PO Box 2120, 8203 AC Lelystad, The Netherlands
fNCR, Netherlands Centre of River Research (NCR), PO Box 177, 2600 MH Delft, The Netherlands

\textbf{A R T I C L E I N F O}

Article history:
Received 11 June 2012
Received in revised form 6 November 2012
Accepted 16 November 2012
Available online 7 February 2013

Keywords:
Biodiversity
Ecotoxicological hazards
Floodplain vegetation
Hydrodynamic uncertainty
Monte Carlo analysis
Rhine river
Special areas of nature conservation
Suspended sediment deposition

\textbf{A B S T R A C T}

Land cover maps provide essential input data for various hydromorphological and ecological models, but the effect of land cover classification errors on these models has not been quantified systematically. This paper presents the uncertainty in hydromorphological and ecological model output for a large lowland river depending on the classification accuracy (CA) of a land cover map. Using four different models, we quantified the uncertainty for the three distributaries of the Rhine River in The Netherlands with respect to: (1) hydrodynamics (WAQUA model), (2) annual average suspended sediment deposition (SEDIFLUX model), (3) ecotoxicological hazards of contaminated sediment for a bird of prey, and (4) floodplain importance for desired habitat types and species (BIO-SAFE model). We carried out two Monte Carlo \textit{analyses}: one at a 69\% land cover CA, the other at 95\% CA. Subsequently, we ran all four models with the 30 realizations as input.

The error in the current land cover map gave an uncertainty in design water levels of up to 19 cm. Overbank sediment deposition varied up to 100\% in the area bordering the main channel, but when aggregated to the whole study area, the variation in sediment trapping efficiency was negligible. The ecotoxicological hazards, represented by the fraction of Little Owl habitat with potential cadmium exposure levels exceeding a corresponding toxicity threshold of 148 \mu g -1 varied between 54 and 60\%, aggregated over the distributaries. The 68\% confidence interval of floodplain importance for protected and endangered species varied between 10 and 15\%. Increasing the classification accuracy to 95\% significantly lowered the uncertainty of all models applied. Compared to landscaping measures, the effects due to the uncertainty in the land cover map are of the same order of magnitude. Given high financial costs of these landscaping measures, increasing the classification accuracy of land cover maps is a prerequisite for improving the assessment of the efficiency of landscaping measures.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decades, much effort has been put into the development of models to quantify the impacts of hydrological changes and landscaping measures on flood risk and floodplain ecology. Hydromorphological models provide estimates of peak water levels and sediment deposition (RWS, 2007; Bates et al., 2010), while ecological models characterize habitat suitability, biodiversity (Lenders et al., 2001; Schipper et al., 2008a) and ecosystem services (Nelson et al., 2009). Such models are
routinely used in environmental impact assessments of floodplain restoration projects with landscaping measures that aim to reduce the flood risk and improve the ecological quality of the riverine area.

A land cover map provides essential input for both hydromorphological and ecological models. In hydromorphological modelling, land cover maps are commonly used to parameterize floodplain roughness by assigning a roughness coefficient to each land cover type (Chow, 1959). In the context of ecological modelling, land cover maps provide essential information to define and delineate habitat (e.g. Schipper et al., 2008a). Establishing accurate land cover maps of large floodplain areas would require extensive field survey, and therefore remote sensing data are used for this purpose. Over the past decennia, numerous land cover classification schemes have been developed and tested by integrating airborne and satellite imagery, multi-temporal images (Foody, 2002; Geerling et al., 2007; Antonarakis et al., 2008; Straatsma and Baptist, 2008), or a-priori knowledge (Janssen and Middelkoop, 1992). Typical overall classification accuracies reported in these studies ranged from 70 to 90%.

Several studies have addressed uncertainties in hydrodynamic (Aronica et al., 1998; Pappenberger et al., 2005; Beven, 2006; Apel et al., 2008) and ecological modelling (Elith et al., 2002; Regan et al., 2002; De Nooij et al., 2006). However, the impact of land cover classification errors on hydromorphological and ecological model output has rarely been quantified. Straatsma and Huthoff (2011) estimated the effect of different error sources in floodplain roughness parameterization on simulated flood water levels. They concluded that land cover classification accuracy (CA) is the dominant error source for distributed floodplain roughness, leading to uncertainties in simulated water levels up to 0.27 m during peak discharges in the Lower Rhine. To our knowledge, effects of land cover CA on other hydromorphological or ecological models have not yet been quantified.

Our main objective was to provide a systematic and integrated assessment of the uncertainty in hydromorphological and ecological model output of a lowland river due to classification errors in the land cover map. Land cover classification error as considered here should be characterized as “ambiguity”, i.e. the degree of confusion among different candidate classes to be assigned to a landscape unit on the map. We quantified this uncertainty with respect to four aspects relevant for hydromorphological and ecological functioning: (1) hydrodynamics, (2) overbank sediment deposition, (3) ecotoxicological hazard, and (4) floodplain importance for desired habitat types and species. Using a suite of quantitative models parameterized for the distributaries of the Rhine River in The Netherlands, we assessed how the model output depended on the classification accuracy of the input land cover maps. Using Monte Carlo re-sampling, we created an ensemble of 15 equally likely land cover maps for the floodplains, based on the CA of 69%, and we generated a second ensemble of 15 maps based on a 95% CA. Subsequently, we ran all four models with the 30 land cover map realizations as input.

2. Study area

In this study, we considered the distributaries of the Rhine River in The Netherlands, excluding the estuary (Fig. 1). At the Dutch–German border, the Rhine River has an average discharge of
2250 m³ s⁻¹, draining a catchment area of 165,000 km² (Middelkoop and Van Haselen, 1999). Just downstream of the border, the Rhine River splits into three main distributaries, i.e. the Waal, the Nederrijn and the IJssel River (Fig. 1), which account for approximately two thirds, two ninths and one ninth of the total Rhine discharge, respectively. The three distributaries have an average water gradient of 10 cm per km. The total embanked area, i.e. the main channel and floodplain area between the embankments, amounts to 440 km²; the floodplain area comprises 320 km² out of which 48 km² consists of lakes and side channels. About 62% of the total embarked area (275 km²) is vegetated. The cross-sectional width between the primary embankments varies between 0.5 and 2.6 km. Design water levels are based on an accepted probability of 1/1250 y⁻¹ of flooding, which is at present associated with a peak discharge of 16,000 m³ s⁻¹ for the Rhine at the German–Dutch border. Currently, the flood protection level of the Rhine branches in the Netherlands corresponds to a discharge of 15,000 m³ s⁻¹. As part of the “Room for the River” project, which is to be finalized by 2015 (RvR, 2011), 24 landscapeing measures are implemented along the lower Rhine distributaries to safely convey a discharge of 16,000 m³ s⁻¹. The average suspended sediment deposition on the lower Rhine floodplain amounts to about 0.39 Mt per year, which is an average accumulation rate of 1.72 kg m⁻² y⁻¹ for all river distributaries combined. This equals about 13% of the total suspended sediment load that enters the river system from Germany (Asselman and van Wijngaarden, 2002; Middelkoop et al., 2010). Over the past century, large amounts of sediment-bound trace metals have been deposited on the lowland Rhine floodplains (Middelkoop, 2000). Through uptake in vegetation and soil-dwelling invertebrates, these metals may enter food chains and potentially induce toxic effects in the organisms exposed. Although the effects of metal exposure are mostly subordinate to influences of other ecosystem stressors, notably flooding (Schipper et al., 2008b, 2011), ecotoxicological hazards cannot be excluded for certain susceptible species (Van den Brink et al., 2003; Schipper et al., 2008a).

The Dutch parts of the Rhine River are almost entirely protected by the European Union Habitats directive (Council directive 92/43/EEC) and Birds directive (Council directive 79/409/EEC). Each distributary has specific protection goals in terms of carrying capacity for species and habitat types (Alterra, 2012).

3. Materials and methods

Here we describe the primary data that we used, the method for generating alternative land cover maps and the four models that we applied in the uncertainty assessment.

3.1. Land cover map

Land cover was based on a vector map with ecotopes, which are defined as “spatial landscape units that are homogeneous as to vegetation structure, succession stage and the main abiotic factors that are relevant to plant growth” (Van der Molen et al., 2003). This ecotope map provided the land cover used in the models at a 1:10,000 scale with a minimum polygon size of 20 by 20 m. The map legend is based on the national ecotope system of the Dutch main water bodies (Bergwerff et al., 2003). This system uses a hierarchic structure of ecotopes based on geomorphology and vegetation units. Ecotopes are further subdivided according to local erosion and deposition rates, inundation frequency and land management. The ecotope map was based on aerial images collected in 2005 (Houkes, 2007). In 2010, a reinterpretation was carried out with respect to brackish environments; we used this reinterpretation process for our study to be up to date. A number of classes needed recoding to match the map purity table. This affected 5% of the area (Supporting Information, Table 1).

The uncertainty in the ecotope map was determined by Knotters and Brus (2010) based on 406 field observations of 41 terrestrial ecotopes. They computed the map purity, i.e. the percentage of the map area that is correctly classified, and summarized the results in a map purity table. The map purity is based on a statistical model incorporating the spatial variance of the classification errors, see Lohr (1999) for details. The map purity table is similar to the error matrix in classification studies. Knotters and Brus (2010) reported a user’s accuracy of 69% based on eight aggregated ecotope groups. Three problems were noted: the field data collection: (1) the field data comprised point observations, whereas the ecotope map consists of large polygons with a minimum size of 20,000 m². In case of multiple observations per ecotope, variation of vegetation within the ecotope could result in multiple, different classifications of a single polygon. This indicates that ecotopes are not fully homogeneous. (2) Ecotopes are determined by inundation frequency, which is hard to discern from plant sociological groups in the field. (3) There is a time lag between aerial image acquisition and field data collection. Therefore the field data might not be error free, which should be taken into account. Additional quality control is carried out by the river manager on the job. This could in practice improve the quality of the map, but the increase in CA is not known.

3.2. Ensemble realizations of the ecotope map

Alternative realizations of the ecotope map were generated by conditional simulation as developed by Straatsma and Huthoff (2011). In this conditional simulation, a new ecotope type is assigned to each polygon, conditioned by the classification errors for that ecotope type as presented in the map purity table (Straatsma and Alkema, 2009), which is iterated in the Supporting Information, Table 2. We generated 30 alternative realizations of the ecotope map using two classification accuracies at ecotope group level. The first simulation comprised an ensemble of 15 realizations based on the 69% CA assessed by the field validation (Knotters et al., 2008), which underlies the symmetrical map purity table (Straatsma and Alkema, 2009). For the second simulation we chose a 95% CA at ecotope group level. This was assumed to represent an accuracy corresponding with the best methods available, as other studies on land cover classification reported accuracies varying between 70% and 92%, depending on the level of detail of the field observations (Van der Sande et al., 2007; Straatsma and Baptist, 2008). A 100% CA is unlikely, and would lead to ensemble output without any variation. As no map purity table existed based on the 69% CA map purity table. We decreased the off-diagonal values in the map purity table by a tentative multiplication factor between 0 and 1. For each line in the matrix, we added the sum of the differences between the original off-diagonal values and the new values to the diagonal value. This led to an increase in the diagonal value and a decrease in the off-diagonal values, leading to a new map purity table with a higher overall CA. The ecotope ecotope matrix purity was subsequently aggregated into eight ecotope groups for which the classification accuracy was computed. Next, the multiplication factor was changed step by step until the CA at ecotope group level reached 95%. The map purity table with a 95% CA at ecotope group level was used to generate the ensemble of 15 alternative ecotope maps with 95% CA (Supporting Information, Table 3).

The conditional simulation was carried out following the method of Straatsma and Huthoff (2011) and is summarized below. Each line in the map purity table gives the probabilities for alternative classifications of that ecotope class. We computed the cumulative probability by summing up the probabilities along each row in the map purity table. This is illustrated in Fig. 2, which gives the cumulative probabilities for the ecotope type “High water free natural grassland” (ecotope number 21) for each polygon. From the ecotope map, we drew a random number between 0 and 1 from a uniform distribution, and using the cumulative probability we assigned a new ecotope class to each of the polygons (Fig. 2). In the example, the arrow represents a random number of 0.71, which would change the polygon from ‘High water free natural grassland’ to ‘Natural levee or floodplain production grassland’ (ecotope number 24) for the 69% CA, whereas the polygon would maintain its class at the 95% CA. For each CA, and for each polygon in the original map, this procedure was repeated 15 times, yielding the 69% CA and 95% CA ensembles. Each of the 15 maps in each ensemble can be considered as an equally likely realization of the original, uncertain ecotope map. As the 15 random numbers were drawn once per polygon, i.e. the same numbers were used for both CAs, we ensured that the resulting uncertainty in the modelling only reflected the change in classification accuracy and not a difference due to drawing new random numbers for each of the two ensembles of maps.

3.3. Modelling

We determined the effects of a 69% and a 95% CA on the output of two morphological and two ecological models. Each of the models was run with the 69% CA, 95% CA, and for each polygon in the original map, this procedure was repeated 15 times, yielding the 69% CA and 95% CA ensembles. Each of the 15 maps in each ensemble can be considered as an equally likely realization of the original, uncertain ecotope map. As the 15 random numbers were drawn once per polygon, i.e. the same numbers were used for both CAs, we ensured that the resulting uncertainty in the mapping only reflected the change in classification accuracy and not a difference due to drawing new random numbers for each of the two ensembles of maps.

3.3.1. WAQUA hydrodynamic model

The WAQUA model is a two-dimensional hydrodynamic model that numerically solves the Saint Venant equations using a finite difference scheme (Van Niekerk et al., 2007). It is used by the Dutch Ministry of Infrastructure and Environment for the calculation of water levels and discharge distribution in the complex channel and floodplain areas of the rivers Rhine and Meuse in The Netherlands (RWS, 2007). For the present study, a series of simulations of steady flow in the study area was carried out. The WAQUA model that was used for this study is based on a staggered curvilinear grid.
Each of the 886,861 cells represented a column-shaped volume of water with a variable surface area of 700 m2 on average. The boundary conditions of the model included the river discharge at the upstream boundary and the water level at the downstream boundary, which was determined using a rating curve. The main spatial model inputs for the WAQUA model were a Digital Terrain Model (DTM), a map with hydraulic structures (e.g., groins, embankments), and a roughness class map. Roughness class maps were based on the ecotope map using the Baseline database and software (Hartman and Van den Brak, 2007). The Baseline software reclassifies each ecotope class to a roughness class (Table 1) using a lookup table, and assigns vegetation structural characteristics. Stage dependent roughness is computed at run time by applying the roughness model of Klooster et al. (1997). Van Velzen et al. (2003) provided graphs of the stage dependent roughness according to the Klooster roughness model. Chow (1959) gave fixed roughness values for different land cover classes, which are used in more simplified hydrodynamic models.

We used WAQUA with the 69% and 95% CA ensembles as input, giving 30 model parameterizations, which were subsequently run at nine stationary discharges (3500–4000–5000–6000–7000–8000–10,000–12,000 and 16,000 m3 s$^{-1}$) at the upstream boundary at Emmerich, Germany. At the lowest simulated discharge of 3500 m3 s$^{-1}$, corresponding to a statistical return period of 0.2 years, the low-lying floodplains are just inundated. The highest discharge corresponded to the current design discharge with a return period of 1250 years. The simulation time for the runs was set to three days to stabilize the water levels and discharge distribution. Stationary discharges were chosen to limit computation time for WAQUA, but even more so for SEDIFLUX (see below). The latter model would require prohibitively long simulation periods to compute annual average sediment deposition. Output of the computations consisted of spatially distributed values of the Chezy C roughness coefficient, flow velocities, water levels, and the discharge distribution over the bifurcation points. We calculated water levels instead of water depth as it is the level in relation to the height of the embankment that determines the flood hazard.

3.3.2. SEDIFLUX model for suspended sediment deposition

We used the GIS-embedded SEDIFLUX model to calculate the transport and deposition of suspended sediment, using the 2D water flow patterns calculated by the WAQUA model. This model was developed and tested for floodplain sections along the Rhine River by Middelkoop and Van der Perk (1998). For this study we used a similar approach as followed by Straatsma et al. (2009) to estimate the average deposition rate. For each of the nine discharge levels, the suspended sediment concentration at the upper model boundary was established using a sediment rating curve derived for the 1970–2006 observation record at the German-Dutch border. The main output of the SEDIFLUX-model includes the 2D pattern of sediment deposition rates (kg m$^{-2}$ d$^{-1}$) for each discharge level. The average annual deposition (kg m$^{-2}$ y$^{-1}$) was subsequently calculated by summing the products of these calculated sediment deposition rates for each discharge level and the average annual number of days that the corresponding discharge classes occurred in the 1970–2006 period. The spatially explicit output consisted of the variation in the annual average sediment deposition for each of the two classification accuracies.

3.3.3. Ecotoxicological hazards

Ecotoxicological hazards due to sediment contamination were assessed for the Little Owl (Athene noctua), which is one of the species potentially affected by trace metals in the lowland Rhine River floodplains (Van den Brink et al., 2003; Schipper et al., 2008a). We defined a simplified food web with three levels: (1) vegetation, beetles, earthworms and wild berries, (2) common vole, bank vole, common shrew, and wood mouse, and (3) the little owl at the top level (Schipper et al., 2012). For this food web, the ecotope map needed to be gridded, we chose a 10 m spatial resolution to minimize loss of detail. Ecotoxicological hazards were assessed for those ecotopes providing suitable habitat to the little owl and were based on the daily intake of cadmium through contaminated food:

$$DI = DF_i \cdot \sum_{j} f_{ij} \cdot C_{ij}$$

(1)

where $DI = \text{daily intake of cadmium (µg d}^{-1})$, $DF = \text{daily food intake (80 g d}^{-1})$, $f_{ij} = \text{weight fraction of prey type i in the little owl’s diet in ecotope j (dimensionless)}$, $n_i = \text{number of prey types in ecotope j}$, $C_{ij} = \text{cadmium concentration of prey type i (µg g}^{-1})$. Dietary fractions f_{ij} were calculated by adjusting initial diet fractions derived from the literature (Supporting Information, Table 4) according to the habitat suitability of the ecotope type for the respective prey items. Corrected fractions were rescaled to ensure that they summed to 1:

$$f_{ij} = \frac{f_{ij} \cdot HS_{ij}}{\sum_{i=1}^{n_j} f_{ij} \cdot HS_{ij}}$$

(2)

where $f_{ij} = \text{initial fraction (weight-based, dimensionless) of prey type i in the little owl’s diet, and } HS_{ij} = \text{habitat suitability of ecotope type j for prey type i, expressed as a dimensionless value between 0 and 1.}$ Habitat suitability was calculated based on ecotope suitability (ES_{ij}: Supporting Information, Table 5) as described in Schipper et al. (2008a). Irrespective of habitat suitability, small mammals were absent from areas beyond their maximum colonization distance from flood-free areas (Schipper et al., 2008a), which were defined as locations where the ground surface elevation is higher than the water level resulting from a discharge that is exceeded 2 days per year (7200 m3 s$^{-1}$ at Emmerich). Cadmium concentrations C_i in small mammal prey were calculated based on their assimilation of cadmium from contaminated first level food web items, whereas cadmium concentrations C_{ij} in first-level items were derived from soil concentrations with regression equations or bioaccumulation factors (Schipper et al., 2008a). Soil cadmium concentrations were derived from a soil quality map of the three river distributaries, scale 1:25,000 (Hin et al., 2001), representing contaminant concentrations in the upper 50 cm of the soil profile. This polygon map consisted of seven classes with cadmium concentrations of 0, 1, 2, 3, 4, 5, and 10 mg kg$^{-1}$ dry weight, and was kept unchanged during Monte Carlo analysis and independent of CA.

The daily intake calculations were performed at a 10 × 10 m spatial resolution. To obtain an indication of toxic effects, daily intake values were compared with a toxicity threshold of 148 µg cadmium per day (Schipper et al., 2012). Results were summarized as the fraction of Little Owls with a cadmium DI > 148 µg d$^{-1}$. In addition, frequency distributions were established based on the number of realizations resulting in exposure levels exceeding the toxicity threshold. The toxicity consistency was subsequently computed as the map fraction that was always above, or always below ($n = 15$, or $n = 0$) the toxicity threshold.

3.3.4. BIO-SAFE model for biodiversity potential

BIO-SAFE quantifies (potential) values of riverine landscapes for protected and endangered species, depending on ecotope distribution (potential habitat) and ecological and legal status of species and habitat types. De Nooij et al. (2006) and Lenders et al. (2001) described the indices used for quantification of (potential) values of riverine landscapes and the setup, validation and sensitivity analysis of...
<table>
<thead>
<tr>
<th>Ecotope code</th>
<th>Ecotope description</th>
<th>Roughness class</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-REST</td>
<td>High water free temporarily bare</td>
<td>Rest</td>
</tr>
<tr>
<td>HA-1</td>
<td>High water free agriculture</td>
<td>Agricultural land</td>
</tr>
<tr>
<td>HA-2</td>
<td>High water free built-up area</td>
<td>Paved/built-up area</td>
</tr>
<tr>
<td>HB-1</td>
<td>High water free natural forest</td>
<td>Natural forest</td>
</tr>
<tr>
<td>HB-2</td>
<td>High water free shrubs</td>
<td>Shrubs</td>
</tr>
<tr>
<td>HB-3</td>
<td>High water free production forest</td>
<td>Production forest</td>
</tr>
<tr>
<td>HG-1</td>
<td>High water free natural grassland</td>
<td>Natural meadows</td>
</tr>
<tr>
<td>HG-1-2</td>
<td>High water free grassland (natural or production)</td>
<td>Production/natural meadows</td>
</tr>
<tr>
<td>HG-2</td>
<td>High water free production grassland</td>
<td>Production meadows</td>
</tr>
<tr>
<td>HM-1</td>
<td>High water free reeds</td>
<td>Reeds and other helophytes</td>
</tr>
<tr>
<td>HR-1</td>
<td>High water free herbaceous vegetation</td>
<td>Herbaceous vegetation</td>
</tr>
<tr>
<td>I.1</td>
<td>High water free temporarily bare</td>
<td>Rest</td>
</tr>
<tr>
<td>I.2</td>
<td>Sweet sand bars</td>
<td>Bare river bar</td>
</tr>
<tr>
<td>I.2-3</td>
<td>Low dynamic hard substrate</td>
<td>Paved/builtup area</td>
</tr>
<tr>
<td>IV.8-9</td>
<td>Species poor helophytes swamp/ species rich reed swamp</td>
<td>Reeds and other helophytes</td>
</tr>
<tr>
<td>IX.a</td>
<td>Agriculture on the shoreline</td>
<td>Agricultural land</td>
</tr>
<tr>
<td>O-U-REST</td>
<td>Natural levee or floodplain temporarily bare</td>
<td>Rest</td>
</tr>
<tr>
<td>O-UA-1</td>
<td>Natural levee or floodplain agriculture</td>
<td>Paved/builtup area</td>
</tr>
<tr>
<td>O-UA-2</td>
<td>Natural levee or floodplain built-up area</td>
<td>Natural forest</td>
</tr>
<tr>
<td>O-UB-1</td>
<td>Natural levee or floodplain forest</td>
<td>Natural forest</td>
</tr>
<tr>
<td>O-UB-2</td>
<td>Natural levee or floodplain shrubs</td>
<td>Shrubs</td>
</tr>
<tr>
<td>O-UB-3</td>
<td>Natural levee or floodplain production forest</td>
<td>Production forest</td>
</tr>
<tr>
<td>O-UG-1</td>
<td>Natural levee or floodplain grassland</td>
<td>Natural grassland</td>
</tr>
<tr>
<td>O-UG-1-2</td>
<td>Natural levee or floodplain grassland (natural or production)</td>
<td>Production/natural meadows</td>
</tr>
<tr>
<td>O-UG-2</td>
<td>Natural levee or floodplain production grassland</td>
<td>Production meadows</td>
</tr>
<tr>
<td>O-UK-1</td>
<td>Natural levee or floodplain unvegetated</td>
<td>Rest</td>
</tr>
<tr>
<td>O-UR-1</td>
<td>Natural levee or floodplain herbaceous vegetation</td>
<td>Herbaceous vegetation</td>
</tr>
<tr>
<td>OK-1</td>
<td>Unvegetated natural levee</td>
<td>Rest</td>
</tr>
<tr>
<td>R</td>
<td>Temporarily bare</td>
<td>Rest</td>
</tr>
<tr>
<td>REST</td>
<td>Temporarily bare</td>
<td>Rest</td>
</tr>
<tr>
<td>RU-REST</td>
<td>Floodplain temporarily bare</td>
<td>Rest</td>
</tr>
<tr>
<td>UA-1</td>
<td>Floodplain agriculture</td>
<td>Agricultural land</td>
</tr>
<tr>
<td>UA-2</td>
<td>Floodplain built-up area</td>
<td>Paved/built-up area</td>
</tr>
<tr>
<td>UB-1</td>
<td>Floodplain forest</td>
<td>Natural forest</td>
</tr>
<tr>
<td>UB-2</td>
<td>Floodplain shrubs</td>
<td>Shrubs</td>
</tr>
<tr>
<td>UB-3</td>
<td>Floodplain production forest</td>
<td>Production forest</td>
</tr>
<tr>
<td>UC-1</td>
<td>Floodplain grassland</td>
<td>Natural grassland</td>
</tr>
<tr>
<td>UC-1-2</td>
<td>Floodplain grassland (natural or production)</td>
<td>Production/natural meadows</td>
</tr>
<tr>
<td>UC-2</td>
<td>Floodplain production grassland</td>
<td>Production meadows</td>
</tr>
<tr>
<td>UM-1</td>
<td>Natural levee or floodplain reed</td>
<td>Natural forest</td>
</tr>
<tr>
<td>UR-1</td>
<td>Floodplain herbaceous vegetation</td>
<td>Herbaceous vegetation</td>
</tr>
<tr>
<td>V.1-2</td>
<td>Floodplain swamp</td>
<td>Herbaceous vegetation</td>
</tr>
<tr>
<td>VL2-3</td>
<td>Softwood shrubs or pioneer softwood forest</td>
<td>Shrubs</td>
</tr>
<tr>
<td>VL4</td>
<td>Softwood forest</td>
<td>Natural forest</td>
</tr>
<tr>
<td>VL7</td>
<td>Floodplain willow production forest</td>
<td>Willow production forest</td>
</tr>
<tr>
<td>VL8</td>
<td>Production forest on shoreline</td>
<td>Production forest</td>
</tr>
<tr>
<td>VH-1</td>
<td>Swampy inundation grass land</td>
<td>Natural grassland</td>
</tr>
<tr>
<td>VH-1-3</td>
<td>Swampy inundation grass land/ structure rich grass land/ production grass land</td>
<td>Production/natural meadows</td>
</tr>
</tbody>
</table>

4. Results

The effects of the uncertainties in the land cover maps on output of the four models are presented in this section. The spatial patterns in the uncertainties in hydrodynamics, sediment deposition and ecotoxicological hazards are presented in maps (Figs. 3 and 4), and aggregated in graphs (Figs. 5–7) and tables. Results are described by the 68% confidence interval for selected model outcomes ($P_{94} - P_{56}$), equaling the interval between one standard deviation above and below the mean in case of a normal distribution. We will refer to this statistic as the spread. Summary statistics were calculated per classification accuracy for the three distributaries (Table 2). Details on the model outcomes are given in subsequent sections. The results are highlighted for the IJssel River and the Waal River as these river reaches differ most in terms of discharge and floodplain width. Results for the Nederrijn River and all the Rhine River distributaries together can be found in the Supporting Information.

4.1. Uncertainty in hydrodynamics

The spread in water levels occurring at the 16,000 m3 s$^{-1}$ design discharge varied spatially (Figs. 3 a,b and 4 a,b). A small spread was found for the upstream part of the Waal; short sections in the IJssel showed the largest spread. The effect of increased CA becomes apparent when comparing part a and b of Figs. 3 and 4: at a 69% CA, the IJssel River showed a spread of up to 19 cm at the design discharge, which was reduced to 7 cm at a 95% CA. The Waal River (Fig. 4) has a lower fractional discharge over the floodplain area than the IJssel River, which resulted in a 12 cm spread from a 69% CA at the design discharge. Still, an increased CA reduced the maximum spread for the Waal River to 5 cm (Table 2). The results for the Nederrijn River fall in between those obtained for the Waal and IJssel River. In general, the spread was reduced by approximately 60%, depending on the distributary (Table 2). Note that the spread filters out the extremes in the variation that was found. The maximum difference in water levels that we found was 44 cm in the IJssel River. To summarize the spread in the three distributaries at different discharge levels, we computed the spread at the river axes at each river kilometer for each of the nine stationary discharges (Fig. 5a (IJssel River) and Fig. SI-1 in Supporting Information). The spread in water level showed a strong linear correlation with the discharge ($r = 0.96–0.99$ for the maximum spread per river branch; $r = 0.96–0.98$ for the median spread per river branch).

The variation in roughness also affected the discharge distribution. Lower roughness on a particular side of the bifurcation point for a specific realization of the ecotope map led to a lower water level at that side. This increased the discharge into that branch. As a result of this effect, the spread in discharge ranged between 65 and 89 m3 s$^{-1}$ for the 69% CA ensemble, and between 37 and 58 m3 s$^{-1}$ for a 95% CA (Table 2) at design discharge.

4.2. Uncertainty in sediment deposition

The annual average suspended sediment deposition (Figs. 3c and 4c) is largest in the area between the main channel and the
minor embankments. Here, the inundation frequency is high; during inundation, the flow velocity decreases and sediment settles. Comparing the spatially distributed annual sedimentation and spread (Figs. 3 and 4c–e), we found that: (1) the IJssel River has a lower median sediment deposition rate than the Waal River, (2) the spread in the annual deposition is lower in IJssel River than the Waal River, (3) the spread in the deposition is an order of magnitude lower than the median of the deposition, (4) the spatial distribution of the spread is highly variable. The results for the Nederrijn River again take the intermediate position with respect to deposition rate. The pattern of high deposition close to the main channel is similar to the other two river branches. To get insight in the uncertainty relative to the total deposition, we the normalized the spread (NS; Normalized Spread) by dividing the spread map by the median map. The NS map was summarized by a histogram (Fig. 5b IJssel River, and Fig. SI-2 Supporting Information), which
Fig. 4. Spatial distribution of model uncertainty for a section of the Waal River: Subpanels equal to Fig. 3.
shows a distribution of the NS where 70% of the map has a NS of less than 0.2 at a 69% CA, which increases to 90–95% of the map for a 95% CA.

Table 3 shows the distribution statistics (spread) of the annual sediment deposition aggregated for each river branch and the entire model area. The uncertainty at the scale of the river branches is very small (spread << 1% of the median value for both 69% CA and 95% CA). The 5000 m³ s⁻¹ discharge class contributes most (20%) to the total sediment deposition on the Rhine floodplains. However, the 7000 m³ s⁻¹ discharge class contributes most to the uncertainty of the average annual sediment deposition, except for the IJssel River where the 5000 m³ s⁻¹ discharge class contributes most to the uncertainty. This is likely due to the fact that the low-lying IJssel floodplains are inundated during lower discharges than the floodplains along the other distributaries.

4.3. Uncertainty in ecotoxicological hazards

For the 69% CA, the spread in ecotoxicological hazards (i.e. the spread in the fraction of little owl habitat with a daily cadmium intake exceeding the corresponding toxicity threshold) ranged from 0.03 for the Nederrijn River and Waal River to 0.06 for the IJssel River (Table 2; Figs. 3f and 4f). The spread was somewhat lower for the 95% CA (Table 2). On average, toxicological hazards were largest for the IJssel River and smallest for the Nederrijn River. This reflects differences in the average soil cadmium concentrations, which are 2.85 and 1.36, and 3.05 mg kg⁻¹ for the Waal, Nederrijn and IJssel River, respectively. The number of times a polygon exceeded the threshold showed a stronger bimodal pattern for the 95% CA than for the 69% CA, as illustrated by the increase in areas that never (0) or in all cases (15) exceeded the threshold (Figs. 3f,g and 4f,g). The histogram of exceedance values per river branch (Fig. 5c, Fig. SI-3 Supporting Information) showed the same pattern. The consistency of the output, defined as the habitat area on the map that either always or never exceeded the threshold for all 15 model runs, increased from a map fraction of 0.52–0.87 (Table 2) for the IJssel River. The other distributaries showed a smaller increase.

Surprisingly, ecotoxicological hazard estimates were, on average, much larger for the 95% CA ensemble than for the 69% ensemble (Table 2). Soil cadmium concentrations were on average slightly higher for ecotope types providing little owl habitat (i.e. grassland ecotopes) than for ecotope types that may be confused with grassland. Hence, confusion of grassland with these other ecotope types resulted in a decrease in the average soil cadmium concentration within the little owl habitat. As the probability for confusion with other types was higher for the 69% CA ensemble, the fraction of habitat with daily intake values below the toxicity threshold was lower for the 69% CA ensemble.

4.4. Uncertainty in biodiversity values

The potential biodiversity values of the floodplains (FI scores) differed remarkably between habitat types and species protected by the EU legislation (Natura, 2000 sites) within each river branch (Figs. 6 and 7; Fig. SI-4, SI-5 in the Supporting Information). The spreads were systematically larger for the 69% CA ensemble. Absolute values of the FI scores were higher for the 69% CA ensemble for all habitat types, except for, “Xeric sand calcareous grasslands” (H6120) in the IJssel, and “lowland hay meadow with
meadow foxtail” (H6510_B) in the Waal (Fig. 6; Table 4). The FI score of the 95% CA ensemble was twice as high for “Lowland hay meadows with Sanguisorba officinalis” (H6510_B) and “Softwood alluvial forests with Alnus glutinosa and Fraxinus excelsior” (H91E0_B) in the IJssel River. In contrast, the Waal River only showed small variations in FI scores for the habitat types. The higher FI scores for the 69% ensemble were caused by the map purity table, which converted meadows more often to herbaceous

![Fig. 6. BIO-SAFE Floodplain Importance (FI) scores for the 20 most sensitive protected species in each of the Rhine branches.](image)

![Fig. 7. BIO-SAFE Floodplain Importance (FI) scores for nine terrestrial habitat types in the Rhine branches. The 68% confidence interval is indicated by the black vertical lines. Habitat codes are described in Table 4.](image)

Table 2
Overview of uncertainty (expressed as the spread, i.e. the 68% confidence interval) in hydrodynamic and ecological model output due to errors in the land cover map according to two classification accuracies.

<table>
<thead>
<tr>
<th>Model output</th>
<th>Waal</th>
<th>Nederrijn</th>
<th>IJssel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water level (cm)</td>
<td>69% CA 12 (8)</td>
<td>15 (9)</td>
<td>19 (12)</td>
</tr>
<tr>
<td></td>
<td>95% CA 5 (3)</td>
<td>7 (5)</td>
<td>7 (5)</td>
</tr>
<tr>
<td>Discharge distribution</td>
<td>69% CA 89 (340)</td>
<td>85 (338)</td>
<td>65 (156)</td>
</tr>
<tr>
<td></td>
<td>95% CA 58 (92)</td>
<td>49 (78)</td>
<td>37 (83)</td>
</tr>
<tr>
<td>Sediment deposition:</td>
<td>69% CA 2.076-2.080</td>
<td>1.301-1.315</td>
<td>0.795-0.806</td>
</tr>
<tr>
<td>16th and 84th percentile</td>
<td>95% CA 2.096-2.104</td>
<td>1.326-1.331</td>
<td>0.782-0.786</td>
</tr>
<tr>
<td>Ecotoxicological hazards</td>
<td>69% CA 0.39-0.42</td>
<td>0.16-0.19</td>
<td>0.54-0.60</td>
</tr>
<tr>
<td></td>
<td>95% CA 0.46-0.48</td>
<td>0.22-0.23</td>
<td>0.71-0.72</td>
</tr>
<tr>
<td>Ecotoxicological consistency</td>
<td>69% CA 0.75</td>
<td>0.88</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>95% CA 0.93</td>
<td>0.94</td>
<td>0.87</td>
</tr>
<tr>
<td>FI values: average normalized spread for habitat types</td>
<td>69% CA 0.27</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>95% CA 0.11</td>
<td>0.33</td>
<td>0.23</td>
</tr>
<tr>
<td>FI values: average normalized spread for 29 species</td>
<td>69% CA 0.15</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>95% CA 0.05</td>
<td>0.07</td>
<td>0.06</td>
</tr>
</tbody>
</table>

a Maximum of the spreads, computed on the rivers kilometres per region; in brackets the median spread is given.
b Spread of discharge variation per distributary, in brackets the range.
c Values represent the fraction of Little Owl habitat with a daily cadmium intake exceeding a toxicity threshold of 148 µg d⁻¹.
d Values represent the fraction of the Little Owl habitat that is either in 0, or in 15 of the realizations exceeding the toxicity threshold of 148 µg d⁻¹. Hence they represent the area where the ensemble gives consistent outcome.
vegetation and the other way around, leading to a systematic difference in the ecotope distribution.

These general patterns also held for the protected species (Fig. 6). The 69% CA resulted in higher FI scores for all species, except Greylag Goose, Eurasian Curlew, Greater White-fronted Goose (Anser anser, Numenius arquata, and Anser albifrons), and wider confidence intervals, except for Northern Shoveler (Anas clypeata). However, FI scores and confidence intervals increased less for species than for habitat types. The scale of application of the BIO-SAFE model also influenced the results. The uncertainty is larger for separate river branches than for the application of BIO-SAFE to the whole study area.

5. Discussion

Uncertainty in hydromorphological and ecological models has many sources (Regan et al., 2002; Walker et al., 2003). Ideally, all would be combined in a single study to find the overall error. Saltelli and Annoni (2010) gave an overview of different methods to carry out a sensitivity analysis on multiple parameters at once for a single model. In this study, we quantified the effects of a single parameter for multiple models. We focused on water levels, suspended sediment deposition, ecotoxicological hazards and floodplain importance for different habitat types and species. This is a one-factor-at-a-time analysis, sensu Saltelli and Annoni (2010). In case of a 100% CA other sources of uncertainty would still influence the performance of the respective models. Other factors for our four models include model structure and parameters, numerical errors, boundary conditions, diet fraction, toxicity threshold, prey density, food preferences, weighting scheme for biodiversity values. However, inclusion of these factors was outside of the scope of this paper.

The CA of the land cover map was determined from field data (Knotters et al., 2008). In this study, large effects were found of land cover CA on hydromorphological and ecological model output. This uncertainty points to the need for an unambiguous quality assessment of the ecotope map. Below, we will discuss our results for hydromorphological and ecological model output, and changes in hydromorphology and ecology at longer temporal scales.

5.1. Hydromorphological and ecological model output

The reference hydrodynamic model used in this study was calibrated on historic flood events. Strictly speaking, each new realization of the ecotope map would require a re-calibration of the hydrodynamic model such that each realization accurately reproduces the historic flood events. In this study, the re-calibration step has been omitted, due to the large efforts involved in calibration of a 2D model with two bifurcation points. Calibration of a hydrodynamic model would normally reduce the prediction error by comparing model output with measured discharges, or water levels. Including the additional calibration step is part of a follow up study currently carried out. Calibration of the sedimentation model is more labor intensive as deposition rates need to be measured by placing sediment traps in the floodplain (Middelkoop and Asselman, 1998; Thonon, 2006). Still, further calibration of SEDI-FLUX for larger areas and for different flood magnitudes could reduce the overall prediction error of spatially distributed sedimentation rates. With the spread maps presented here one can target the most sensitive areas for placing the sediment traps. Currently, no data are available for calibrating and validating the output of the ecotoxicological model and BIOSAFE, and hence the errors in the land cover map directly influence the output.

The results showed a lower spread in water levels compared to the analysis of Straatsma and Huthoff (2011). There are two reasons for the reduction. Firstly, in this study the ecotope map was used in the Monte Carlo simulation, whereas in the previous study the roughness class map was used instead. Ecotope polygons were aggregated into roughness class polygons, creating spatial correlation and a larger average polygon size. In the Monte Carlo analysis of Straatsma and Huthoff (2011) larger polygons were changed in land cover type. Hence, the effect on water levels was larger. Secondly, a new set of 15 random numbers was drawn for this study.

Total overbank deposition was affected by CA. With a 95% CA, there was slightly less overbank deposition in the Waal and
Nederrijn distributaries, which was compensated for by larger deposition along the Bovenrijn and IJssel distributaries. This is likely due to the fact that in the conditional simulation procedure, the probability of assigning an ecotope with a higher roughness is greater than assigning an ecotope with a lower roughness (Straatsma and Huthoff, 2011). In general, this causes larger sedimentation rates close to the river channel and concurrently smaller sedimentation rates further away from the river in the 69% CA scenario than in the 95% CA scenario.

Increasing the CA from 69% to 95% led to a 60% reduction in the uncertainty in flood water levels, a 50% increase in the map fraction that has a normalized spread of 0.2 or less for suspended sediment deposition, and a 6–67% increase in the consistency of the eco-toxicological hazard assessment for the Little Owl. Using the type of Monte–Carlo tests carried out in this study, it is possible to determine the required classification accuracy based on the accepted level of uncertainty in the model output. For example, if the uncertainty in the water levels should be no larger than a spread of 10 cm, the required CA of the ecotope map would be 77%, 86%, and 89% for the rivers Waal, Nederrijn, and IJssel, respectively assuming a linear relationship between CA and uncertainty in output for the sake of this example. Similarly, if benchmarks were set for the required accuracy in suspended sediment deposition modelling, eco-toxicological hazard modelling, or floodplain biodiversity modelling, the corresponding CA could be established. However, at the moment no such benchmarks exist, not even for water level, which represents the key factor for flood hazard assessments. Establishing such benchmarks is a societal and political choice; how much risk are we prepared to take? The answer would influence the amount of data to be collected, the methods to be developed by the remote sensing community, and the models applied in flood hazard assessment. In the meantime, scientists could further study the assumption of a linear relationship between CA and uncertainty.

5.2. Long term variation in hydromorphology and ecology

The “Room for the River” landscaping measures (Fig. 1) should facilitate an increase in discharge capacity from 15,000 to 16,000 m3 s$^{-1}$ by the year 2015. Various measures are carried out to increase the cross-sectional area of the high-water bed of the river, between the primary river dikes, including the creation of side channels, dike relocation, and floodplain lowering. The ecotope distribution will also be changed, primarily due to targeted ecological restoration. The required flood level reduction is 20 cm for the Waal, 30 cm for the Nederrijn, and 40 cm for the IJssel (Deltares, 2011; RvR, 2011). The spread in the water levels for a 69% CA was 12, 15, and 19 cm for the Waal, Nederrijn and IJssel, respectively (Table 3), corresponding with approximately 50% of the reduction in the water levels required according to “Room for the River.” Given the societal significance of flooding and the high cost of the landscaping measures, i.e. €2.3 billion (Waterforum, 2011), the higher 95% CA in the underlying land cover maps is indispensable. This would reduce the spread to 5, 7, and 7 cm for Waal, Nederrijn and IJssel, respectively, which is around 20% of the task in the “Room for the River”. The landscaping measures presently undertaken in the Room for the River project will locally dramatically enhance overbank sedimentation rates, up to a factor 5 to 10 (Asselman, 1999; Thonon and Van der Perk, 2007). Still, the areal extent of the measures is too small to result in significant changes in total sediment trapping by the embanked floodplains. Scenario studies are commonly used to explore the effects of future conditions on the fluvial area. Recently, a scenario study was carried out by Straatsma et al. (2009) to explore options for accommodating a design discharge of 17,000 m3 s$^{-1}$ at Emmerich in 2050. They studied only the Waal River, and their ‘best’ scenario with respect to flood hazard reduction yielded an average lowering of the water level of 65 cm, which was 5 cm less than required. As the uncertainty due to land cover classification error at a 69% CA is 12 cm for the Waal, the uncertainty due to classification errors is less relevant for the 2050 temporal horizon. Similarly, the sediment deposition, and eco-toxicological hazard are influenced more by the projected landscaping measures in 2050 than by CA error. Potential biodiversity values are the exception; the CA presents an equal variation in BIO-SAFE output as the effects of landscaping measures up to 2050.

Vegetation succession is another source of changes in ecotopes. As changes in vegetation due to succession are expected to be small within the 6-year mapping interval of the ecotope map, we did not consider succession. However, the target vegetation that may develop under the ‘Room for the River’ plans will eventually lead to a higher — but yet harder to predict — hydraulic roughness, and thus an increase in water levels (Makaske et al., 2011). Since more natural vegetation is likely to be patchier than the present-day vegetation that still strongly reflects the cultivation of the floodplain, the classification accuracy of vegetation maps will be an increasingly challenging task.

6. Conclusions

We assessed the effects of land cover classification errors on hydromorphological and ecological model output for the three distributaries of the Rhine River in the Netherlands. Model output pertained to water levels and discharge distribution during design discharge, annual average suspended sediment deposition, eco-toxicological hazard for the little owl, and biodiversity values. Based on a conditional simulation of ecotope models, we created two ensembles of 15 maps each, one based on a 69% classification accuracy (CA), and one with a 95% CA. We conclude that:

- A 69% CA gave a 12–19 cm uncertainty in the water levels during design discharge, which is approximately 50% of the task set for the proposed flood mitigation measures for 2015. An increased CA of 95% leads to a relevant improvement.
- Ambiguities in the land cover map led to uncertainty in the discharge distribution over the bifurcation points. Increasing the CA from 69 to 95% reduces the uncertainty by almost 50%. River management should therefore advocate the reduction of classification errors in land cover maps.
- The spread in the sediment deposition rate was spatially highly variable and depended strongly on the CA. An increase of the CA reduced uncertainty in sediment deposition significantly. This is important for the design of local landscaping measures and the expected morphological changes. For the distributaries as a whole, the deposition showed negligible variation. For assessing the sediment trapping efficiency at the scale of an entire delta, increasing the land cover CA is therefore not relevant.
- When aggregated over the distributaries, the spread in eco-toxicological hazards did not depend strongly on the CA. However, the consistency of the eco-toxicological model output increased with a higher CA. This implies that targeting the remediation of soil contamination to specific species like the Little Owl will be more accurate and efficient with an unambiguous land cover map.
- For potential biodiversity values, BIO-SAFE predicted on average higher Floodplain Importance scores for a lower CA, due to the larger deviation from the current map. Therefore, the current map might underestimate the potential biodiversity of the Rhine branches. A high CA would better justify ecological rehabilitation works, because the current situation is known better and the target can be specified more clearly.
Investments in higher classification accuracy seem reasonable given the large investments that are needed to carry out the mitigating measures. For scenario studies with a long temporal horizon, uncertainty in land cover classification is less relevant.

Given the future challenges for river and floodplain management, such as climate change, nature restoration, and housing demands, uncertainty reduction in land cover mapping will pay off as large amounts of money are involved in projects worldwide. Using an integrated approach as presented in this paper, benchmarks may be established, which is a political choice on the risk we want to take with respect to flood hazard and river health. A high map accuracy will give the river manager a better basis for landscaping measures, models a higher quality output, remote sensing community a tangible target for land cover CA, and the public a safer and more healthy river.

Acknowledgments
This research was partly supported by the NWO-LOICZ program under contract number 01427004, and the FloodControl2015 program (www.floodcontro2015.com).

Appendix A. Supplementary data
Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.envsoft.2012.11.014.

References
ity on heavy metal exposure concentrations for terrestrial vertebrates in river floodplains. Environmental Toxicology and Chemistry 27, 919–932.
nation in a lowland Rhine floodplain. Environmental Pollution 159, 182–189.

