Hans Friedrich Koehn

Hans Friedrich Koehn
  • University of Illinois Urbana-Champaign

About

45
Publications
2,122
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
638
Citations
Current institution
University of Illinois Urbana-Champaign

Publications

Publications (45)
Article
Cognitive Diagnosis Models in educational measurement are restricted latent class models that describe ability in a knowledge domain as a composite of latent skills an examinee may have mastered or failed. Different combinations of skills define distinct latent proficiency classes to which examinees are assigned based on test performance. Items of...
Article
Bayesian analysis relies heavily on the Markov chain Monte Carlo (MCMC) algorithm to obtain random samples from posterior distributions. In this study, we compare the performance of MCMC stopping rules and provide a guideline for determining the termination point of the MCMC algorithm in latent variable models. In simulation studies, we examine the...
Article
Full-text available
Computerized adaptive testing for cognitive diagnosis (CD‐CAT) achieves remarkable estimation efficiency and accuracy by adaptively selecting and then administering items tailored to each examinee. The process of item selection stands as a pivotal component of a CD‐CAT algorithm, with various methods having been developed for binary responses. Howe...
Chapter
The multiple-choice (MC) item format has been implemented in educational assessments that are used across diverse content domains. MC items comprise two components: the stem that provides the context with a motivating narrative, and the collection of response options consisting of the correct answer, called the “key,” and several incorrect alternat...
Article
The multiple-choice (MC) item format has been widely used in educational assessments across diverse content domains. MC items purportedly allow for collecting richer diagnostic information. The effectiveness and economy of administering MC items may have further contributed to their popularity not just in educational assessment. The MC item format...
Article
The Polytomous Local Independence Model (PoLIM) by Stefanutti, de Chiusole, Anselmi, and Spoto, is an extension of the Basic Local Independence Model (BLIM) to accommodate polytomous items. BLIM, a model for analyzing responses to binary items, is based on Knowledge Space Theory, a framework developed by cognitive scientists and mathematical psycho...
Article
Diagnostic classification models in educational measurement describe ability in a knowledge domain as a composite of specific binary skills called “cognitive attributes,” each of which an examinee may or may not have mastered. Attribute Hierarchy Models (AHMs) account for the possibility that attributes are dependent by imposing a hierarchical stru...
Chapter
Additive trees are graph-theoretic models that can be used for constructing network representations of pairwise proximity data observed on a set of N objects. Each object is represented as a terminal node in a connected graph; the length of the paths connecting the nodes reflects the inter-object proximities. Carroll, Clark, and DeSarbo (J Classif...
Article
Parametric likelihood estimation is the prevailing method for fitting cognitive diagnosis models—also called diagnostic classification models (DCMs). Nonparametric concepts and methods that do not rely on a parametric statistical model have been proposed for cognitive diagnosis. These methods are particularly useful when sample sizes are small. The...
Article
Educational researchers have argued that a realistic view of the role of attributes in cognitively diagnostic modeling should account for the possibility that attributes are not isolated entities, but interdependent in their effect on test performance. Different approaches have been discussed in the literature; among them the proposition to impose...
Article
The Q-matrix of a cognitively diagnostic test is said to be complete if it guarantees the identifiability of all possible proficiency classes among examinees. An incomplete Q-matrix causes examinees to be assigned to proficiency classes to which they do not belong. Completeness of the Q-matrix is therefore a key requirement of any cognitively diagn...
Chapter
Educational researchers have argued that a realistic view of the role of attributes in cognitively diagnostic modeling should account for the possibility that attributes are not isolated entities, but interdependent in their effect on test performance. Different approaches have been discussed in the literature; among them the proposition to impose...
Article
We present a procedure (RAUS) for residual analysis of a dissimilarity matrix whereby unidimensional scaling is successively applied to the absolute value of residuals. A key advantage of RAUS is that the efficient Defays formulation of unidimensional scaling can be used for the fitting of each scale. An example using U.S. Supreme Court voting data...
Conference Paper
The Reduced Reparameterized Unified Model (Reduced RUM) has received considerable attention among educational researchers. Markov chain Monte Carlo (MCMC) or Expectation Maximization (EM) is typically used for estimating the Reduced RUM. Implementations of the EM algorithm are available in the latent class analysis (LCA) routines of commercial soft...
Article
Joint maximum likelihood estimation (JMLE) is developed for diagnostic classification models (DCMs). JMLE has been barely used in Psychometrics because JMLE parameter estimators typically lack statistical consistency. The JMLE procedure presented here resolves the consistency issue by incorporating an external, statistically consistent estimator of...
Article
The Q-matrix of a cognitively diagnostic test is said to be complete if it allows for the identification of all possible proficiency classes among examinees. Completeness of the Q-matrix is therefore a key requirement for any cognitively diagnostic test. However, completeness of the Q-matrix is often difficult to establish, especially, for tests wi...
Article
The Deterministic Input Noisy Output “AND” gate (DINA) model and the Deterministic Input Noisy Output “OR” gate (DINO) model are two popular cognitive diagnosis models (CDMs) for educational assessment. They represent different views on how the mastery of cognitive skills and the probability of a correct item response are related. Recently, however...
Article
The asymptotic classification theory of cognitive diagnosis (ACTCD) provided the theoretical foundation for using clustering methods that do not rely on a parametric statistical model for assigning examinees to proficiency classes. Like general diagnostic classification models, clustering methods can be useful in situations where the true diagnosti...
Article
The Reduced Reparameterized Unified Model (Reduced RUM) is a diagnostic classification model for educational assessment that has received considerable attention among psychometricians. However, the computational options for researchers and practitioners who wish to use the Reduced RUM in their work, but do not feel comfortable writing their own cod...
Article
The maximum cardinality subset selection problem requires finding the largest possible subset from a set of objects, such that one or more conditions are satisfied. An important extension of this problem is to extract multiple subsets, where the addition of one more object to a larger subset would always be preferred to increases in the size of one...
Chapter
The associations between the items of a test based on the cognitive diagnosis framework and the skills required to solve them are documented in the Q-matrix. If the items have skill profiles that allow for the identification of all possible proficiency classes among examinees, then the Q-matrix of the test is said to be complete. An incomplete Q-ma...
Article
The Asymptotic Classification Theory of Cognitive Diagnosis (Chiu et al., 2009, Psychometrika, 74, 633-665) determined the conditions that cognitive diagnosis models must satisfy so that the correct assignment of examinees to proficiency classes is guaranteed when non-parametric classification methods are used. These conditions have only been prove...
Article
The monotone homogeneity model (MHM-also known as the unidimensional monotone latent variable model) is a nonparametric IRT formulation that provides the underpinning for partitioning a collection of dichotomous items to form scales. Ellis (Psychometrika 79:303-316, 2014, doi: 10.1007/s11336-013-9341-5 ) has recently derived inequalities that are i...
Article
Cognitive diagnosis models (CDMs) for educational assessment are constrained latent class models. Examinees are assigned to classes of intellectual proficiency defined in terms of cognitive skills called attributes, which an examinee may or may not have mastered. The Reduced Reparameterized Unified Model (Reduced RUM) has received considerable atte...
Chapter
Current methods for fitting cognitive diagnosis models (CDMs) to educational data typically rely on expectation maximization (EM) or Markov chain Monte Carlo (MCMC) for estimating the item parameters and examinees’ proficiency class memberships. However, for advanced, more complex CDMs like the reduced reparameterized unified model (Reduced RUM) an...
Article
Cognitive diagnosis models of educational test performance rely on a binary Q-matrix that specifies the associations between individual test items and the cognitive attributes (skills) required to answer those items correctly. Current methods for fitting cognitive diagnosis models to educational test data and assigning examinees to proficiency clas...
Article
One-dimensional bin-packing problems require the assignment of a collection of items to bins with the goal of optimizing some criterion related to the number of bins used or the ‘weights’ of the items assigned to the bins. In many instances, the number of bins is fixed and the goal is to assign the items such that the sums of the item weights for e...
Chapter
Cognitive diagnosis models of educational test performance decompose ability in a domain into a set of specific binary skills called attributes. (Non-)mastery of attributes documents an examinee’s strengths and weaknesses in the domain as a profile of mental aptitude. Distinct attribute profiles define classes of intellectual proficiency to which e...
Article
Multiobjective programming, a technique for solving mathematical optimization problems with multiple conflicting objectives, has received increasing attention among researchers in various academic disciplines. A summary of multiobjective programming techniques and a review of their applications in quantitative psychology are provided.
Article
Decomposition of a rectangular proximity matrix into a sum of equal-sized matrices, each constrained to display a certain order pattern, called an anti-Q form, can be interpreted as a less restrictive analogue of singular value decomposition. Both decomposition techniques share the ultimate goal of identifying a parsimonious representation of the o...
Chapter
A fundamental concept encountered in the field of classification is that of an ultrametric which serves as a mechanism for characterizing collections of hierarchically organized partitions for some given object set. This chapter discusses the imposition of a given fixed order, in constructing and displaying an ultrametric. Then the extensions of th...
Article
Full-text available
The p-median clustering model represents a combinatorial approach to partition data sets into disjoint, nonhierarchical groups. Object classes are constructed around exemplars, that is, manifest objects in the data set, with the remaining instances assigned to their closest cluster centers. Effective, state-of-the-art implementations of p-median cl...
Article
The clique partitioning problem (CPP) requires the establishment of an equivalence relation for the vertices of a graph such that the sum of the edge costs associated with the relation is minimized. The CPP has important applications for the social sciences because it provides a framework for clustering objects measured on a collection of nominal o...
Article
Several authors have touted the p-median model as a plausible alternative to within-cluster sums of squares (i.e., K-means) partitioning. Purported advantages of the p-median model include the provision of “exemplars” as cluster centers, robustness with respect to outliers, and the accommodation of a diverse range of similarity data. We developed a...
Article
Frey and Dueck (Reports, 16 February 2007, p. 972) described an algorithm termed “affinity propagation” (AP) as a promising alternative to traditional data clustering procedures. We demonstrate that a well-established heuristic for the p-median problem often obtains clustering solutions with lower error than AP and produces these solutions in compa...
Article
Although the K-means algorithm for minimizing the within-cluster sums of squared deviations from cluster centroids is perhaps the most common method for applied cluster analyses, a variety of other criteria are available. The p-median model is an especially well-studied clustering problem that requires the selection of p objects to serve as cluster...
Article
Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30×30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation...
Article
Full-text available
Edwin Diday, some two decades ago, was among the first few individuals to recognize the importance of the (anti-)Robinson form for representing a proximity matrix, and was the leader in suggesting how such matrices might be depicted graphically (as pyramids). We characterize the notions of an anti-Robinson (AR) and strongly anti-Robinson (SAR) matr...
Article
A new method is proposed for conducting individual differences scaling within the city-block metric that does not rely on gradient- or subgradient-based optimization. Instead, a combinatorial optimization scheme is utilized for identifying object coordinates minimizing the least-squares loss function. The illustrative application of combinatorial i...
Article
Ten sustained musical instrument tones (bassoon, cello, clarinet, flute, horn, oboe, recorder, alto saxophone, trumpet, and violin) were spectrally analyzed and then equalized for duration, attack and decay time, fundamental frequency, number of harmonics, average spectral centroid, and presentation loudness. The tones were resynthesized both with...

Network

Cited By