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Abstract.—Likelihood-based methods are commonplace in phylogenetic systematics. Although much effort has been
directed toward likelihood-based models for molecular data, comparatively less work has addressed models for discrete
morphological character (DMC) data. Among-character rate variation (ACRV) may confound phylogenetic analysis, but there
have been few analyses of the magnitude and distribution of rate heterogeneity among DMCs. Using 76 data sets covering a
range of plants, invertebrate, and vertebrate animals, we used a modified version of MrBayes to test equal, gamma-distributed
and lognormally distributed models of ACRV, integrating across phylogenetic uncertainty using Bayesian model selection.
We found that in approximately 80% of data sets, unequal-rates models outperformed equal-rates models, especially among
larger data sets. Moreover, although most data sets were equivocal, more data sets favored the lognormal rate distribution
relative to the gamma rate distribution, lending some support for more complex character correlations than in molecular
data. Parsimony estimation of the underlying rate distributions in several data sets suggests that the lognormal distribution
is preferred when there are many slowly evolving characters and fewer quickly evolving characters. The commonly adopted
four rate category discrete approximation used for molecular data was found to be sufficient to approximate a gamma rate
distribution with discrete characters. However, among the two data sets tested that favored a lognormal rate distribution,
the continuous distribution was better approximated with at least eight discrete rate categories. Although the effect of
rate model on the estimation of topology was difficult to assess across all data sets, it appeared relatively minor between
the unequal-rates models for the one data set examined carefully. As in molecular analyses, we argue that researchers
should test and adopt the most appropriate model of rate variation for the data set in question. As discrete characters are
increasingly used in more sophisticated likelihood-based phylogenetic analyses, it is important that these studies be built
on the most appropriate and carefully selected underlying models of evolution. [Among-character rate variation; Bayesian
model selection; discrete morphological characters; morphological phylogenetics; phylogenetics; rate heterogeneity.]

Likelihood-based methods for phylogenetic analysis
using discrete morphological characters (DMCs)
are becoming more commonly used for estimating
evolutionary relationships among extinct and extant
taxa (e.g., Wiens et al. 2005; Müller and Reisz 2006;
Lee and Worthy 2012). This class of methods has also
been used for “total evidence” studies of phylogeny,
which use both molecular sequence data and DMCs
to simultaneously infer phylogeny (Nylander et al.
2004; Asher and Hofreiter 2006; Wiens et al. 2010;
Müller et al. 2011; Dávalos et al. 2012; O’Leary et al.
2013, among others) and more recently, divergence
times and phylogeny (Pyron 2011; Ronquist et al. 2012a;
Wood et al. 2013). DMCs are typically modeled using
continuous-time Markov chains in a framework nearly
identical to that used for molecular sequences (Lewis
2001). However, DMCs are not nucleotides. Their unique
properties, which include lack of constant characters,
arbitrary state labeling, and character matrix order
(when n>1), enforce restricted substitution models
and modifications to the likelihood calculation in
order to maintain statistical consistency and accurate
branch length estimation (Lewis 2001). The most
commonly used model of character evolution is
Lewis’ (2001) Mk(V) model, implemented in popular
maximum likelihood and Bayesian software packages
for phylogenetic inference (e.g., MrBayes: Ronquist et al.
2012b and RAxML: Stamatakis 2006). However, there

have been comparatively few model selection studies in
likelihood-based phylogenetic analysis of DMCs (but see
especially Clarke and Middleton 2008). The comparative
lack of attention given to likelihood-based models of
DMC evolution may be due to lingering concerns over
the sufficiency of time-homogeneous Markov models
to model morphological evolution (Goloboff and Pol
2006; Spencer and Wilberg 2013; Sterli et al. 2013). The
increasing size of data sets of DMCs, now exceeding
thousands of characters across greater than 50 taxa (e.g.,
Livezey and Zusi 2006, 2007; Naish et al. 2012; O’Leary
et al. 2013), suggests that an exploration of model choice
and of more complex models is warranted (Clarke and
Middleton 2008; Larsson et al. 2012).

As with most phylogenetic studies using molecular
sequences, most likelihood-based analyses using
DMCs allow rates to vary across characters to account
for among-character rate variation (ACRV). Lewis
(2001) originally suggested the use of the discretized
gamma distribution to model among-character rate
heterogeneity and this has been nearly universally
adopted. The discretized gamma distribution was
a reasonable choice for a number of reasons:
it is commonly employed for modeling among-
site rate heterogeneity in molecular sequences, is
computationally tractable, and is an inherently flexible
model, accommodating data sets with little or extensive
rate variation (Yang 2006; Pupko and Mayrose 2010; see
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also Waddell et al. 1997; Mayrose et al. 2005; Huelsenbeck
and Suchard 2007; Izquierdo-Carrasco et al. 2011 for
alternatives). Several Bayesian phylogenetic analyses
of DMCs have tested whether the discrete gamma-
distributed rates model improves fit over an equal
rates model and the results are nearly universally
positive, indicating that ACRV is likely a feature of
DMC matrices (e.g., Wiens et al. 2005; Müller and Reisz
2006; Ayache and Near 2009; Fröbisch and Shoch 2009;

Prieto-Márquez 2010).
Wagner (2012) recently argued on a theoretical basis

that the lognormal distribution should be a better
model to accommodate ACRV for DMCs if evolutionary
rates are the product of an underlying probabilistic
process (like nucleotides), selection, and hierarchical
interactions between characters. Employing the first
systematic analysis of ACRV in DMCs, he further
demonstrated empirical evidence for his hypothesis
across invertebrate groups (n=115 data matrices) using
a customized maximum-likelihood model. However,
it remains uncertain if his hypothesis is generalizable
beyond invertebrates and whether the same pattern
would be observed with widely used likelihood-based
software packages (e.g., MrBayes; Ronquist et al. 2012b)
and models (e.g., Mk; Lewis 2001) for phylogenetic
analysis in a typical analytical setting. Wagner (2012)
considered both rates of state change and state derivation
but here only overall rates of change of characters in
matrices are considered.

Rate heterogeneity in molecular sequences is known
to mislead phylogenetic analysis if unaccounted for,
especially in simple models (Yang 1996; Sullivan
and Swofford 2001). It is therefore important to not
only understand the degree of among-character rate
heterogeneity present in DMC matrices but also which
discretized distribution (lognormal or gamma) is an
empirically better fit to a typical matrix of characters, and
what effect model misspecification has on phylogenetic
analysis. Furthermore, to the authors’ knowledge, the
behavior of the discrete approximation to either the
continuous gamma or lognormal distribution under
varying numbers of rate categories has not been
examined in the context of DMCs. The choice of
the number of discrete rate categories is a trade-off
between computational tractability and an accurate
representation of the underlying continuous probability
distribution (Yang 1994).

The question of whether a lognormal or gamma
distribution best models ACRV in data sets of DMCs
bears on important questions about the dynamics
of morphological evolution and development.
Do morphological characters behave as relatively
independent units of evolution and development whose
among-character rates would be best represented
with the gamma-distributed ACRV model? Or, is
the evolution of DMCs governed by a mixture of
more complex probabilistic processes rooted in
biology and integrated through pleiotropic, epistatic,
and selective pressures (i.e., best modeled with a
lognormally distributed ACRV model)? The latter has

long been suggested by anatomists and evolutionary
biologists who argue that morphological evolution
and development are characterized by structured,
hierarchical processes (Riedl 1978). These questions also
have broad implications for the accurate reconstruction
of phylogenies and the validity of the findings of
phylogenetic comparative analyses based on these
phylogenies: does ACRV model misspecification
strongly affect phylogeny and maximum-likelihood
parameter estimation?

The analysis presented here has four objectives:
(i) a generalized empirical test of Wagner’s (2012)
hypothesis using an existing software package under
typical Bayesian analytic conditions; (ii) an empirical
quantification of the degree of among-character rate
heterogeneity in published data matrices of DMCs; (iii)
a quantification of the effect of distribution choice and,
in particular, misspecification on phylogenetic analysis
and; finally, (iv) an analysis of the optimal number
of discrete categories to approximate the continuous
lognormal and gamma distributions to model ACRV in
DMCs.

MATERIALS AND METHODS

Data Sets
A total of approximately 200 data sets of DMCs used

in published, mostly peer-reviewed articles and volumes
were downloaded from TreeBASE (www.treebase.org;
last accessed December 11, 2014). Matrices were
downloaded using an R-script subject only to the
requirement that they contained at least 50 characters.
Because matrices of DMCs are frequently resampled
or augmented by multiple authors and republished,
the original data set contained redundancies. Therefore,
each matrix and its associated primary literature were
inspected and pruned to create as independent a set
of matrices as possible, retaining the largest data sets
when similar matrices were available. This resulted in
a final set of 77 matrices of DMCs that were more or
less independent, although some characters and taxa
will inevitably have been sampled in different matrices
(Supplementary References and Supplementary Table
S1; available on Dryad at http://dx.doi.org/10.5061/
dryad.067qg). The final subset consisted of representa-
tives of plant (n=25), invertebrate (n=25) and vertebrate
(n=27) data matrices (Supplementary Table S1). This
is particularly important as biologists working with
different taxonomic groups may exhibit cultural biases
in character choice and coding (e.g., discretization of
morphoclines and treatment of multistate characters).
The relative complexity of groups of organisms
themselves may also affect estimates of rates (Schopf
et al. 1975). The number of characters per data set ranged
from 50 to 444 with an average of 138±94 (mean±SD)
characters whereas the number of operational taxonomic
units (OTUs) per matrix ranged from 9 to 246 with
an average of 57±39 OTUs. The original matrices
were processed to remove OTUs that consisted only
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of missing data; these were typically present because
the original analysis was partitioned and included taxa
with molecular sequence data that were not sampled
for morphology. Source articles were also reviewed to
determine which OTUs were designated as outgroups
and these were maintained in all analyses described
below (Supplementary References and Supplementary
Table S1). Throughout the following analyses, all
multistate characters were considered as unordered
because the use of ordering is variable and non-random
among systematists.

Bayesian Analysis
MrBayes v3.2.2-r512 (Ronquist et al. 2012b) was

modified following Yang (1994) to implement
lognormally distributed among-character rates using
median (or quantile in the terminology of Pupko and
Mayrose 2010) discretization with K equiprobable
rate classes. MrBayes was selected to investigate these
models because it implements the Lewis (2001) MkV
model for morphological characters and is frequently
used to estimate phylogeny of DMCs. The MkV model
applies Lewis’ (2001) correction for the acquisition
bias inherent in morphological data: because constant
characters are not informative in parsimony-based
analyses, they have traditionally been excluded from
data matrices of DMCs. The MkV model considers only
the variable DMCs and estimates the probability of
unsampled constant characters in order to condition
the model likelihood on the fact that only variable
characters are included (for further details see Lewis
2001). The application of ACRV models will lead to
larger corrections for acquisition bias relative to an
equal-rates model, as the lower rate categories will
imply that unsampled constant characters are more
probable, although the effect on the analysis is unclear
and to the authors’ knowledge remains unexplored. The
arithmetic mean of the lognormal distribution was fixed
to 1.0 such that the rate category multipliers varied only
with the distribution shape parameter �2 (probability
density function: Equation (1); Johnson et al. 1994; Yang
1994).
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Median or quantile discretization was implemented by
using (Equation (2)) and the standard normal quantile
function to determine the midpoint of the K rate category
classes followed by rescaling the category means so that
the mean of the discrete distribution is 1.0; ri is the rate for
category i={1,…,K} and �−1(p) is the standard normal
quantile function. The lognormal shape parameter and
model were otherwise treated identically to the gamma
distribution shape parameter and model in terms of

implementation.
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Skinner (2010) used a similar discrete approximation
of the lognormal distribution to integrate over rate
heterogeneity across lineages but parameterized his
model such that rates varied with the standard
deviation of the lognormal distribution (designated as
�) rather than its shape parameter. It is also possible to
parameterize the lognormal distribution based on the
non-squared shape parameter�. Here, the squared shape
parameter was chosen but all three methods should
produce a nearly identical discrete approximation,
although the effective parameter space and posterior
distribution of the distribution parameter will differ.
MrBayes implements both equal site rate and discrete
gamma-distributed site rate models. By default MrBayes
uses mean rather than median discretization of the
gamma distribution and this method was used for
all analyses described here. Initial computations with
both the modified and unmodified versions of MrBayes
resulted in several computations failing because of
excessive operator auto-tuning on the distribution shape
parameters; to work around this issue, an upper limit on
the auto-tuning parameter was added. The relationships
between the lognormal and gamma distribution shape
parameters (�2 and �=	, respectively) and the category
rates at K =4 and K =12 are graphically depicted in
Figure 1. The modified source code of MrBayes is
available in the Supplementary Materials.

For each data set, MrBayes was used to determine
the marginal model likelihood of the three candidate
models (equal rates [EQ], gamma-distributed rates [GA],
and lognormally distributed rates [LN]), integrating
over uncertainty in all other parameters, including
phylogenetic topology by using stepping-stone sampling
(Xie et al. 2011; Ronquist et al. 2012b). For each model,
MrBayes was executed using four independent runs
using Metropolis-coupled Markov Chain Monte Carlo
(MCMC) sampling with three hot Markov chains and
one cold chain for a total of 16 MC2 chains per model
per data set. The substitution model was set to the MkV
model using the variable-characters only ascertainment
correction (Lewis 2001; MrBayes command: lset coding
= variable). For both unequal-rates models, four discrete
rate categories were used. Because stepping-stone
sampling also considers the prior in calculating the
marginal likelihood (Xie et al. 2011), two alternative
priors on the distribution shape parameters were
considered: uniform and exponentially distributed.
First, uniform priors on the interval [0.0001,200] were
applied to the lognormal and gamma distribution shape
parameters�2 and�, respectively. This interval covers the
range of effective variability for these parameters (see
Fig. 1) and the latter prior is the default implemented
in MrBayes for the gamma rates model. In addition,
the analysis was repeated using exponential priors with
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FIGURE 1. Plot of discrete category rates against distribution shape parameters for the discretized lognormal distribution at K =4 (a) and
K =12 (b) and the gamma distribution at K =4 (c) and K =12 (d) discrete rate classes.

a mean of 1.0 on the respective distribution shape
parameters.

Stepping-stone sampling was used to calculate
marginal model likelihood for each rate model under
each set of priors, sampling from the posterior to the
prior for a total of at least 15 million generations up
to approximately 30 million generations for the largest
data set, sampling every 1000 generations (parameters
for each data set are included in Supplementary Table
S2). In all cases, initial sampling from the posterior
was conducted for at least 5 million generations for
each independent run to provide posterior estimates
of the topology, branch lengths, and distribution
parameters. Stepping-stone sampling toward the prior
began after 5 million generations, discarding the first
25% of samples from each sampling step as a burnin.
The default sampling scheme using 50 steps toward
the prior, drawing 
 values from a beta distribution
with �=0.4 was applied. All MrBayes analyses were
conducted using the non-MPI version of MrBayes
and the CLUMEQ/Colosse and CLUMEQ/Guillimin
high-performance computing (HPC) facilities at McGill
University and the University of Laval in Québec,
Canada. Total computation time for the analyses
described in this article exceeded 1 core-year.

From the initial 5 million generations sampling from
the model’s posterior, which were extracted from the
MrBayes output with an R script using the APE R
package and tools from the DendroPY and BEAST

software packages (Paradis et al. 2004; Sukumaran
and Holder 2010; Drummond et al. 2012; R Core
Team 2012; R script available in the Supplementary
Materials), a burnin fraction of 0.25 was discarded
from each of the four independent runs. Convergence
was assessed by using MrBayes to calculate the
final average standard deviation of split frequencies
(ASDSFs) and by ensuring estimated sample sizes
(ESSs) for all parameters exceeded 200 using the R
package CODA (Drummond et al. 2006; Plummer et al.
2006; Supplementary Table S2; available on Dryad
at http://dx.doi.org/10.5061/dryad.067qg). Marginal
posterior estimates for the majority-rule consensus
topology, branch lengths and shape parameters
were summarized and annotated using the MrBayes
commands sump and sumt.

For each data set, the mean estimated marginal model
likelihood from the four independent runs was retrieved
from the MrBayes output for each model and this value
was used as the estimated marginal model likelihood
under each prior scheme. Bayes factors were computed
as twice the log difference in marginal model likelihoods
following Nylander et al. (2004) and were used to
assess relative support for the models; the degree of
rate heterogeneity was estimated by computing Bayes
factors between the equal rates (EQ) and both unequal-
rates (GA and LN) models under each distribution
shape prior. Interpretation of Bayes factors is subjective,
and guidelines from Kass and Raftery (1995; Nylander
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et al. 2004) were initially followed: 0<2·ln(B10)<2 no
evidence for model 1 over model 0, 2<2·ln(B10)<6
positive evidence for model 1 over 0, 6<2·ln(B10)<
10 strong evidence for model 1 over 0, 2 ·ln(B10)>10
very strong evidence for model 1 over 0. However,
initial calculations determined that because of variability
in estimates of marginal model likelihoods, a more
conservative interpretation was adopted that considered
all differences of 2 ·ln(B10)<6 to be equivocal. Under
each prior combination for the unequal-rates models,
if rate heterogeneity was detected using a conservative
threshold of 2·ln(B10)>10 for both the GA:EQ and
LN:EQ comparisons, relative support between the
lognormal and gamma models was examined by further
calculating Bayes factors between these models. Bayes
factors were also calculated between the model runs with
the highest mean marginal model likelihood under each
prior scheme. Pairwise Bayes factors between the LN and
GA models were plotted using histograms in R (R Core
Team 2012).

Parsimony-Based Estimation of Rate Distributions
Although parsimony- and likelihood-based methods

are very different, the distribution of total changes per
character inferred by parsimony offers an approximation
to the distribution of character rates (e.g., Tourasse
and Gouy 1997). Recovered rate distributions will be
biased toward more equal rates because parsimony
assumes all character changes are equiprobable and will
underestimate rates in quickly evolving characters due
to saturation (Felsenstein 2004). In order to estimate
the distribution of among-character rates, maximum
parsimony was used to determine the total number of
changes for each character across the entire phylogeny
for six focal data sets. Of these matrices, two were from
data sets where the EQ model was an equivocal fit to
the data relative to the GA and LN models under both
prior schemes, two were from data sets that showed
evidence (2 ·ln[BLG]>6) for the LN model over the GA
model and two that showed evidence for the GA model
(2·ln[BGL]>6) under both prior schemes. For each data
set examined, PAUP* v4.0b10 (Swofford 2003) was used
to map the characters under the ACCTRAN optimization
onto each sampled phylogeny (>15,000 trees) in the
marginal posterior distribution of trees derived from
the equal rates (EQ) Bayesian analysis for each data set
(details above). Rare constant characters were pruned
from the analyses as the majority of DMC data matrices
do not include constant characters. Distributions for
each sampled phylogeny from the posterior were then
combined for each data set and summarized using
relative frequency histograms generated using R and the
APE package (Paradis et al. 2004; R Core Team 2012;
R script to execute PAUP* and process its output available
in the Supplementary Materials).

Optimal Number of Discrete Rate Categories
To estimate the minimum number of discrete rate

categories required to accurately approximate the

continuous lognormal and gamma distributions, an
analysis similar to Yang’s (1994: Fig. 5) was performed.
The four focal data sets included in the parsimony
analysis described above showing strong evidence for
the unequal-rates models were used. These data sets
were then reanalyzed to determine the marginal model
likelihood of both unequal-rates models using the same
MrBayes analysis described above but modified to
vary the number of discrete rate categories K across
the following values {2, 3, 4, 5, 6, 8, 10, 14, 18}
for both the GA and LN rate models under each
prior scheme (total 32 model runs). Full stepping-
stone sampling analyses, estimating marginal model
likelihood, integrating over uncertainty in parameters
including topology were applied for each K. Because
these analyses were computationally intensive at high
K, only two independent runs of four Markov chains
each were calculated for each combination of rate-
model, prior and K. As well, only 11 million generations
per run were considered, discarding a sample from
the posterior of 1 million generations but otherwise
following the same procedure described above. Marginal
model likelihood for each K, prior and model was then
plotted against K to determine the minimum number
of categories sufficient to represent the continuous
distribution.

Focal Phylogenetic Analysis
For a focal topology, branch length, and clade

support comparison, one data set (TreeBaseID S12929;
Sidlauskas and Vari 2008; see below for rationale)
was analyzed using MrBayes in a standard (i.e., not
stepping-stone sampling) MCMC analysis. The analysis
was conducted under four different ACRV models:
equal rates (EQ), gamma-distributed rates (GA), and
lognormally distributed rates (LN) at K =4 and K =12
rate categories. MC3 sampling was conducted using four
independent runs of four Markov chains running for
15 million generations, sampling every 1000 generations
for each rate model using a uniform prior, as above, on
the distribution shape parameters. All other parameters
were identical to the model selection analysis described
above. Convergence of independent runs was assessed
by calculating Potential Scale Reduction Factors (PSRFs;
Gelman and Rubin 1992) for all model parameters
and split frequencies as well as calculating the final
ASDSFs after combining runs and discarding a burnin
fraction of 25% using the MrBayes sumt command.
Sufficient sampling was assessed by ensuring that ESS
of all parameters was greater than 200 using Tracer
v1.5 (Drummond et al. 2006; Rambaut and Drummond
2007). Majority-rule consensus trees were calculated
for each model using the MrBayes sumt command,
after discarding the burnin fraction. Mean marginal
posterior estimates of total tree length were calculated
for each rate model using Tracer, combining samples
from the posterior of each run after discarding the burnin
fraction. Pairwise comparisons between clade posterior
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probabilities were made between nodes shared by the
compared majority-rule consensus trees using the R
package APE (Paradis et al. 2004).

RESULTS

Equal Rates Models and Unequal-Rates Models
Calculated marginal model likelihoods for each data

set and each rate model are recorded in Supplementary
Table S2 for both prior combinations. Variability in
marginal model likelihoods between independent runs
was low for most data sets, with average ranges
of 1.2, 1.3, and 1.4 of log-likelihood units between
replicates for the EQ, GA, and LN model runs
(uniform prior model). In the most extreme example,
data set S11535 (TreeBaseID; Sharkey et al. 2012:
Hymenoptera), a range of 12 log-likelihood units was
noted between independent runs for the GA model
under the uniform prior. For this reason, this data
set was excluded from further analysis. Furthermore,
given the observed variability of runs, any Bayes factor
difference less than 6 was deemed equivocal (see also
Clarke and Middleton 2008). In 61/76 data sets, the
Bayes factors comparing both unequal-rates models
with the equal rates models exceeded the threshold
of 10 for the presence of significant ACRV using
uniform priors on the distribution shape parameters
(Table 1). Using exponential priors on the distribution
shape parameters, 64/76 data sets exceed the same
thresholds. The exponential prior almost always led to
higher likelihoods for both rates models relative to the
uniform prior, and the results of the comparisons of
the prior choice yielding the highest likelihood were
essentially equivalent to the exponential comparisons
and yielded identical tabulated results due to Bayes
factor cutoffs (Table 1; Supplementary Table S2). Bayes
factors comparing the lognormal rate model (under
the prior choice of highest likelihood) with the equal
rates were significantly correlated to the number of
characters (Fig. 2a; Spearman’s rank correlation test r=
0.41, P<0.001) and much more strongly correlated to
the number of OTUs present (Fig. 2b, r=0.86, P<0.001).
Correlations calculated between GA:EQ comparisons
and Bayes factors calculated using uniform priors or
the exponential likelihood priors on distribution shape
parameters were nearly identical (not shown).

Gamma and Lognormal Rate Distributions
Among the 61/76 data sets with significant rate

heterogeneity under uniform shape distribution priors,
2/61 data sets showed evidence (2 ·ln(BGL)>6) for the
GA model over the LN model and a single data set
showed very strong evidence (2 ·ln(BGL)>10) (Table 1;
Fig. 3a). Conversely, 18/61 data sets showed evidence for
the LN model and 9/61 showed very strong evidence.
The remaining 41 data sets (67%) were equivocal.
Results for Bayes factors calculated from models using

Number of Characters
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Invertebrates

FIGURE 2. Plot of data set size in terms of a) number of DMCs
and b) number of OTUs against Bayes factors calculated using twice
the log difference between the mean marginal model likelihood for
the equal and lognormally distributed among-character rate models.
The marginal likelihood of the lognormal model was estimated using
the distribution shape prior that yielded the highest model likelihood
(see text). Positive Bayes factors represent support for the lognormal
model over the equal rates model. Plant data sets are indicated by
circles, vertebrate data sets by squares and invertebrate data sets by
diamonds.

exponentially distributed priors on rate parameters were
similar but more equivocal with respect to model choice
and generally weakened support for the LN model
relative to the GA model (Table 1; Fig. 3b). A further
comparison of Bayes factors calculated between data sets
using the highest marginal model likelihood recovered
under either prior scheme was nearly identical to the
comparison using exponential priors (Fig. 3b vs. Fig. 3c).
This is because exponential priors nearly always led to
the highest likelihood for each model, and where they
did not, the tabulated Bayes factor results did not change
because of the thresholds used and were therefore not
reported in Table 1. Under exponential priors and the
prior yielding the highest likelihood, 47 out of the 64
data sets with evidence for an unequal-rates model were
equivocal with respect to support for the GA or LN
model. However, among data sets where Bayes factors
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TABLE 1. Results of the Bayesian model selection analysis of the three models of ACRV: equal, gamma-distributed, and lognormally
distributed rates, using both uniform and exponential priors for the ACRV distribution shape parameter

GA/equal 2 LN/equal 2 GA/LN 2 LN/GA 2
ln(BGE) ln(BLE) ln(BGL) ln(BLG)

Shape Group Number of 2 ln(BGE)>10 2 ln(BLE)>10 Data sets with 2 ln(BGL) 2 ln(BGL) 2 ln(BLG) 2 ln(BLG)
prior data sets unequal rates >6 >10 >6 >10

Unia Vertebrates 27 21 21 21 0 0 7 4
(78%) (78%) (78%) (0%) (0%) (33%) (19%)

Uni Invertebrates 24 22 22 22 2 1 8 3
(92%) (92%) (92%) (9%) (5%) (36%) (14%)

Uni Plants 25 18 19 18 0 0 3 2
(72%) (76%) (72%) (0%) (0%) (17%) (11%)

Uni Total 76 61 62 61 2 1 18 9
(80%) (82%) (80%) (3%) (2%) (30%) (15%)

GA/equal 2 LN/equal 2 GA/LN 2 LN/GA 2
ln(BGE) ln(BLE) ln(BGL) ln(BLG)

Shape Group Number of 2 ln(BGE)>10 2 ln(BLE)>10 Data sets with 2 ln(BGL) 2 ln(BGL) 2 ln(BLG) 2 ln(BLG)
prior data sets unequal rates >6 >10 >6 >10

Expb Vertebrates 27 22 22 22 1 0 5 3
(81%) (81%) (81%) (5%) (0%) (23%) (14%)

Exp Invertebrates 24 23 23 23 2 2 5 2
(96%) (96%) (96%) (9%) (9%) (22%) (9%)

Exp Plants 25 19 19 19 1 0 3 1
(76%) (76%) (76%) (5%) (0%) (16%) (5%)

Exp Total 76 64 64 64 4 2 13 6
(84%) (84%) (84%) (6%) (3%) (20%) (9%)

aUniform prior for the distribution shape parameter.
bExponential prior for the distribution shape parameter.

were not equivocal, the LN model was supported more
often: 13/64 (20%) data sets 2 ·ln(BLG)>6 compared
with 4/64 (6%) for 2 ·ln(BGL). There was no obvious
relationship between taxonomic group and rate model
nor was standardized topological distance between
consensus trees obviously related to model preference
(using the prior that yielded the highest likelihood:
Fig. 3d). Most consensus trees were identical between
models (Fig. 3d), and inspection of individual topologies
indicated that the observed differences in consensus
topology were due to differences in nodes with support
around the posterior probability cutoff (0.95); these
nodes were included in one rate model’s consensus
tree but were excluded in the others. The results of
the initial Bayesian analysis were used to designate six
focal data sets for further analysis: two data sets where
the EQ model had equivocal support relative to the
unequal-rates models under all prior schemes (TreeBase
ID No.: S10249; Holland et al. 2010: Phalacrocorcidae
and S13029; Bourdon 2011: Odontopterygiformes), two
with evidence for the LN model (S10265; Frick et al.
2010: Linyphiidae and S12929; 2 ·ln(BLG)=9.6 and 11.4
under the uniform priors and 6.87 and 8.37 under the
exponential) and two with evidence for the GA model
(S2128; Liljeblad et al. 2008: Cynipidae and S12833;
Lambkin and Bartlett 2011: Exoprosopini; 2 ·loge(BLG)=
8.9 and 13.3 under the uniform priors and 10.4 and
13.9 under the exponential priors). Bayes factors for
these data sets under the prior choice that yielded the

highest likelihood were identical to the exponential prior
scheme.

Parsimony Analysis
Parsimony estimation of character rate distributions

of the six focal data sets was summarized using relative
frequency histograms (Fig. 4). The two data sets where
the EQ model had equivocal support relative to the
unequal-rates models had relatively few changes per
character (Fig. 4a,b). The data sets where the LN model
was supported had relatively more characters with low
rates and a rapidly decreasing number of characters with
higher rates of change (Fig. 4c,d ). Finally, the data sets
where the GA model was supported had a relatively
more uniform distribution of character rates (Fig. 4e,f).

Optimal Number of Discrete Rate Categories
Model likelihoods were always highest under the

exponential prior for a given rates model (Table 2;
Fig. 5). Variability within runs and between likelihoods
under adjacent K values for the same data sets was
relatively high but an overall trend is apparent: in the
four focal data sets examined, regardless of whether
the gamma or lognormal rate model was originally
the best fit, four discrete rate categories appeared
to be sufficient to represent the continuous gamma
distribution (Table 2; dotted lines in Fig. 5). Beyond
four rate categories, increasing K did not significantly
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FIGURE 3. Bayesian comparison of the discrete gamma and
lognormally distributed among-character rates models. Histograms
summarize the Bayes factors 2 ln(BLG) comparing the gamma and
lognormal models of ACRV for each data set under a) uniform
shape distribution priors, b) exponential shape distribution priors and
c) highest likelihood under either prior. Negative 2 ln(BLG) values
indicate support for the gamma model over the lognormal model
whereas positive values indicate support for the lognormal model.
Vertical lines indicate 2 ln(BLG)={−6,6}, and 2 ln(BLG)={−10,10},
where there is respectively, strong evidence and very strong support
for one model over the other. Standardized pairwise topology distance,
calculated using the dist.topo function available in the APE R package
(Paradis et al. 2004) and standardized by mean number of nodes,
d) between consensus trees (posterior probabilities >0.95) estimated
under the gamma and lognormal models plotted against 2 ln(BLG).
Note that the number of pairwise comparisons is less in d) because
comparisons were only made between analyses where the ASDSFs
was less than 0.01. Data points are scaled to relative data set size. Plant
data sets are indicated by circles, vertebrate data sets by squares and
invertebrate data sets by diamonds.

increase the GA model’s marginal likelihood. However,
in both data sets where the lognormal model was a
better fit at K =4 in the original analysis, the marginal
model likelihood under the LN model increased with K
and only begins to asymptote at K >10–12 (Fig. 5a,b). In
data sets that preferred the gamma model, the behavior
of the LN model with respect to K was similar to the
GA (Fig. 5c,d) but decreased at K >4 for the S2128 data
set (Fig. 5c) indicating that the continuous distribution
would be a worse fit than the discretized distribution
(see Discussion).

Effect on Phylogenetic Topology and Branch Lengths:
Sidlauskas and Vari (2008)

Majority-rule consensus trees inferred by MrBayes
under the equal (i), gamma, K =4 (ii), lognormal, K =4
(iii) and lognormal, K =12 (iv) ACRV models for data set
S12929 for Sidlauskas and Vari (2008) are summarized
in Figure 6. PSRFs were 1.0 and ESS was more than
200 for all model parameters and split frequencies.
The final ASDSF was less than 0.01 for each model
run, suggesting that each independent run for each
rate model converged to the posterior distribution. This
data set, which demonstrated greatest fit to the LN
model (see Fig. 5b), was used in a phylogenetic analysis
of relationships in the Anostomidae family of South
American fishes and consisted of 158 DMCs coded for 60
OTUs (Sidlauskas and Vari 2008). The data matrix had
3% missing data and characters had an average of 2.35
states. The means of the marginal posterior distribution
of total tree lengths were, respectively, 4.54, 6.65, 7.07
and 9.1 character changes per character for the EQ, GA
(K =4), LN (K =4) and LN (K =12) ACRV models. There
were several differences between the topology inferred
under the EQ model and trees inferred under the GA
and LN models: the EQ model resolved more nodes
than the GA or LN models (Fig. 6a, arrows). There were
one or two nodes that differed between the GA and LN
models (K =4 or K =12; Fig. 6b–d, starred arrows). Clade
posterior probabilities were highly similar between the
GA and LN models (Fig. 7c) but quite different in the EQ
model (Fig. 7a,b). The LN (K =12) had slightly higher
overall clade posterior probabilities relative to the GA
model (Fig. 7d) and LN (K =4) model (not shown).

DISCUSSION

Rate Heterogeneity in Data Sets of DMCs
Several previous Bayesian studies of DMCs have tested

equal rates models against gamma-distributed rates
models for individual data sets (e.g., Wiens et al. 2005;
Müller and Reisz 2006; Ayache and Near 2009; Fröbisch
and Shoch 2009; Prieto-Márquez 2010). The conclusions
of those studies must be qualified by the use of the
harmonic mean estimator (HME) for model likelihood
which can be biased, especially toward more complex
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S10265 (n=165) S12929 (n=158)
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FIGURE 4. Parsimony reconstruction of the distribution of total character changes per character for six focal data sets using PAUP*. These
relative frequency histograms summarize total character changes per character pooled across a sample of topologies (>10000) from the marginal
posterior of topologies from the equal-rates Bayesian analysis (see text); n is the number of DMCs present in each data set. The equal rates model
was at least an equivocal fit to data sets a) S10249 and b) S10329 relative to the unequal-rates models; the lognormal model was preferred for
data sets c) S10265 and d) S12929 and the gamma model was preferred for data sets e) S2128 and f) S12833.

models (Xie et al. 2011). Here, using the stepping-
stone sampling method to estimate marginal model
likelihood, which weights model likelihoods by their
priors to penalize more complex models (Xie et al. 2011;
Ronquist et al. 2012b), most data sets still exhibited
significant rate heterogeneity by Bayes factors indicating
very strong evidence for unequal-rates models over
equal-rates models (Table 1 and Fig. 2). Bayes factors
supporting unequal-rates models were more strongly
correlated to the number of OTUs compared with the
number of characters (Fig. 2), a pattern not observed in
molecular sequences (e.g., Mayrose et al. 2005: Fig. 3).
This suggests that increasing data set size, especially
numbers of OTUs, should increase the ability to detect
rate heterogeneity. This analysis corroborates those
previous studies using the HME and suggests that ACRV
is significant in DMC matrices.

Gamma and Lognormal Rate Distributions
Felsenstein (2001) argued that for molecular

sequences, either the gamma or lognormal distribution
should be effective to model among-site rates simply
because both are distributions on the interval [0,∞]. He
further argued that it would be difficult to differentiate
these distributions without large quantities of data.
Felsenstein’s arguments were directed toward molecular
sequences and did not discuss the added effect of
discretization. Here, in matrices of DMCs, it was
possible to discriminate between the discretized gamma
and lognormal ACRV models among some data sets
of modest size. This analysis strongly concurs with
Felsenstein (2001) in that most data sets show equivocal
support for either the GA or LN models, at least when
using a 2 ln(BF) < 6 criterion under two different
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TABLE 2. Results of the Bayesian analysis of the discrete approximation of the gamma and lognormal distributions of ACRV with variable
numbers of discrete rate categories

Mean model marginal model likelihood

Number Number EQ model Rate model Shape K =2 K =3 K =4 K =5 K =6 K =8 K =10 K =14 K =18
Data set of OTUs Chars. ln(L) model prior

S10265 111 176 −5582 LN Unia −5299 −5283 −5281 −5280 −5276 −5271 −5268 −5267 −5267
GA Uni −5299 −5286 −5286 −5286 −5287 −5284 −5283 −5282 −5282

S12929 60 158 −2660 LN Uni −2576 −2573 −2572 −2570 −2568 −2566 −2565 −2562 −2561
GA Uni −2576 −2578 −2577 −2577 −2578 −2578 −2576 −2579 −2577

S12833 78 207 −11714 LN Uni −11227 −11181 −11176 −11177 −11175 −11177 −11176 −11179 −11178
GA Uni −11226 −11174 −11169 −11170 −11169 −11169 −11167 −11166 −11167

S2128 56 308 −9478 LN Uni −9231 −9220 −9220 −9222 −9224 −9223 −9225 −9224 −9226
GA Uni −9229 −9216 −9216 −9216 −9215 −9216 −9216 −9215 −9216

Mean model marginal model likelihood

Number Number EQ model Rate Shape K =2 K =3 K =4 K =5 K =6 K =8 K =10 K =14 K =18
Data set of OTUs Chars. ln(L) model prior

S10265 111 176 −5582 LN Expb −5293 −5282 −5278 −5276 −5273 −5270 −5267 −5266 −5264
GA Exp −5295 −5280 −5281 −5282 −5284 −5281 −5279 −5279 −5277

S12929 60 158 −2660 LN Exp −2574 −2570 −2569 −2567 −2565 −2563 −2562 −2561 −2560
GA Exp −2572 −2574 −2573 −2573 −2573 −2573 −2572 −2572 −2573

S12833 78 207 −11714 LN Exp −11222 −11177 −11173 −11175 −11174 −11175 −11173 −11176 −11177
GA Exp −11224 −11168 −11165 −11164 −11163 −11165 −11165 −11164 −11163

S2128 56 308 −9478 LN Exp −9226 −9217 −9216 −9218 −9218 −9219 −9222 −9220 −9221
GA Exp −9227 −9212 −9212 −9213 −9212 −9213 −9214 −9212 −9212

aUniform prior for the distribution shape parameter.
bExponential prior for the distribution shape parameter.

prior specifications. However, among the subset of the
data matrices that are not equivocal, evidence for the
lognormally distributed ACRV model was detected
more often than evidence for the gamma rates model;
this offers some, albeit qualified, support to Wagner
(2012)’s hypothesis. However, this conclusion must
be strongly qualified as clearly data set dependent: in
some data sets there was strong evidence for gamma-
distributed rates model, especially under an exponential
prior on the rate distribution shape parameter (Table 1
and Fig. 3a,c). Wagner (2012) also noted support for
gamma-distributed models in some data sets, especially
considering character change rates and particularly
among trilobites where both models were equally
supported. Here, preference for either rate model was
not obviously related to major taxonomic division or
data set size (see Fig. 3d)

However, it is possible that other data set-specific
qualities may influence ACRV model preference.
Atomistic character coding (enumerating phenotypes
into a set of finest discernible variations) might lead to
data sets better modeled with lognormal distributions.
Some authors deliberately follow this mode of
characterization with the justification that it may
more objectively divide phenotypes into phylogenetic
characters (e.g., Livezey and Zusi 2006). This mode
of characterization is also more likely to record
autapomorphies, which are considered phylogenetically
uninformative in parsimony-based analyses, but are
informative in likelihood-based methods. A caveat
of atomistic characterization, though, is that these

characters are more likely to interact among themselves,
through developmental and/or functional associations,
and the outcome of these probabilistic processes may
be best modeled with a lognormal distribution (Wagner
2012).

Although many DMC matrices still retain some
degree of atomistic characterization, most authors
also strive to incorporate some degree of biologically
relevant dependencies. Phenotypic qualities are often
not completely independent from each other and
complex interactions arise from developmental and/or
functional relationships. High degrees of interactions
define relatively discrete evolutionary modules (Wagner
and Altenberg 1996) and it is these modular units
of phenotypes that more complex characters attempt
to describe. The construction of module-informed
characters should maximize the independence of
characters (Wagner 1995; Houle 2001; Kim and Kim
2001). Complex characters that are coded explicitly
to be maximally independent may be better modeled
using gamma-distributed rate models. Indeed, in
reality, DMC matrices are composed of a continuum
of independent and non-independent characters and
may warrant the use of a model-averaging approach
employing both gamma and lognormal distributions
(see below). Additionally, DMC matrices could be
explored using these methods to discover degrees
of linkages and potential novel interaction partners
among characters. Comprehensive testing of these
questions is beyond the scope of the analysis presented
here.
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FIGURE 5. Relationship between mean marginal model log likelihood for the discrete gamma (GA) and lognormal (LN) models of ACRV
and the number of discrete rate classes (K) under uniform and exponential shape distribution prior choices. LN model likelihoods are solid
lines whereas the GA model likelihoods are dotted lines. Marginal model likelihoods calculated under the exponential model are diamonds,
whereas those calculated under the uniform prior model are circles. The lognormal rates model was a better fit to data sets S10265 and S12929
(a,b) whereas the gamma rate model was a better fit to S2128 and S12833 (c,d). Although the gamma distribution is accurately represented using
K =4 rate classes, the continuous lognormal distribution is better represented with greater number of discrete rate categories (K >8) but only
data sets where it has the best fit (a,b). Error bars represent the range of marginal model likelihoods from the two independent stepping-stone
sampling runs (see text).

Stepping-stone sampling considers the prior in the
estimation of the marginal model likelihood (Xie et al.
2011). In the case of the identical uniform priors
used here, because of the nature of the underlying
distributions, more prior weight was given to equal
rates among sites using the gamma-model while
the lognormal was the converse (see Fig. 1). Under
the exponentially distributed prior, the opposite is
true because the direction of variation (i.e., rates
becoming more equal) is reversed among these two
rate distributions (Fig. 1). Here, both priors were tested
to determine the effect of the prior on model choice,
which was appreciable (see Fig. 3a vs. Fig. 3b). Even
considering the prior choice that produced the highest
marginal model likelihood for each model, there is still
a weak preference for the lognormal model among

the data sets that are not equivocal (Fig. 3c). However,
there were also some data sets that conclusively favored
the gamma rates model under the same comparison.
The influence of the prior on the marginal model
likelihood was relatively strong among these data sets
and may reflect a relatively large weight of the prior
compared with the information content of the data.
Future studies using larger, potentially more informative
data sets of DMCs may also offer sufficient information
to better discriminate these two models. Finally, an
alternative “generalized” stepping-stone approach to
calculate marginal model likelihoods that does not
require sampling close to the actual prior might offer
more efficient and precise model comparison (e.g., Fan
et al. 2011) but this does not yet accommodate variable
topologies (Baele et al. 2012).
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a) b)

d)c)

0.5 changes/character

*
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FIGURE 6. Majority-rule consensus summarizing the posterior distribution of phylogenies inferred under the a) equal-rates model, the
b) gamma-rates model (K =4), and the lognormal rates model (K =4, c; K =12, d). Clade posterior probabilities are indicated by dots: lighter
gray (yellow) >0.5 and darker gray (green) >0.95. Branch lengths were annotated using the mean of the marginal posterior distribution of the
respective branch lengths using MrBayes. Means of the marginal posterior distribution of total tree lengths were, respectively, 4.54, 6.65, 7.07 and
9.1 character changes per character for the EQ, GA (K =4), LN (K =4) and LN (K =12) models. Arrows indicate topological differences (see text
for details). Color version of this figure is available at Systematic Biology online.

Parsimony-based reconstruction of six focal character
rate distributions (Fig. 4) corroborated the Bayesian
analysis and hinted why the lognormal distribution
was a better fit to some data sets. In both data sets
where the equal-rates model was an equally good choice

relative to unequal-rates models (S10249 and S13029;
Fig. 4a,b), parsimony reconstruction of character changes
confirmed a largely equal distribution of rates. The two
data sets where the evidence for the LN was recovered
(Fig. 4c,d) had proportionally more characters with slow

 at M
cG

ill U
niversity L

ibraries on M
arch 16, 2015

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


[12:58 3/2/2015 Sysbio-wwwtreebase.org] Page: 319 307–324

2015 HARRISON AND LARSSON—DISCRETE MORPHOLOGICAL CHARACTER RATE VARIATION 319

Clade Posterior Probability (GA)Clade Posterior Probability (LN, K=4)

C
la

de
 P

os
te

rio
r P

ro
ba

bi
lit

y 
(G

A
)

C
la

de
 P

os
te

rio
r P

ro
ba

bi
lit

y 
(L

N
, K

=1
2)

Clade Posterior Probability (EQ) Clade Posterior Probability (EQ)

C
la

de
 P

os
te

rio
r P

ro
ba

bi
lit

y 
(G

A
)

C
la

de
 P

os
te

rio
r P

ro
ba

bi
lit

y 
(L

N
, K

=4
)

a)
b)

c) d)

FIGURE 7. Comparison of clade posterior probabilities for the S12929 data set under different among-character rate heterogeneity models.
a) Equal-rates model versus gamma-distributed rates (K =4) model, b) equal-rates versus lognormal-distributed (K =4) rates model, c) gamma-
distributed rates (K =4) versus lognormal-distributed rates model (K =4) and d) gamma-distributed rates (K =4) versus lognormal distributed
rate model (K =12).

rates and a smaller number of characters with much
higher rates. In contrast, the data sets where evidence
for the GA model was recovered had much more even
distribution of character change rates, that is, more
unequal rates (Fig. 4e,f). Category rates when K =4
for the LN and GA models under varying distribution
shape parameters (Fig. 1) hint at why the lognormal
distribution was a better fit to data sets containing many
characters with low, but not equally low rates. Compared
with the gamma distribution (Fig. 1c,d), the lognormal
distribution (Fig. 1a,b) has several slow categories and
one fast rate category while the gamma distribution’s
rate category means are generally more evenly spaced
on the {1,…,K} interval except for the small interval
near 0. The parsimony analysis supports the hypothesis
that the choice of ACRV models in select data sets is
driven by underlying patterns of character evolution.
However, the complex interaction between subjective
factors (character construction and coding) and objective
factors (phylogenetic signal, number of OTUs, etc.)
make thorough understanding of the observed patterns
complex.

Optimal Number of Discrete Rate Categories
Computation time increases linearly with the

number of discrete rate categories used to approximate
the continuous lognormal or gamma distributions
as the overall character transition probabilities
are integrated over all rate categories (Yang 1994).
Because of this significant computational cost, it is
important to minimize the number of rate categories
while maintaining an accurate approximation of the
continuous distribution. However, it is theoretically
possible that an increased number of rate categories
will lead to more rapid convergence of the MCMC
algorithm (Wagner P., personal communication). For
molecular sequences, Yang (1994) determined that four
rate categories were sufficient to represent the gamma
distribution when using mean discretization of rate
categories. Mayrose et al. (2005) argued that larger data
sets may require a greater number of categories or a
gamma-mixture model. The choice of four categories
is common in evolutionary studies and is usually the
default setting in software packages (e.g., RAxML
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v7.2.8; Stamatakis 2006). Because DMCs are neither
nucleotides nor amino acids, the choice of four may
not be appropriate. Here, given the high computational
cost at high numbers of rate categories (K), only four
focal data sets were assessed: two matrices where the
LN model was supported (S12929 and S10265) and two
matrices where GA model was supported (S2128 and
S12833).

The analysis of marginal model likelihood under
each rate model for the four focal data sets revealed
divergent behavior between the GA and LN models. For
matrices where the LN model was supported, marginal
model likelihood under the LN model increased with
K and only began to asymptote at K >10–12 (Fig. 5a,b).
Interestingly this pattern is similar to that observed
by Skinner (2010)’s Fig. 1a when he discretized the
lognormal distribution to model among-lineage rate
heterogeneity. This is in contrast to the GA model,
where marginal model likelihood reached an asymptote
at K ≈4 in data sets for which it was and was not
supported (Fig. 5). It is possible that discretization
of the lognormal distribution using the mean rather
than the median of the respective rate categories might
improve the model’s performance with respect to K,
as this pattern is observed in molecular data (e.g., see
Yang 1994). On the other hand, the quantile median
may be preferable because the median of the highest
rate class will be closer to the global median than the
corresponding mean, which may take on much higher
values (Wagner P., personal communication). It is not
immediately clear why the marginal model likelihood
for the LN model in the S2128 data set actually decreased
at K >4; a possible explanation is that the continuous
lognormal distribution would have been a poorer fit to
the data and that discretization, which at lower K is less
representative of the continuous distribution, buffered
the effect of the model misspecification. Although it
is possible that this analysis underestimated variability
in marginal likelihoods by using only two runs per
K per data set, these general trends appear robust.
Further interpretation of smaller-scale trends would
require a greater number of independent runs for each
K. Because the main analysis presented above used K =4
rate categories, it may underestimate the support for the
LN over the GA model in some data sets or overestimate
it in others. Investigators are therefore encouraged to use
as many rate categories as feasible to test LN and GA
models.

Increasing the number of discrete rate categories
may impose non-trivial computational cost. However,
phylogenetic analyses under the MkV model (Lewis
2001) have a fixed instantaneous rate matrix and
few variable parameters: typically only the among-
character distribution shape parameter, branch lengths
and topology. Comparatively few free parameters and
the small size of most character matrices compared
with molecular analyses mean that the increase in
computational resources required to at least double
the number of rate categories to eight might not be
onerous except for large data sets. This is particularly

true given that multicore personal computers are now
commonplace and that HPC resources coupled with
parallelized phylogenetic packages are increasingly
available for phylogenetic analysis of DMCs (e.g.,
BEAGLE; Ayres et al. 2012).

The larger number of rate categories required to
sufficiently approximate the lognormal distribution (Fig.
5a,b) and the computational cost associated argue that
the discretization method may not be the optimal
approach to approximate the underlying continuous
lognormal distribution for DMCs. Alternatives to
approximate the distribution without the need for
discretization (sensu Yang 1994) may significantly
increase model fit without excessive computational cost,
particularly if compared with discrete models using
high values for K. The Laplace quadrature (Felsenstein
2001; Mayrose et al. 2005) has been used with success
to approximate the continuous gamma distribution
and similar alternatives may exist for the lognormal
distribution.

Effects on Estimations of Phylogenetic Topology
The focal analysis of the S12929 data set recovered the

greatest topological differences between the EQ model
and both unequal-rates models (Fig. 6: arrows). Clade
posterior probabilities were very different between the
EQ model and both unequal-rates models (Fig. 7a,b),
a fact observed in other studies comparing equal rates
to gamma-distributed rates but possibly also related to
coding of autapomorphies (Müller and Reisz 2006).
Interestingly, the EQ model resolved more nodes in the
majority-rule tree than did the GA or LN models, which
is likely symptomatic of the overestimation of Bayesian
clade posterior probabilities when the model is overly
simplified (e.g., Alfaro and Holder 2006). Topologies
inferred under the unequal-rates models were very
similar: both LN models resolved an additional node
at the base of the tree (Fig. 6c, starred arrow) whereas
the GA resolved an additional node in the Lepornius
genus (Fig. 6b, starred arrow). Finally, the LN (K =12)
resolved a different node among Lepornius relative to
the LN (K =4) or GA models (Fig. 6d, starred arrow).
Functionally, the topologies recovered under the GA and
LN models were nearly identical and clade posterior
probabilities were also very similar for clades with
PP >0.5, although slightly higher for the LN (K =
12) model (Fig. 7d). Overall tree length was higher
for the LN (K =12) model and indeed, tree lengths
appeared to be high for all rate models. This may be
related to the recent observation that MrBayes’ default
independent exponential priors on branch lengths can
lead to overestimates of total tree length in some data
sets, especially if a gamma-distributed rate model is
used (Brown et al. 2010; Marshall 2010; Rannala et al.
2012; Zhang et al. 2012). It would have been interesting
to examine the relationship between discretization, rate
model choice, and overall tree length using the version
of MrBayes created by Zhang et al. (2012) that resolves
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this issue by using compound Dirichlet priors on branch
lengths (now incorporated into the main distribution
of MrBayes). However, when this was attempted, the
likelihoods estimated by this version of the MrBayes
program using stepping-stone sampling were highly
variable (occasionally >200 log likelihood units between
independent runs of the same model) for both equal-
rates and gamma-rates models. It was not possible to
determine the source of this variability. Implementation
issues aside, the relationship between the use of DMCs
and interactions between ACRV models, overall branch
lengths and the Lewis (2001) acquisition correction
clearly requires further consideration. In summary,
although topological differences were observed between
unequal-rate models, these appear to be generally minor
relative to not accounting for rate heterogeneity among
characters.

Several recent studies have urged caution in the
use of likelihood-based phylogenetics for DMCs (e.g.,
Spencer and Wilberg 2013; Xu and Pol 2014). For example,
Spencer and Wilberg (2013: 665) argued, based on
Wagner’s (2012) analysis, that because lognormal ACRV
models may be preferred over gamma ACRV models,
phylogenetic analyses conducting using gamma ACRV
models may lead to “potentially misrepresenting the
phylogenetic signal”. They further suggested the use of
maximum parsimony, which treats all character changes
equally across characters. The results of this analysis
and other recent model-based analyses (e.g., Wagner
2012) suggest that the greater risk of misrepresenting
phylogenetic signal comes from the choice to not adopt
a model explicitly accommodating rate variation among
characters, rather than the specific ACRV model used.
However, applying the best supported model is ideal and
could be important in some data sets.

Alternative Approaches to Model ACRV
The results presented here must be accompanied by

a strong caveat: as with any model selection study,
the results are conditioned on the choice of candidate
models (Posada and Buckley 2004). Here, only three
models were evaluated and this analysis does not
preclude alternative models that may demonstrate
significantly better fit to the data. Approaches to
ACRV can be divided by analogy into “random-effects”
models and “fixed-effects”-type statistical models (Yang
2006; Yang and Rannala 2012). The approaches here
are random-effect models because they integrate
across rate heterogeneity without expressly assigning
characters to a priori categories. Alternative random-
effects approaches include the Dirichlet-process-prior-
based models, where the number of rate categories
and assignments are estimated from the data (e.g.,
Huelsenbeck and Suchard 2007). In this context, fixed-
effect type models include a priori partitioning of sets
of characters and estimating rates within each partition.
Partitioned Bayesian analysis of molecular sequences has
been demonstrated to significantly increase model fit

(e.g., Brandley et al. 2005; Brown and Lemmon 2007) and
is an alternative and complimentary approach to dealing
with heterogeneity across sites/characters, especially
when biologically informed (e.g., partitioning by codon
position: Shapiro et al. 2006). These approaches are now
commonplace, especially for phylogenomic analyses,
and extensive tools are now available to facilitate
partition selection (e.g., PartitionFinder; Lanfear et al.
2012).

Clarke and Middleton (2008) found that partitioning
DMCs anatomically and allowing branch lengths to
vary across partitions led to higher marginal model
likelihoods over an unpartitioned gamma-distributed
rate model in a fossil data set. However, the results
from that study are qualified by Clarke and Middleton’s
use of the HME for marginal model likelihood, which
may overestimate likelihoods of complex models (e.g.,
Xie et al. 2011; Baele et al. 2012; this is not meant as a
criticism as stepping-stone sampling has only recently
become available in MrBayes and Clarke and Middleton
expressly qualified their study on the appropriateness
of the HME). Partitioned models may be particularly
appropriate for DMCs because character integration (i.e.,
modularity) and selection affecting multiple characters
may lead to correlated evolutionary changes. In the
absence of easily available implementations of more
complicated strategies for partitioning DMCs (e.g.,
Lanfear et al. 2012), investigators are encouraged to
perform model testing using biologically informative
a priori partitions and both among-character rate
distributions using as large a number of discrete rate
categories as possible.

A further alternative for analyses where the ACRV
model is a nuisance parameter rather than the focus
of the analysis is to treat the model itself as a random
variable. Uncertainty in the ACRV model could then
be integrated across using, for example, reversible-
jump MCMC or another model-averaging approach; this
technique has been used to treat the relaxed molecular
clock model as a nuisance variable in divergence time
analysis (Li and Drummond 2012). This approach could
also be used to assess relative support for ACRV models
by examining their posterior probabilities, which, in
conjunction with gamma, lognormal, or other models,
could be used to explicitly test hypotheses about the
evolution of DMCs. Computationally, model-averaging
approaches may only impose a slightly higher overall
computational burden to parameterize because they
remove the need to separately test multiple ACRV
models.

CONCLUSIONS

Rate heterogeneity was widespread in this diverse
data set of DMC matrices as indicated by strong
preference for unequal-rates models. Where significant
rate heterogeneity was present, Bayesian model selection
suggested that most data sets were equivocal in
support for the gamma-distributed and lognormally
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distributed rates models. However, where model testing
was not equivocal, the lognormal model was more
frequently supported relative to a gamma-distributed
rates model. However, the reverse was also true for
several data sets. Overall, the results suggest weak
evidence for Wagner’s (2012) hypothesis with strong
qualifications. Prior choice was found to affect marginal
model likelihood estimation but the observed patterns
hold after comparison of model likelihoods under
the prior choice yielding the highest marginal model
likelihood for each model were compared. Parsimony
analysis of estimated character distributions in four
focal data sets suggests that the underlying character
rate distribution may drive observed patterns in some
data sets. Although rate distribution choice sometimes
affected topological reconstruction, this pattern was
difficult to characterize and did not appear to be
related to the degree of model preference as measured
by pairwise Bayes factor. Lognormally distributed
rate models may require a larger number (K >8) of
discrete rate categories to approximate the continuous
distribution, in contrast to gamma-distributed rate
models where K =4 rate categories appeared sufficient.
Researchers should therefore use as many discrete rate
categories as computationally feasible to ensure an
accurate representation of the underlying continuous
distribution when using the lognormal distribution.
Although the data were not conclusive, the rate
distribution choice was observed to have a minor effect
on the posterior distribution of topologies and branch
lengths. Researchers are urged to test which among-
character rate model is best supported by their data
and explore alternative character partitioning strategies
using Bayesian marginal model likelihood estimation
and Bayes factors.
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