Hans ter Steege

Hans ter Steege
Naturalis Biodiversity Center | NCB · Department of Botany

Professor

About

356
Publications
224,472
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
26,516
Citations
Introduction
My research focuses on understanding the origin and regulation of biodiversity, which I investigate within the framework of the Amazon Tree Diversity Network (ATDN). I am particularly interested in causes for tree alpha- and beta-diversity, which I coordinate. While trees are my personal pet-plants, I also work with Herbarium material, bryophytes and vascular epiphytes.
Additional affiliations
January 2012 - present
Naturalis Biodiversity Center
Position
  • Senior Researcher ‘Amazon Tree Diversity’
Description
  • Enravelling causes of alpha and beta tree-diversity in the Amazon.
January 2012 - present
Naturalis Biodiversity Center
Position
  • Senior Research Fellow Amazon Tree Diversity
January 2012 - present
Utrecht University
Position
  • Professor (Associate)
Description
  • Coordinator Evolutionary Biology 2012-2013 Coordinator Biodiversity and Landscape, 2012 - pr.
Education
December 2011 - December 2011
Utrecht University
Field of study
  • Teaching
December 2011 - December 2011
Utrecht University
Field of study
  • Teaching
August 2010 - August 2010
MTCompany
Field of study
  • Braintraining

Publications

Publications (356)
Article
Full-text available
The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we...
Article
Full-text available
Epiphytes are still an understudied plant group in Amazonia. The aim of this study was to identify distributional patterns and conservation priorities for vascular epiphyte assemblages (VEA) across Amazonia. We compiled the largest Amazonian epiphyte plot database to date, through a multinational collaborative effort of 22 researchers and 32 field...
Article
Water availability is the major driver of tropical forest structure and dynamics. Most research has focused on the impacts of climatic water availability, whereas remarkably little is known about the influence of water table depth and excess soil water on forest processes. Nevertheless, given that plants take up water from the soil, the impacts of...
Article
Data on tropical forests are in high demand. But ground forest measurements are hard to sustain and the people who make them are extremely disadvantaged compared to those who use them. We propose a new approach to forest data that focuses on the needs of data originators, and ensures users and funders contribute properly.
Article
Full-text available
Despite increasing attention for relationships between species richness and ecosystem services, for tropical forests such relationships are still under discussion. Contradicting relationships have been reported concerning carbon stock, while little is known about relationships concerning timber stock and the abundance of non-timber forest product p...
Article
Full-text available
Climate change is one of the main drivers of species extinction in the twentyfirst-century. Here, we (1) quantify potential changes in species’ bioclimatic area of habitat (BAH) of 135 native potential agroforestry species from the Brazilian flora, using two different climate change scenarios (SSP2-4.5 and SSP5-8.5) and dispersal scenarios, where s...
Book
Full-text available
The Science Panel for the Amazon (SPA) is an unprecedented initiative convened under the auspices of the United Nations Sustainable Development Solutions Network (SDSN). The SPA is composed of over 200 preeminent scientists and researchers from the eight Amazonian countries, French Guiana, and global partners. These experts came together to debate,...
Article
Full-text available
1. Species records from biological collections are becoming increasingly available online. This unprecedented availability of records has largely supported recent studies in taxonomy, biogeography, macroecology, and biodiversity conservation. Biological collections vary in their documentation and notation standards, which have changed through time....
Chapter
Full-text available
Amazonian lowland tropical rainforests cover ~5.79 million km2. Based on geology, the Amazon lowland forest area can be divided into six regions. The Guiana Shield and Brazilian Shield (in the southern Ama- zon) are on very old, nutrient-poor soils, while the Western Amazonian regions (northern and southern) and the regions along the Amazon River a...
Article
Full-text available
Successional dynamics of plants and animals during tropical forest regeneration have been thoroughly studied, while fungal compositional dynamics during tropical forest succession remain unknown, despite the crucial roles of fungi in ecological processes. We combined tree data and soil fungal DNA metabarcoding data to compare richness and community...
Article
Full-text available
Plants have been used in Amazonian forests for millennia and some of these plants are disproportionally abundant (hyperdominant). At local scales, people generally use the most abundant plants, which may be abundant as the result of management of indigenous peoples and local communities. However, it is unknown whether plant use is also associated w...
Article
Full-text available
Environmental and dispersal filters are key determinants of species distributions of Amazonian tree communities. However, a comprehensive analysis of the role of environmental and dispersal filters is needed to understand the ecological and evolutionary processes that drive phylogenetic and taxonomic turnover of Amazonian tree communities. We compa...
Article
Full-text available
The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare...
Article
Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of...
Preprint
Full-text available
Species records from biological collections are becoming increasingly available online. This unprecedented availability of records has largely supported recent studies in taxonomy, bio-geography, macro-ecology, and biodiversity conservation. Biological collections vary in their documentation and notation standards, which have changed through time....
Article
Full-text available
The large flood pulse of the Amazon basin is a principal driver of environmental heterogeneity with important implications for ecosystem function and the assembly of natural communities. Understanding species ecological response to the flood pulse is thus a key question with implications for theories of species coexistence, resource management, and...
Preprint
Full-text available
In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important...
Article
The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare...
Article
Full-text available
1. The Balbina hydropower dam in the Central Amazon basin, established in the Uatumã River in the 1980s, is emblematic for its socio-environmental disaster. Its environmental impacts go far beyond the reservoir and dam, however, affecting the floodplain forests (igapó) in the downstream area (dam shadow), which have been assessed using a transdisci...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-20537-x
Article
Full-text available
Tropical forests are being deforested worldwide, and the remaining fragments are suffering from biomass and biodiversity erosion. Quantifying this erosion is challenging because ground data on tropical biodiversity and biomass are often sparse. Here, we use an unprecedented dataset of 1819 field surveys covering the entire Atlantic Forest biodivers...
Article
Full-text available
The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality...
Article
Full-text available
The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality...
Article
Endemic species are important for biodiversity conservation. Yet, quantifying endemism remains challenging because endemism concepts can be too strict (i.e., pure endemism) or too subjective (i.e., near endemism). We propose a data-driven approach to objectively estimate the proportion of records inside a given the target area (i.e., endemism level...
Article
Full-text available
The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality...
Preprint
Full-text available
Tropical forests are being deforested worldwide, and the remaining fragments are suffering from biomass and biodiversity erosion. Quantifying this erosion is challenging because ground data on tropical biodiversity and biomass are often sparse. Here, we use an unprecedented dataset of 1,819 field surveys covering the entire Atlantic Forest biodiver...
Article
Full-text available
Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and...
Article
Full-text available
Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) an...
Article
Full-text available
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia...
Article
Full-text available
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia...
Article
Full-text available
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia...
Article
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia...
Article
Full-text available
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia...
Article
Full-text available
The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate contro...
Article
The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate contro...
Article
Full-text available
Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree’s growth rate and probability of mortality, but large‐scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantifie...
Article
Aim To (a) assess the environmental suitability for rainforest tree species of Moraceae and Urticaceae across Amazonia during the Mid‐Late Holocene and (b) determine the extent to which their distributions increased in response to long‐term climate change over this period. Location Amazonia. Taxon Tree species of Moraceae and Urticaceae. Methods...
Article
Forecasting the impacts of climate change on species distribution has several implications for conservation. Plinia edulis is a rare and threatened tree species from Brazilian Atlantic Rainforest. In this study, we assessed the impact of global climate change on the distribution of P. edulis. Additionally, we evaluated the efficacy of the Brazilian...
Preprint
Full-text available
Myristica fragrans Houtt. (Myristicaceae) is widely used as condiment in western countries as well as a drug in medicinal systems such as the Ayuverda and Unani. The assemblage of its chloroplast genome resulted in a total of 155,894 bp, from which 146 genes were annotated, along with 86 coding regions, 43 exons and 22 introns. This study is a step...
Preprint
Full-text available
Endemic species are essential for setting conservation priorities. Yet, quantifying endemism remains challenging because endemism concepts can be too strict (i.e. pure endemism) or too subjective (i.e. near endemism). We use a data-driven approach to objectively estimate the proportion of records outside a given the target area (i.e. endemism level...
Article
Full-text available
Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia...
Article
Full-text available
Most knowledge on biodiversity derives from the study of charismatic macro-organisms, such as birds and trees. However, the diversity of micro-organisms constitutes the majority of all life forms on Earth. Here, we ask if the patterns of richness inferred for macro-organisms are similar for micro-organisms. For this, we barcoded samples of soil, li...
Article
Full-text available
Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera...
Article
Full-text available
Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera...
Article
Full-text available
Forest biomass is an essential indicator for monitoring the Earth’s ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of abov...
Article
Full-text available
Forest biomass is an essential indicator for monitoring the Earth’s ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of abov...
Article
Full-text available
Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of abov...
Article
Full-text available
Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of abov...
Article
Full-text available
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such “monodominant” forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tr...
Article
Full-text available
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such “monodominant” forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tr...
Article
Full-text available
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such “monodominant” forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tr...
Article
Full-text available
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such “monodominant” forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tr...
Article
Full-text available
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such “monodominant” forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tr...
Article
Full-text available
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such “monodominant” forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tr...