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ABSTRACT
In this paper, the problem of portfolio construction includ-
ing alternative investments, e.g., hedge funds, is analyzed
and solved for an investor having a constant relative risk
aversion utility function. The investment opportunities are
modelled in a framework of continuous-time stochastic dif-
ferential equations. In a first step, the general solution for
an arbitrary number of risky investment opportunities as
well as an arbitrary number of risk factors is presented. The
general solution is used to derive the explicit solution for a
typical investor. The typical investor, in this context, has
three risk-bearing investment opportunities. These are the
stock market, the bond market, and the alternative invest-
ment universe. The fixed income part is modelled by a short
rate model. For the market portfolio, the usual geometric
Brownian motion model is used. For the alternative invest-
ment, we use a model with the Greek letters α and β as in
Sharpe’s capital asset pricing model. The resulting optimal
asset allocation law is then analyzed for typical values.
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1 Introduction

It is the nature of hedge funds to implement dynamic in-
vestment strategies, categorized by their styles. However,
even in the realm of hedge funds, studies and presenta-
tions are scarcely found which are not arguing in a mean-
variance framework. Proper risk management including
hedge funds can hardly be achieved by using a mean-
variance framework (see, e.g., [1]). In order to account for
the dynamic behavior of different investment classes, it is
much more reasonable to optimize in a stochastic differen-
tial equations framework. Therefore, the problem of port-
folio construction including alternative investments is ana-
lyzed and solved for an investor having a constant relative
risk aversion (CRRA) utility function. We are interested
in the general solution with arbitrary risk factors as well
as the special case for a portfolio including hedge funds.
The general solution for an arbitrary number of risky in-
vestment opportunities as well as an arbitrary number of

risk factors is presented. For the special case, we consider
a typical investor which has three risk-bearing investment
opportunities. These are the stock market, the bond mar-
ket, and the alternative investment universe. Each of the
three investment opportunities offers a different risk-return
profile. The fixed income part is modelled by a short rate
model, i.e., we use the Vasicek model for the short rate and
the bond price evolution. The second investment oppor-
tunity is a passive fund, regarded as a proxy of the mar-
ket portfolio. The S&P500 is a popular index, often used
as a proxy for the market portfolio. The passive fund is
modelled by a geometric Brownian motion. Its drift and
diffusion are constant. In the context of hedge funds, it
is virtually impossible to ignore the Greek letters α and β
since they are used by practitioners and academics alike.
Usually, α and β are used in the context of Sharpe’s capital
asset pricing model (CAPM), see [3]. In this paper we use
the same terminology, but however, do not state wether the
CAPM holds or not. This is no restriction, because we do
not need the assumptions of the CAPM to hold, since we
only use its terminology. As we are dealing in a continuous
time framework, we use a model resembling to Merton’s
intertemporal capital asset pricing model (ICAPM), see [4].
The behavior of the optimal asset allocation is analyzed for
typical values. The resulting investment strategy is used in
a backtest with US data.

2 General solution

The investment opportunities are modelled as stochastic
differential equations. From these opportunity sets, we can
derive the wealth equation of the investor. The investor is
assumed to have a constant relative risk aversion (CRRA)
utility function. This kind of problem can be solved by us-
ing Bellman’s optimality principle.

2.1 Asset price dynamics

In order to model assets traded on an organized exchange,
we make the following assumptions:
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- Trading is continuous.
- There are no transaction costs, fees, or taxes.
- The investor is a price taker and does not possess

enough market power to influence prices.

We consider a market in which n ≥ 1 risk-
bearing investments exist. The asset price processes
(P1(t), P2(t), . . . , Pn(t)) of the risk-bearing investments
satisfy the stochastic differential equations

dPi(t)

Pi(t)
= µi(t, x(t)) dt+ σi(t)dZP (t) ,

Pi(0) = pi0 > 0 .

Here, µi(t, x(t)) ∈ R is the relative expected instantaneous
change in price of Pi per unit time and σi(t)σi(t)

T is the
instantaneous variance per unit time (σi ∈ R

1×n is the i-
th row of the matrix σ(t) ∈ R

n×n). The n-dimensional
Brownian motion dZP (t) is defined on a fixed, filtered
probability space (Ω,F , {Ft}t≥0,P) with Ft satisfying
the usual conditions. By adding a further, “risk-free” as-
set or rather a bank account with a short-term interest rate,
i.e., with volatility σ0 ≡ 0, and instantaneous rate of return
µ0(t, x(t)) referred to as r(t, x(t)), we obtain a risk free
asset P0(t) given by the differential equation

dP0(t)

P0(t)
= r(t, x(t))dt ,

P0(0) = p00 > 0 .

The drift terms of the risk-bearing and risk-free as-
sets depend on the m-dimensional factor processes
(x1(t), x1(t), . . . xm(t)). Therefore, the factors affect the
mean return of the risk-bearing assets and the interest rate
of the risk-free asset. Furthermore, we assume that the drift
terms are affine functions of the factor levels, as given by

µi(t, x(t)) = Gi(t)x(t) + gi(t) , (1)
µ0(t, x(t)) = r(t, x(t)) = F0(t)x(t) + f0(t) , (2)

where x(t) = (x1(t), x1(t), . . . xm(t))
T ∈ R

m,
Gi(t), F0(t) ∈ R

1×m, and gi(t), f0(t) ∈ R.

2.2 Factor dynamics

The factors are modelled as Gaussian stochastic processes
obtained by

dx(t) = (A(t)x(t) + a(t))dt+ ν(t)dZx(t) ,

where x(0) = x0, A(t) ∈ R
m×m, a(t) ∈ R

m, ν(t) ∈
R
m×m, and dZx(t) ∈ R

m. The correlation matrix be-
tween dZP (t) and dZx(t) is ρ(t) ∈ R

n×m. The m-
dimensional Brownian motion dZx(t) is defined on a fixed,
filtered probability space (Ω,F , {Ft}t≥0,P)withFt satis-
fying the usual conditions. The factor process x(t) allows
us to model variables of either macroeconomic, industry
specific, or company specific nature which affects the mean
returns of the risk-bearing assets.

2.3 Self-financing portfolio and wealth dy-
namics

Assuming that an investor’s wealth only derives gains form
his investments, his wealth dynamics (portfolio dynamics)
can be expressed by the following expression:

dW (t) =

n
∑

i=0

ui(t)W (t)µi(t, x(t)) dt (3)

+

n
∑

i=0

ui(t)W (t)σi(t)dZPi
(t) (4)

W (0) = W0

where ui(t) denotes the fraction of wealth (portfolio
value) invested in the i-th asset at time t. The weights
fulfil the constraints

∑n
i=0 ui(t) = 1 and u(t) =

(u1(t), u2(t), . . . , un(t))
T ∈ U where U is a convex set.

Assuming that no money flows in to or out of the portfolio,
the dynamics of the portfolio are self-financing. For the
derivation of the wealth dynamics, the reader may refer to
[6, Chapter 5].
Furthermore, we utilize (1) and (2) to obtain the form of
the wealth equation we work with in this paper:

dW (t) = u(t)T (F (t)x(t) + f(t))W (t) dt

+ (F0(t)x(t) + f0(t))W (t) dt

+W (t)u(t)Tσ(t)dZP (t) , (5)

where we use the following abbreviations

G(t) = [GT
1 (t), G

T
2 (t), . . . , G

T
n (t)]

T ∈ R
n×m,

F (t) = G(t)− eF0(t) ∈ R
n×m

g(t) = (g1(t), . . . , gn(t))
T ∈ R

n×1,
f(t) = g(t)− ef0(t) ∈ R

n×1

σ = [σT
i , . . . , σT

n ] ∈ R
n×n,

e = (1, 1, . . . , 1)T ∈ R
n×1 .

The term F (t)x(t)+f(t) denotes the excess mean return of
the risky investments (i.e., the mean return above the risk-
free interest rate) and the term F0(t)x(t) + f0(t) denotes
the risk-free interest rate.

2.4 Portfolio optimization with CRRA utility

The portfolio choice problem is to maximize the ex-
pected power utility defined for the terminal wealth, i.e.,
E[ 1

γ
W (T )γ ]. The mean returns of risk-bearing assets and

the interest rates of the risk-free bank account are linear
affine functions of the factor process. Furthermore, we as-
sume that leveraging, short-selling, and borrowing at the
risk-free rates are unrestricted, i.e., U = R

n. The factor
dynamics and the risk-bearing asset dynamics are assumed
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to be correlated. Mathematically the problem statement is:

max
u(·)∈Rn

E
[ 1

γ
W (T )γ

]

s.t.
dW (t) = W (t)[F0(t)x(t) + f0(t)

+ uT (t)(F (t)x(t) + f(t))]dt

+W (t)uT (t)σ(t)dZP ,

dx(t) = (A(t)x(t) + a(t))dt+ ν(t)dZx ,

dZP dZx = ρ(t)dt , (6)

with W (0) = W0 and x(0) = x0, T denotes the time
horizon and γ < 1 denotes the coefficient of risk aversion.

2.5 Solution to the portfolio optimization
with CRRA utility

The Hamilton-Jacobi-Bellman (HJB) equation for this par-
ticular optimal control problem is given by

Jt(·) + max
u(·)∈Rn

[

W (t)(F0(t)x(t) + f0(t)

+uT (t)(F (t)x(t) + f(t)))JW (·)
+(A(t)x(t) + a(t))TJx(·)

+
1

2
W 2(t)uT (t)Σ(t)u(t)JWW (·)

+W (t)uT (t)σ(t)ρ(t)νT (t)JWx(·)

+
1

2
tr{Jxx(·)ν(t)νT (t)}

]

= 0 , (7)

where Σ(t) = σ(t)σT (t) and with the terminal condition
J(T,W (T ), x(T )) = 1

γ
W (T )γ . We have omitted the ar-

guments of J(·) = J(t,W (t), x(t)) for writing conve-
nience. The solution to (7) is the optimal feedback con-
troller obtained by

u∗(·) = 1

1− γ
Σ−1(t)

(

F (t)x(t) + f(t)

+σ(t)ρ(t)νT (t)(K3(t)x(t) + k2(t))
)

, (8)

where k2(t) and K3(t) are the solutions of two ordinary
differential equations (ODEs). The first ODE for the vector
k2(t) is given by

k̇2 + γFT
0 +K3νν

T k2 +AT k2 +K3a

− γ

(γ − 1)
(

FTΣ−1f + FTΣ−1σρνk2

+ K3νρ
TσTΣ−1f +K3νρ

T ρνT k2

)

= 0

k2(T ) = 0 . (9)

The second ODE for the matrix K3(t) is obtained as

K̇3 + K3νν
TK3 +K3A+ATK3

− γ

(γ − 1)
(

FTΣ−1F + FTΣ−1σρνTK3

+ K3νρ
TσTΣ−1F +K3νρ

T ρνTK3

)

= 0

K3(T ) = 0 . (10)

The value function for this HJB problem is

J(t,W, e) =
1

γ
W (t)γ l(t, x),

l(t, x) = ek1(t)+kT

2
(t)x(t)+ 1

2
xT (t)K3(t)x(t) , (11)

with terminal conditions k1(T ) = 0, k2(T ) = 0, and
K3(T ) = 0. We have omitted the ODE for k1(t) since
the optimal controller does not depend on this scalar. This
results in solving 1

2m
2 + 3

2m ODEs, where m is the di-
mension of external variables in vector x(t). For a detailed
derivation of the HJB equation and its solution the reader
may refer to [7]. The conditions for solving this matrix
Riccati equations are found in [7] as well.

3 Application with alternative investments

In this section, the general solution is applied to a specific
case. We consider an investor, having three risky invest-
ment opportunities. Therefore the investor faces three risk
exposures, i.e., market risk, interest rate risk, and the risks
involved in the alternative investment. Each of the three in-
vestment opportunities offers a different risk-return profile.
The fixed income part is modelled by a Vasicek short rate
model (see [2]). The second investment opportunity is the
market portfolio. We use the S&P500 as a proxy for the
market portfolio because of its popularity. It is modelled
by a geometric Brownian motion. Its drift and diffusion
are constant. For the hedge fund we use a model including
the Greek letters α and β. As mentioned in the introduc-
tion, α and β originate from Sharpe’s capital asset pricing
model (CAPM). In this paper, however, we only use the
terminology of the CAPM but do not need the assumptions
of the CAPM. We use a model resembling to Merton’s in-
tertemporal capital asset pricing model (ICAPM), see [4],
because we are modelling in a continuous-time framework.
The authors of [5] use a similar model for hedge funds.
As a consequence, the alternative investment does not have
constant risk premium. This is also the case for the market
portfolio since its drift term is constant and the risk-free
rate is not. The investment opportunities are modelled as
appropriate stochastic differential equations. The investor’s
utility function is chosen to have constant relative risk aver-
sion. The problem is solved by using the results of Section
2.5.

3.1 The model

In order to derive the optimal investment strategy, we first
need to model the three considered investment opportuni-
ties. We use stochastic differential equations (SDEs) to
model the dynamic behavior of the assets. The Brown-
ian motions of the SDEs are defined on a fixed, filtered
probability space (Ω,F , {Ft}t≥0,P) with Ft satisfying
the usual conditions. For the fixed income part, we use the
short rate model of Vasicek (see [2]). The investor is able to
put his money into a bank account. The bank account has
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an interest equivalent to the short rate. We therefore have
the following mean-reverting SDE for the short rate r,

dr = κ(θ − r)dt+ σrdZr,

r(0) = r0, (12)

where κ ∈ R, θ ∈ R, and σr ∈ R are the constant param-
eters of the short rate. Given the short rate, we solely need
to determine the price of risk λ to determine the dynamics
of the bond B with maturity T ,

dB = B
(

r +
λσr

κ
aT (t)

)

dt−B
σr

κ
aT (t)dZr,

B(T ) = 1, (13)

where the scalar function aT (t) is defined as

aT (t) = 1− e−κ(T−t). (14)

The second investment opportunity is a passive fund, re-
garded as a proxy of the market portfolio. The S&P500 is
a popular index used as a proxy for the market portfolio.
Therefore, the passive fund S follows the SDE

dS = SµSdt+ SσSdZS ,

S(0) = S0, (15)

where µS ∈ R and σS ∈ R are the constant parameters
of the model. The Brownian motion ZS is assumed to be
independent of Zr. As a last step, the model for the al-
ternative asset remains to be introduced. The price of the
alternative asset, denoted by A, evolves as follows:

dA = A(r + β(µs − r) + α)dt

+AσA(ρdZs +
√

1− ρ2dZA),

A(0) = A0, (16)

where β ∈ R, α ∈ R, σA ∈ R, and ρ ∈ [0, 1] are the
constant parameters of the model. The Brownian motion
ZA is assumed to be independent of Zr and ZS . In this
context, r+ β(µs− r) describes the risk adjusted return of
the asset with respect to the market, whereas the α is the
outperformance of the alternative asset. The β parameter is
defined to be

β =
cov(dS/S, dA/A)

σ2
S

=
ρσA

σS

, (17)

where ρ denotes correlation of the return of the market port-
folio and the return of the alternative asset. We introduce a
three dimensional control vector u. The three components
of u represent the percentage of total wealth invested in the
respective investment category. The wealth equation was
introduced in Section 2.3,

dW (t) = u(t)T (F (t)x(t) + f(t))W (t) dt

+ (F0(t)x(t) + f0(t))W (t) dt

+W (t)u(t)Tσ(t)dZP (t),

W (0) = W0.

For the specific case considered, the factor loading matrices
are ν = σr, A = −κ, a = κθ, F0 = 1, f0 = 0,

G =





1
0

1− β



 , g(t) =





λσr

κ
aT (t)
µS

βµS + α



 ,

F =





0
−1
−β



 , f(t) =





λσr

κ
aT (t)
µS

βµS + α



 .

In our specific case, the wealth equation becomes

dW = W
[

uTµ(t, r) + r
]

dt+WuTσ(t)dZ,

W (0) = W0, (18)

where u ∈ R
3×1, dZ = [dZr, dZs, dZA]

T . The vector
µ(t, r) in equation 18 is defined by

µ(t, r) = Fr + f(t) =





λσr

κ
aT (t)

µs − r
β(µs − r) + α



 , (19)

whereas the matrix σ(t) is defined to be

σ(t) =





−σr

κ
aT (t) 0 0
0 σs 0

0 σAρ σA

√

1− ρ2



 . (20)

We need the matrix σ(t)σT (t) to be invertible and therefore
demand that |ρ| < 1.

3.2 Asset allocation with CRRA utility

The portfolio choice problem is to maximize the ex-
pected power utility defined over terminal wealth, i.e.,
E[ 1

γ
W (T )γ ]. Furthermore we assume that leveraging,

short-selling, and borrowing at the risk-free rates are un-
restricted, i.e., U = R

n. Mathematically the problem state-
ment is

max
u∈R3

E
{ 1

γ
W γ(T )

}

s.t.

dW = W
[

uTµ(t, r) + r
]

dt+WuTσ(t)dZ

W (0) = W0

dr = κ(θ − r)dt+ σrdZr,

r(0) = r0,

where T denotes the time horizon and γ < 1 denotes the
coefficient of risk aversion.

3.3 Solution to asset allocation with CRRA
utility

The Hamilton-Jacobi-Bellman (HJB) equation of this prob-
lem, given Σ(t) = σ(t)σ(t)T and e1 = ρ(t) = [1, 0, 0]T ,
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is

Jt(t, x) + max
u∈R3

[

W [uTµ(t, r) + r]JW

+κ(θ − r)Jr +
1

2
JWWW 2uTΣu

+JWrσrWuTσe1 +
1

2
Jrrσ

2
r

]

= 0. (21)

with terminal condition J(T,W (T )) = 1
γ
W γ(T ). For the

sake of completeness, we give the resulting partial differ-
ential equation (PDE) which has to be solved

Jt −
1

2

J2
W

JWW

µTΣ−1µ+ rWJW

+κ(θ − r)Jr +
JWJWr

JWW

σrλ

−1
2

J2
Wr

JWW

σ2
r +

1

2
Jrrσ

2
r = 0. (22)

As in the general solution, the value function for the HJB
problem is of the form

J(t,W ) =
1

γ
W (t)γek1(t)+k2(t)r(t)+

1

2
k3(t)r

2(t)

with terminal conditions k1(T ) = k2(T ) = k3(T ) = 0.
Inserting this in the HJB equation (22) serves as a verifica-
tion of the Ansatz. The two functions k2(t) and k3(t) are
the solutions of two coupled ordinary differential equations
(ODEs). The ODE for k3(t) is

k̇3 − 2κk3 +
σ2
r

1− γ
k2
3 − h1 = 0

k3(T ) = 0 . (23)

The only unknown in the ODE for k3(t) is the constant h1,
which is defined by

h1 =
γ

(γ − 1)σ2
S

.

The ODE for k3 is independent of k1 and k2 and can be
therefore solved independently. Because of the form of the
ODE (23), k3 can be solved analytically. Its solution is

k3(t) =
1− γ

σ2
r

(

κ+ δ tanh
{

(t− T )δ − atanh
(κ

δ

)})

.

The constant δ in the solution of k3(t) is defined by

δ =

√

h1σ2
r

1− γ
+ κ2.

The only unknown of the system remains to be k2(t). From
the general solution we know that k2(t) is the solution of
an ODE which is dependent of k3(t). The ODE for k2(t)
is, for our specific case, given by

k̇2 − κk2 +
σ2
r

1− γ
k2k3

+k3(κθ +
γ

γ − 1σrλ) + γ + h2 = 0

k2(T ) = 0 . (24)

As in the ODE for k3(t) (23), there is one constant in the
ODE (24) to be defined. The constant h2 is defined by

h2 =
γµS

(γ − 1)σ2
S

.

Again, we can give an analytical solution, but the form of
the solution of (24) is more complicated than for k3(t).

k2(t) = l(t)
{

C +

∫ −k3(t)h3 − γ + h2

l(t)
dt
}

The integral in the solution cannot be analytically simpli-
fied any more. The integration constant C has to be chosen
such that the terminal condition k2(T ) = 0 is met. The
function l(t) in the solution for k2(t) is defined by

l(t) =

√

k3(t)σ2
r − κ(1− γ)

δ(1− γ)
− 1.

The constant h3, appearing in the solution of k2(t), is

h3 = κθ − γ

γ − 1σrλ.

We can finally state the optimal control law as

u∗(t, r) =
1

1− γ
Σ(t)−1

(

µ(t, r)

−[k2(t) + k3(t)r(t)]
σ2
r

κ
aT (t)e1

)

. (25)

The conditions for existence of a solution are σr 6= 0,
σS 6= 0, and γ < 1.

Since we want to optimize a portfolio with alterna-
tive investments, we are especially interested in the third
component of u in (25). It reflects the fraction of wealth
allocated to the alternative investment, and is given by

u∗3 =
α

(1− γ)(1− ρ2)σ2
A

. (26)

Obviously, u∗3 is independent of the time horizon T , the
bond price, and its parameters, as well as the market itself.
The amount of capital invested in the alternative investment
increases linearly with α. The closer σ2

A is to zero, the more
is invested in the alternative investment. At first sight, it is
counter-intuitive that the larger the absolute value of the
correlation ρ, the more is invested in the alternative asset.
But if we take a look at u∗2, the fraction of wealth invested
in the market, we observe that, for large absolute values of
ρ, the value of u∗2 changes significantly. The allocation rule
exploits the correlation property by taking much more ex-
treme positions when large positive or negative correlation
is present.

u∗2 =
1

(1− γ)σ2
S

(µS − r)− u∗3
σA

σS

ρ. (27)

The first term of u∗2 is seen to be the well-known Merton
solution (see [6, Chapter 4]) whereas the second term de-
pends on the amount of wealth invested in the alternative
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investment u∗3. If the correlation ρ is equal to zero, the po-
sition in the market is the same as in the standard Merton
case. If ρ is positive, the position in the market is reduced
in favor of the position in the alternative investment (as-
suming a positive α). The interesting property lies in the
fact that, if the correlation is negative, the optimal weight
in the market is larger than in positively correlated case.
The lower the correlation the more the downturns of the al-
ternative investment are hedged by the position in the stock
market.

One reason to include hedge funds in portfolios is be-
cause of their benefits of diversification, i.e., low correla-
tion. In the perfect case (ρ = 0), the fraction of wealth
invested in the market remains unaffected in terms of the
Merton solution. Because of the lack of dependence be-
tween the bond market and the stock market and the al-
ternative investment respectively, the amount of wealth in-
vested in the Bond is independent of the characteristics of
the market and the alternative investment.

4 Analysis of the control law with US data

In this section, the optimal control vector u(t) is computed
for real market conditions. We use US stock market data
and the CSFB/Tremont hedge fund index. For the pas-
sive fund, i.e., the substitute for the market portfolio, the
S&P500 is used. As a proxy for the short rate, we use
three month treasury bills, which have interest rates close
to the ones payed on a money market account. For the bond
portfolio part, the DATASTREAM USA TOTAL 3-5 YEARS
bond index is used. In order to account for the coupon pay-
ments, the total return index data is used which is a suitable
approximation for the zero coupon bond. All data sets were
obtained from Thomson DATASTREAM (DS). The three
month treasury bills and the S&P500 data ranges from 1972
to 2004. The data for the bond index ranges from 1980 to
2004 and the CSFB/Tremont hedge fund index ranges from
1994 to 2004. The data is obtained on a weekly basis ex-
cept for the CSFB/Tremont hedge fund index which is only
available on a monthly basis.

The three month treasury bills are used as a proxy for
the short rate for two reasons. The first is because of its
long availability (since 1972), which is important for the
estimation of the short rate parameters. The second reason
is that its stochastic behavior reflects more an SDE type
behavior rather than the federal fund rate.

The resulting control vector u(t) crucially depends on
the parameters chosen. The parameters used for the market
portfolio can be estimated with long time series of data and
are therefore reliable long term estimates. This is also the
case for the fixed income security.

We discretize the stochastic differential equation for
the short rate (12) with the method of Euler (see [8]). This
yields

rt+1 = κθ∆t+ (1− κ∆t)rt + σr

√
∆tξr,

where∆t is the time increment and ξr is a standard normal
random variable. The parameters of the short rate are esti-
mated by doing an ordinary least squares estimation on the
discrete version of the short rate.

The allocation in the bond and the money market are
very high if the maturity of the bond and the end of the
investment horizon coincide. The controller is making use
of the convergence of the r and B process for t → T . The
highly leveraged positions in the bond are, of course, very
unrealistic. Therefore, we assume that the bond has a fixed
duration, i.e., having a roll-over bond portfolio part in the
over all portfolio. This can be achieved by changing the the
time-varying function aT (t), equation (14), to be a function
of the duration of the bond portfolio part only. If we denote
the duration of the bond by τ , we get

aT (τ) = 1− e−κτ .

The duration is estimated from the DS bond index time se-
ries. By using a fixed duration for the bond dynamics we
rather invest in a bond index than in a specific bond itself.
We discretize the stochastic differential equation of the log-
arithmic bond prices (13) with the method of Euler (see [8])
and get the following series

ln(Bt+1)− ln(Bt)− rt∆t =
(

λ
σr

κ
aT (τ)

+
1

2

(σr

κ
aT (τ)

)2)

∆t+
σr

κ
aT (τ)

√
∆tξB ,

where∆t is the time increment and ξB is a standard normal
random variable. The duration τ and the price of risk λ
of the bond index are estimated by estimating mean and
variance of the series above.

The drift and the diffusion of the market portfolio are
computed similarly to the bond prices. The prices (15)
are transformed with the natural logarithm. The resulting
stochastic differential equation is then used in its discrete
version, using the method of Euler (see [8]). This gives the
relationship

ln(St+1)− ln(St) =
(

µS −
1

2
σ2
S

)

∆t+ σS

√
∆tξS ,

where∆t is the time increment and ξS is a standard normal
random variable.

It is well known that hedge fund indices cannot give
a true picture of the hedge fund universe (see [9]). We
are well aware of this fact but nevertheless use a hedge
fund index. This because many investable hedge fund have
emerged recently (e.g., CSFB/Tremont, HFR, MSCI, S&P)
and therefore are of practical relevance. The drift and the
diffusion of the CSFB/Tremont hedge fund index are com-
puted as for the market portfolio. The correlation is es-
timated by calculating the correlation of the residuals of
ln(A) and ln(S). With these estimates at hand, α can be
estimated by subtracting r + β(µS − r) from the mean of
the CSFB/Tremont hedge fund index returns.

Using the time series of the market and the short rate
from 1972 to 2004, the bond index from 1980 to 2004, and
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Table 1. Typical values for the estimated parameters.

Parameter value std. error
κ 0.27 0.05
θ 0.07 p.a. 0.004 p.a.
σr 0.02 p.a. 0.0006 p.a.
λ 0.55 0.04
τ 3.77 years 0.4 years
µS 0.1 p.a. 0.008 p.a.
σS 0.15 p.a. 0.004 p.a.
ρ 0.5 0.07
α 0.04 p.a. 0.005 p.a.
σA 0.09 p.a. 0.005 p.a.

the alternative asset from 1994 to 2004, we estimate the
parameters of the stochastic processes. Table 1 shows the
results.

Note that price of risk λ for the bond has a positive
value as in the original Vasicek model although it is often
found to be introduced with a negative sign in recent texts.
In Figure 1, the asset allocation for an investor with a risk
aversion coefficient γ = −5 is displayed. We see that for
the observed parameter values, the weight in the bond is the
biggest for every t. This may change by choosing different
parameter values. The bigger γ, the more aggressive the
investor is allocating his wealth.

Figure 1. Asset allocation for γ = −5, r = 0.03, and an
investment horizon T = 10

As already mentioned, the values of u(t) crucially
depend on the choice of the parameters. The notoriously
secretive and intransparent field of alternative investments
does not allow to estimate its parameters in the same qual-
ity as for the other securities. Performance numbers are
usually published monthly. Hedge funds do not have to
register. As a result, various biases such as survivorship
bias, selection bias, etc. are present in the available hedge
fund databases. As a consequence, there is no index rep-

resenting the true performance of the hedge fund industry.
The task for a reliable estimation of α and β remains rather
difficult. A further problem is the question of stability for
α and β. Because of the lack of sufficient data, the question
of stability is even harder to answer. We therefore analyze
the amount of wealth invested in the alternative investment
for varying α and ρ (or β, respectively). Figure 2 shows

Figure 2. Optimal asset allocation to alternative investment
as a function of ρ and α: contour plot of u∗3 for γ = −5

a contour plot of u∗3 as a function of α ∈ [−0.1, 0.2] and
ρ ∈ (−1, 1). Note that β can be calculated by equation
(17). Again we see that investment opportunities offering
no α are not included in the optimal portfolio. The con-
tours of the plot are symmetric with respect to u∗3 = 0. By
increasing γ, i.e., making the investor less risk averse, the
same levels of constant u∗3 as in Figure 2 are moving closer
to the u∗3 = 0 line. It is significant that a low correlation
results in a lower weight of the alternative investment in the
portfolio.

5 Back-test of the control law with US data

In this section, the derived investment strategies are tested
with data introduced in the last section. In order to have
reasonable estimates of all parameters, the investment strat-
egy is implemented starting in January 1997. The portfo-
lio can be adjusted every month, the investment horizon of
the investor ends in March 2004. As new observations are
available, the model parameters are recalculated using all
past data available. The application of the data is done as
in [10] and [11]. The investment strategy is always imple-
mented in an out-of-sample manner. Figure 3 shows the
results for γ = −5. The investment strategy outperforms
the S&P500 and the CSFB/Tremont hedge fund index by
far. This is mostly because of the highly leveraged posi-
tions in the bond index. Table 2 shows the key figures of
the considered time series. The Sharpe ratio of the mar-
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Figure 3. Wealth evolution for γ = −5

ket is pretty poor compared with the others due to the bear
market from 2000 to 2003. It is noteworthy that the Sharpe
ratio of our portfolio does not change significantly for dif-
ferent γs. The high Sharpe ratios in Table 2 give evidence
that the risk adjusted returns of the investment strategy are
superior to the ones of the single assets.

Table 2. Key figures of the time series

return volatility Sharpe
(p.a.) (p.a.) ratio

γ = −5 0.17 0.12 1.06
γ = −10 0.11 0.07 1.06
γ = −20 0.08 0.04 1.07

DS 3-5 years 0.07 0.04 0.9
S&P500 0.08 0.17 0.23

CSFB/Tremont 0.11 0.08 0.84

In the phase of July 1998 to December 1999, the in-
vestment strategy does not show a good performance. This
because of the enormous drop of performance of the hedge
fund index in 1998 which causes the controller to signif-
icantly reduce its position in the alternative asset. In the
beginning of 2001, the controller is starting to take short
positions in the market, which is still the case at the end of
the considered time period.

6 Conclusions

The solution for a general case with an arbitrary number of
risk factors is presented. The general solution is applied to
a specific case where the investor has three risky investment
opportunities. The investor is able to invest in the stock
market, the bond market, the money market, and in the al-
ternative investment universe. The model for the alternative
asset resembles Mertons intertemporal capital asset pricing

model and includes the parameters α and β. The optimal
amount of capital invested in the alternative asset depends
only on the parameters of the alternative investment, the
correlation to the market portfolio, and on the risk aversion
coefficient. The more the market and the alternative asset
are correlated, the more the investment strategy makes use
of this fact by leveraging the positions in the market and in
the alternative asset. If the correlation of alternative asset
and the market is zero, the optimal amount of capital in-
vested in the market is the same as if there is no alternative
investment opportunity. The resulting investment strategy
is tested with US data and the CSFB/Tremont hedge fund
index. The strategy outperforms the single assets in terms
of absolute returns and in terms of risk adjusted returns.
This is mainly because of the highly leveraged positions in
the fixed-income security and in the short rate.

Further research may solve the problem with con-
straints on the asset allocation in order to obtain results for
real-world decision making.
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