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ABSTRACT 

Mineral and bone disorders (MBD) are common in patients with chronic kidney disease (CKD), contributing to significant morbidity 
and mortality. For several decades, the first-line approach to controlling hyperparathyroidism in CKD was by exogenous calcium 

loading. Since the turn of the millennium, however, a growing awareness of vascular calcification risk has led to a paradigm shift in 

management and a move away from calcium-based phosphate binders. As a consequence, contemporary CKD patients may be at risk 
of a negative calcium balance, which, in turn, may compromise bone health, contributing to renal bone disease and increased fracture 
risk. A calcium intake below a certain threshold may be as problematic as a high intake, worsening the MBD syndrome of CKD, but 
is not addressed in current clinical practice guidelines. The CKD-MBD and European Renal Nutrition working groups of the European 

Renal Association (ERA), together with the CKD-MBD and Dialysis working groups of the European Society for Pediatric Nephrology 
(ESPN), developed key evidence points and clinical practice points on calcium management in children and adults with CKD across 
stages of disease. These were reviewed by a Delphi panel consisting of ERA and ESPN working groups members. The main clinical 
practice points include a suggested total calcium intake from diet and medications of 800–1000 mg/day and not exceeding 1500 mg/day 
to maintain a neutral calcium balance in adults with CKD. In children with CKD, total calcium intake should be kept within the 
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age-appropriate normal range. These statements provide information and may assist in decision-making, but in the absence of high- 
level evidence must be carefully considered and adapted to individual patient needs.

Keywords: calcium, chronic kidney disease–mineral and bone disorder, osteoporosis, renal insufficiency, vascular calcification 

GRAPHICAL ABSTRACT 
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NTRODUCTION 

alcium is an essential nutrient that plays a vital role in neuro-
uscular function, enzyme-mediated processes and blood clot-

ing, and provides skeletal rigidity by being an essential com-
onent of mineralized bone. Its non-structural roles require the
trict maintenance of ionized calcium concentration in tissue flu-
ds. In situations of too low exogenous calcium supply, the calcium
eservoir in the skeleton can complement the plasma [ 1 ]. Whole-
ody calcium balance refers to the net of calcium influx into the
ody minus all calcium losses from the body during a given time
eriod [ 2 ]. 
In healthy adults over the age of 25–30 years, the rate of calcium

bsorption from the gastrointestinal tract must match the losses
rom the body through the gut, kidneys, skin, hair and nails; so
hat calcium balance is neutral (Fig. 1 ). Age, sex, bone disease, hor-
onal status and exercise all affect calcium balance. In chronic
idney disease (CKD), dysregulated calcium homeostasis renders
atients at risk of either a negative or a positive calcium balance.
Hypocalcemia drives hyperparathyroidism, which in turn in-

reases bone turnover, resulting in reduced mineralization and
one loss, compromising bone strength. Along with an increased
all risk and abnormalities in bone quality related to uremia, this
equence of events contributes to the increased fracture risk in
KD [ 3 ]. Adults with CKD G5 and on dialysis (CKD G5D) exhibit a
- to 6-fold higher risk of non-vertebral fractures than age- and
ex-matched controls [ 4 , 5 ], and even children with early CKD
G2–3A) have a 2- to 3-fold higher fracture risk compared with
heir healthy peers [ 6 ]. 
In the 1990s, exogenous calcium loading through a high cal-

ium dialysate and concomitant use of calcium-containing phos-
hate binders and active vitamin D derivatives were the first-
ine approach to control hyperparathyroidism and hyperphos-
hatemia in CKD. Around the turn of the millennium, increased
wareness of the vascular calcification burden in CKD triggered
 paradigm shift. Preventing vascular calcification was given pri-
rity over controlling hyperparathyroidism [ 7 , 8 ]. Excessive cal-
ium loading was shown to associate with vascular calcification
rogression and was assumed to contribute to the increased car-
iovascular risk in CKD. Against this background, calcium-free
hosphate binders rapidly gained popularity, often completely
eplacing calcium-based binders. Meanwhile, calcimimetics en-
ered clinical practice and proved very powerful in suppressing
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Figure 1: Body calcium fluxes; in patients receiving dialysis, calcium 

mass transfer to or from the dialysis fluid must also be taken into 
account. RKF, residual kidney function. 
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parathyroid hormone (PTH) and unlike active vitamin D deriva-
tives, without increasing calcium levels—rather the opposite. Cal-
cimimetics thus increasingly complemented, if not replaced, ac-
tive vitamin D derivatives for the control of hyperparathyroidism
in patients with CKD G5D. Calcium was inappropriately labeled
a “cardiovascular toxin” [ 9 ], and clinical guidelines and position
papers [ 10 ] emphasized the risks of overzealous calcium loading.

This “war on calcium” may have caused collateral damage. An
increasing number of patients with CKD may be at risk of overt
calcium deficiency, potentially contributing to inadequate control
of hyperparathyroidism, worsening of renal bone disease and in-
creased fracture risk. Thus, calcium intake below a lower thresh-
old limit might induce harm, just as exceeding the upper tolerable
limit will. An inadequate provision of calcium may go unnoticed
for long periods, because commonly available tools for estimat-
ing calcium requirements remain crude and unreliable. In current
clinical practice, serum calcium levels are our only tool for es-
timating calcium requirements, but serum calcium accounts for
< 0.1% of total body calcium, and due to tight negative feedback
control, cannot reflect the total body calcium. 

Calcium management in CKD remains an area fraught with un-
certainties, resulting in wide variations in practice. Notably, the
KDIGO guidelines on CKD–mineral and bone disorder (CKD-MBD),
published in 2009 [ 7 ] and updated in 2017 [ 11 ], do not include rec-
ommendations for calcium intake for patients receiving mainte-
nance dialysis or living with a kidney transplant. Moreover, exper-
tise from dieticians is often lacking even in tertiary nephrology
centers. 

Acknowledging the need for a balanced view on calcium man-
agement, the European Renal Osteodystrophy (EUROD) initiative,
a part of the European Renal Association (ERA) CKD-MBD work-
ing group, and the ERA European Renal Nutrition (ERN) work-
ing group, together with members of the CKD-MBD and Dialysis
working groups of the European Society for Pediatric Nephrology
(ESPN), convened a group of nephrologists and nutritionists (ex-
pert panel, ExP) with expertise in CKD-MBD management and re-
nal nutrition. The initiative was endorsed by the ERA. The ExP
was tasked with developing a consensus statement on calcium
management in CKD, especially on the recommended intake of
calcium in children and adults with CKD across stages of dis-
ease. These recommendations are designed to provide informa- 
tion and assist in decision-making to reduce uncertainty and im- 
prove patient outcome. They are not intended to define a stan- 
dard of care and should not be interpreted as an exclusive course
of management. Recommendations for further research are sug- 
gested. Following publication of the consensus statement, the ExP 
has planned a dissemination phase to guide practical day-to-day 
management of calcium intake. 

METHODS 

Developing the PICO questions 
Clinical practice recommendations are most useful when they 
provide specific actionable advice on choosing between alterna- 
tive approaches in particular clinical situations. We developed 
clinical questions to be addressed and framed them in a search- 
able format, with specification of the patient group (P) to whom 

the statement would apply; the intervention (I) being considered; 
the comparator (C) (which may be “no action” or an alternative 
intervention); and the outcomes (O) affected by the intervention.
Our PICO terms were as follows: 

Population: patients (children and adults) with CKD G2–5D 

Intervention: nutritional requirement for calcium at different 
ages and stages of CKD 

Comparator: nutritional requirements for calcium in age- 
matched healthy controls 
Outcomes: bone pain and deformities, fracture risk, calcium bal- 
ance, bone (de)mineralization (on imaging or bone histology), de- 
velopment of hypo- or hypercalcemia, PTH control, changes in 
bone turnover markers, development of vascular calcification (on 
imaging or vessel biopsy), all-cause and cardiovascular mortality 

We have included children, adolescents and adults in this consen- 
sus document as physiological changes in bone development con- 
stitute a continuum through the ages, with the skeletal turnover 
and mineralization in young adults being more similar to the 
growing bones of children with accrual of calcium rather than 
the slow demineralization of the skeleton of older adults [ 12 , 13 ].
The Paediatric Renal Nutrition Taskforce have recently published 
clinical practice recommendations on the dietary management of 
calcium and phosphate in children with CKD G2–5D [ 14 ], which
will be referred to for specific details on the dietary management 
of childhood CKD-MBD. No distinction was made between sexes,
given the paucity of sex-specific data. Calcium requirements 
in pregnant and lactating women is beyond the scope of this
document. 

Literature search 

Given the paucity of systematic reviews, meta-analyses and ran- 
domized controlled trials (RCTs) specifically dealing with the topic 
of calcium management in CKD, original research manuscripts 
have mainly been used to provide the evidence base for this con-
sensus. Existing guidelines on nutritional requirements of cal- 
cium in healthy individuals of all ages were reviewed. Clinical 
practice recommendations are based on an in-depth review of 
the available evidence, but in the absence of applicable studies,
guidance is based on the opinion of experienced dietitians and 
nephrologists from the ExP. 

Framing advice 

This consensus presents “Key evidence points” providing a con- 
cise summary of available evidence, and “Clinical practice points”
presenting our clinical practice recommendations. Using the 



4 | Nephrol Dial Transplant , 2023, Vol. 0, No. 0 

D  

q  

s  

a  

r  

f  

o  

i  

g  

s  

r  

a

Q  

I
I
C
K

 

 

 

 

 

 

 

B
I  

v  

i  

t  

b  

s  

S
 

m  

l  

R  

q  

s  

i  

e  

t  

n
 

h  

A  

g  

i  

m  

fi  

t  

p  

a  

a  

d  

N
 

t  

d  

d  

t  

l  

c  

c  

c  

a  

1  

r  

c  

a  

7  

q  

r  

a  

a  

o

 

 

 

 

 

T  

o  

i  

7  

w  

i  

t  

i  

c
 

i  

c  

t  

i  

m  

w  

t  

p  

t  

o  

c
 

m  

(  

t  

c  

5  

W  

s  

t  

f  

m  

m  

D
ow

nloaded from
 https://academ

ic.oup.com
/ndt/advance-article/doi/10.1093/ndt/gfad185/7269225 by Aarhus U

niversity Library user on 06 N
ovem

ber 2023
elphi method, voting group members were sent an e-
uestionnaire to provide a level of agreement on a 5-point
cale (strongly disagree, disagree, neither agree nor dis-
gree, agree, strongly agree) and given the opportunity for
e-wording of the practice points if appropriate. Participants
or the Delphi survey were board and ordinary members
f the ERA CKD-MBD (including EUROD) and ERN work-
ng groups, and the ESPN CKD-MBD and Dialysis working
roups. It was agreed a priori that at least a 70% level of con-
ensus was required for each statement, failing which the
ecommendation would be adapted after discussion in the ExP,
nd reviewed again. 

UESTION 1: WHAT IS THE RECOMMENDED
NTAKE OF CALCIUM IN HEALTHY 

NDIVIDUALS OF DIFFERENT AGES? 
alcium requirements in healthy individuals 
ey evidence points 
• Adequate calcium intake is defined as the amount that meets

the needs of 97.5% of healthy people in the age-related popu-
lation.

• Calcium requirements are expressed in milligrams of elemen-
tal calcium intake per day (mg/day).

• Calcium requirements are described as a range based on evi-
dence from balance studies and clinical trials on fracture risk
reduction.

• Calcium requirements vary considerably throughout the 
lifespan, being highest during periods of rapid growth in in-
fancy and adolescence.

• International recommendations have set a reference intake
of 800–1000 mg/day for healthy adults over 25 years of age.

ackground and rationale 
t is important to define calcium requirements in healthy indi-
iduals before modifications to the calcium intake are considered
n patients with CKD. Recommendations for calcium intake for
he general population of children and adults have been reported
y many countries and international authorities including the In-
titute of Medicine (IOM) [ 15 ] in the USA and the European Food
afety Authority (EFSA) [ 16 ]. 
Several different terms have been used in international recom-
endations to describe nutrient adequacy; these include Popu-

ation Reference Intake, Recommended Dietary Allowance (RDA),
ecommended Nutrient Intake (RNI) and Estimated Average Re-
uirements. To avoid potentially confusing terminology, we de-
cribe calcium requirements in milligrams of elemental calcium
ntake per day, and we suggest avoiding terms such as RDA/RNI,
tc. However, to compare different guidelines and benchmark nu-
ritional intake against KDIGO and KDOQI guidelines, it is worth
oting that the RDA is used in both. 
Calcium requirements vary throughout the lifespan, being

ighest in infancy and adolescence [ 17 –19 ] and lower in older age.
dequate dietary calcium intake is essential for normal skeletal
rowth and mineralization as the calcium content of the skeleton
ncreases from 25 g at birth to > 1000 g in adults. Calcium require-
ents are highest during periods of rapid growth, including the
rst year of life and during puberty [ 20 ]. Approximately 25% of
he total skeletal mass is laid down during the 2-year interval of
eak height velocity during adolescence [ 21 ], but bone calcium
ccrual continues, at a slower pace, until peak height is reached
t ∼30 years of age [ 12 ]. Calcium requirements in healthy chil-
ren of different ages have been described by the Paediatric Renal
utrition Taskforce [ 14 ]. 
The IOM, EFSA and others use a factorial approach to de-

ermine optimal calcium requirements, based on carefully con-
ucted calcium balance studies in healthy individuals and on
ata from RCTs on calcium intake and skeletal outcomes. Both
he IOM and EFSA have used the pooled analyses of studies pub-
ished by Hunt and Johnson [ 22 ], who determined the dietary cal-
ium intake required to maintain neutral calcium balance. Cal-
ium balance data [calcium intake—(fecal calcium + urinary cal-
ium)] were collected from 155 healthy adults (73 women, mean
ge 47 years, and 82 men, mean age 28 years) who participated in
9 rigorously controlled feeding studies. Daily intakes of calcium
anged from 415 to 1740 mg. The models predicted a neutral cal-
ium balance at 741 mg/day (507–1035 mg/day). Assuming that
 neutral balance is achieved with this average requirement of
41 mg/day, and taking into account the variation in calcium re-
uirements in the population, both the IOM and EFSA have set a
eference intake of 800–1000 mg/day (corresponding to the aver-
ge requirement + 2 SD) for adults > 25 years of age. However, there
re also notable differences between these two international rec-
mmendations: 

- EFSA allows a marginally higher calcium intake of
1150 mg/day in young adults up to 25 years to account
for the higher bone calcium accretion until peak bone mass
is reached.

- The IOM recommends a higher calcium intake (1200 mg/day)
in women > 50 years and men > 70 years based on reduced
calcium absorption with age.

he higher calcium requirement in older age is difficult to rec-
ncile with the Hunt and Johnson study. Women were not strat-
fied for menopausal status, and there were only two men above
0 years, with no evidence of changes in skeletal maintenance
ith older age. In addition, due to a lack of calcium balance stud-

es in adults > 70 years, RCT data were used instead. However,
hese trials are inconsistent, lack information on dietary calcium
ntake and show a poor dose–response relationship between cal-
ium intake and skeletal outcomes [ 22 ]. 
Two meta-analyses explored the association between calcium

ntake and fracture risk in otherwise healthy adults. Bolland et al.
oncluded that dietary calcium intake is not associated with frac-
ure risk and that there is no evidence that increasing calcium
ntake from dietary sources prevents fractures [ 23 ]. In a recent
eta-analysis by Zhao et al., which included 33 randomized trials
ith > 50 000 participants, there was no significant association be-
ween calcium intake and risk of hip fracture as compared with
lacebo or no treatment [ 24 ]. Thus, as there is no clear evidence
hat a higher calcium intake leads to either a reduced bone loss
r a lower fracture risk, we do not recommend increasing the cal-
ium intake in older adults, in line with EFSA recommendations. 
Of note, in the Bolland meta-analysis, those on calcium supple-
ents had an average total daily calcium intake of 1780 mg/day

range 1230–2314 mg/day) [ 23 ], which is considerably higher than
he average population intake [ 25 ]. Elderly people in residential
are have much lower baseline dietary calcium intakes (mean
13 mg/day) together with low baseline vitamin D concentrations.
hen such vulnerable adults were given calcium and vitamin D

upplements (1200 mg/day + 800 IU/day), the risk of hip frac-
ures was reduced by 23% and all fractures by 17% over 3-year
ollow-up [ 26 ]. Similarly, a cluster RCT showed that when vita-
in D–replete elderly in care homes were given calcium supple-
entation by high calcium, high protein dairy foods, those on a
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higher calcium intake [1142 ( ±353) mg/day vs 700 ( ±247) mg/day
in controls] had a risk reduction of 33% for all fractures, 46% for
hip fractures and 11% for falls [ 27 ]. In populations with a natu-
rally lower dietary calcium intake (mean 522 mg/day in men and
507 mg/day in women), there was a 6% reduction in the vertebral
fracture risk for every 100 mg increase in dietary calcium intake in
women, with no association seen in men [ 28 ]. These data suggest
that with an insufficient calcium intake, supplementation with
calcium (and/or vitamin D) has positive effects on skeletal health,
reducing fracture risk. 

Dietary sources of calcium and bioavailability 

Key evidence points 
• The main dietary sources of calcium for children and adults

are dairy products, cereals if fortified with calcium and bev-
erages, with considerable variation across geographic regions
and ethnic groups.

• Statutory or voluntary fortification with calcium can increase
the calcium content of other foods.

• Calcium bioavailability in healthy individuals averages 30%.

Background and rationale 
The contribution of different foods to the average daily intake
of calcium varies with age, the individual’s food preferences and
national guidelines on food fortification. Dairy products are the
largest contributor to dietary calcium intake in most children
[ 29 ]. The main dietary sources of calcium in healthy adults are
dairy products, cereals and beverages (non-alcoholic), although
the contribution from dairy varies from 37% to 67% across dif-
ferent countries [ 30 ]. Of note, hard water from taps and some
mineral waters can be important sources of calcium, contribut-
ing up to 500 mg/L [ 31 ]. The typical calcium content per portion
of calcium-rich foods and the bioavailability of calcium [ 32 ] from
these sources are shown in Table 1 . 

Calcium is often added to foods by manufacturers, either for
fortification or as a food additive (used as food color or preserva-
tive) [ 33 ]. Calcium fortification of foods such as bread and wheat
flour is mandated in some countries like the UK. Also, calcium
is often added to breakfast cereals and drinks, particularly those
consumed by children, which contributes variable amounts to
the dietary intake. The actual calcium content of processed prod-
ucts vary considerably depending on the production methods and
brand, and nutrient composition tables may not provide accurate
estimates of the added calcium. 

In healthy individuals, approximately 30% of dietary calcium
is absorbed [ 34 ], but this depends on the food source and subject-
related factors, ranging from 5% to 82% (Fig. 2 ). Physiological vari-
ations in calcium absorption are strongly influenced by age, being
highest in infancy and adolescence [ 20 ], virtually doubling during
pregnancy [ 35 ], and decreasing after the age of 40 years [ 36 ]. 

Balance studies have shown that the fractional calcium absorp-
tion is inverse to calcium intake when the intake is very low and
reaches a threshold at higher intakes; approximately 45% absorp-
tion was seen at low intakes (200 mg) and 15% at intakes over
2000 mg [ 36 ]. Vitamin D status may also influence calcium absorp-
tion and is discussed in subsequent sections. Milk, dairy products,
some mineral waters and fortified foods have a calcium bioavail-
ability between 30% and 40%, whereas it is < 10% for vegetables
and fruit [ 37 , 38 ]. Phytates, oxalates, phosphate and fatty acids
bind calcium in the gut to form insoluble calcium salts thereby
reducing calcium absorption. Studies investigating whether the
fractional calcium absorption is related to gastric acidity show
heterogeneous results in healthy controls [ 39 –44 ]. Case-mix, vari-
able test conditions, proton pump inhibitor (PPI) use and analyt- 
ical issues likely explain this heterogeneity. Recent data demon- 
strating low calcium absorption in patients after gastric bypass 
surgery or sleeve gastrectomy emphasize the role of the stom- 
ach in calcium bioavailability [ 45 , 46 ]. Importantly, individuals on
a phosphate-restricted diet are likely to have a low dietary cal- 
cium intake as most foods that contain phosphate are also natu- 
ral sources of calcium [ 29 ]. 

Estimating an individual’s calcium intake 

Clinical practice points: 
• An estimate of the total calcium intake should consider con- 

tributions from diet and medications (including calcium sup- 
plements and calcium-containing phosphate binders).

• A self-administered questionnaire or diet history of a typical 
24-h period can be used to rapidly identify the main sources 
of dietary calcium.

• A 3-day prospective diet diary (food intake record) can be used 
when detailed information is required.

• The calcium bioavailability from different foods should be 
considered when estimating net absorption.

Background and rationale 
An individual’s usual calcium intake can be estimated using a va- 
riety of tools—these are described in Table 2 together with their
relative advantages and disadvantages [ 47 –49 ]. For a rapid bedside
estimation, self-administered on-line calculators or a retrospec- 
tive diet history of a typical 24-h period can be useful tools. The In-
ternational Osteoporosis Foundation ( https://www.osteoporosis. 
foundation/educational-hub/topic/calcium-calculator) and the 
Royal Osteoporosis Society ( https://webapps.igc.ed.ac.uk/world/ 
research/rheumatological/calcium-calculator) provide free on- 
line calculators [ 50 , 51 ] that are quick and easy to use. Other na-
tional societies provide similar tools that take into account re- 
gional food choices and fortification practices. 

For detailed analyses, a 3-day prospective diet diary/food in- 
take record or a food frequency questionnaire can give a clini-
cally useful estimate of intake [ 47 ], but can be time-consuming
to administer and assess. A more detailed account of the con- 
sumption of specific dietary sources of calcium (such as milk, for- 
tified cereals and additive-rich foods), together with portion sizes,
can be determined by direct questioning, followed by analysis us- 
ing country specific food composition databases or dietary anal- 
ysis software. Importantly, the calcium intake from supplements 
or calcium-containing phosphate binders can contribute signifi- 
cantly to enteral calcium intake and must be considered in the
overall calcium intake. 

QUESTION 2: WHAT ARE THE 

DETERMINANTS OF CALCIUM BALANCE 

IN CKD? 
Calcium intake and bioavailability in CKD 

Key evidence points 
• The average dietary calcium intake is 500–900 mg/day in 

adults with CKD G3–4 and 400–800 mg/day in CKD G5–5D. The 
average dietary calcium intake in children with CKD varies 
with age.

• The dietary intake of calcium decreases with the progression 
of CKD.

• The dietary intake of calcium shows regional variability, with 
notably lower intake in Asian countries.

https://www.osteoporosis.foundation/educational-hub/topic/calcium-calculator
https://webapps.igc.ed.ac.uk/world/research/rheumatological/calcium-calculator
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Table 1: A guide to the calcium and phosphorus (phosphate) content of foods. 

Food 
Portion size 

[ 237 ] 
Elemental calcium, 
mg per portion [ 238 ] 

Calcium 

bioavailability (%) 
Phosphate, mg per 

portion [ 238 ] 

Dairy and dairy products 
Cow’s milk 100 mL 120 32 94 
Oat, hemp, coconut, rice and almond milk 
(fortified) 

100 mL 120 48 

Custard or rice pudding 120 g 170 136 
Hard cheese 30 g 240 37 212 
Soft cheese (e.g. brie, mozzarella) 30 g 93 30 75 
Yogurt 150 g 189 32 207 
Dairy-free yogurt (fortified) 125 g 150 90 

Egg 
Egg, cooked 50 g (1 egg) 28 103 

Soya products 
Soya milk, cheese and desserts Check product for degree of calcium 

fortification 
24 

Calcium-set tofu 50 g 60 31 48 
Fortified orange juice 

Calcium-fortified orange juice 100 mL 120 20–40 a 

Cereal (grain) and cereal products 
Bread—white calcium fortified 33 g slice 58 31 
Bread—wholemeal 33 g slice 35 67 
Fortified breakfast cereals 30 g pt 1–131 14–26 

Fruit 
Apricots, dried 50 g 29 33 
Apricots, raw 80 g 12 16 
Figs, raw 55 g 126 45 
Currants 2 tbsp 50 38 
Orange 120 g 29 19 

Fish (soft bones eaten) 
Anchovies, canned 5 (15 g) 45 24 45 
Sardines (tinned in oil) 100 g 679 27 545 
Whitebait, fried 80 g 688 24 688 
Salmon, tinned 100 g 164 27 291 

Nuts and seeds 
Almonds a /brazil nuts/hazelnuts/walnuts 30 g 28–72 21 a 90–177 
Sesame seeds 1 tbsp (12 g) 80 21 86 

Spreads 
Peanut butter 20 g 7 66 
Hummus 60 g 25 96 
Tahini paste 1 tsp 129 139 

Vegetables 
Broccoli 85 g 30 58 50 
Watercress 20 g 34 67 10 
Kale 90 g 135 41 41 
Okra, boiled 7 pcs (35 g) 42 19 
Spinach 90 g 144 5 25 
Chickpeas 90 g 39 73 
Red kidney beans 90 g 64 20 117 
Green beans 90 g 50 37 
Baked beans 205 g 86 22 180 

Water 
Tap water 100 mL 8–15 
Mineral water 100 mL 1–48 23–48 

a The exact amount of calcium (and phosphate) present in a food will vary depending on the food source, production methods, degree of fortification and analytical 
technique. Calcium-fortified dairy replacement products usually have a similar calcium content to their cow’s milk alternatives. Values for bioavailability (when 
available) were obtained from a range of published data [ 31 , 34 , 37 , 239 –248 ] but will be influenced by many factors including: cooking method, phytate and oxalate 
content, the total calcium load of a meal [ 249 ], the calcium salt used for fortification, and the calcium and vitamin D status of the consumer. The approximate 
absorption from a mixed meal has been estimated to be 30% [ 34 ]. 
pcs, pieces; pt, portion; tsp, teaspoon; tbsp, tablespoon. 
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• Calcium salts may account for 60%–70% of total cal-
cium intake if calcium-containing phosphate binders
are used.

• Calcium bioavailability is impaired in CKD, averaging
15%.
ackground and rationale 
n patients with CKD G3–5, whole-body calcium influx depends
n calcium intake and bioavailability. In patients with CKD G5D,
ialytic calcium mass transfers must additionally be accounted
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calcium
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CaCl2–CaBic2
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Figure 2: Calcium absorption and bioavailability. The bioavailability of 
calcium from different food sources is influenced by many factors, 
including cooking method, phytate and oxalate content, the total 
calcium load, and the solubility of the complexed calcium. Calcium salt 
solubility is pH dependent, emphasizing the role of gastric acidity. 
Transepithelial and transcellular transport towards the circulation 
(extracellular compartment) is enhanced by vitamin D. CKD may impair 
calcium bioavailability by hampering both calcium solubilization and 
absorption. 
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Data from cohort studies in patients with CKD show a daily di-
etary calcium intake of 400–900 mg/day (Fig. 3 ) [ 52 –72 ]. The main
dietary sources of calcium are bread (when fortified with calcium)
and dairy foods [ 29 , 66 ]. As for most nutrients, dietary calcium
intake decreases with the progression of CKD [ 53 , 59 ]. Besides
uremic anorexia, dietary restrictions likely account for this de-
crease, since dietary phosphate restriction limits food items with
high calcium content and bioavailability [ 29 , 34 ]. As in the gen-
eral population [ 73 ], the dietary calcium intake varies across ge-
ographic regions and ethnic groups [ 72 ], with notably lower in-
take in Asian countries [ 59 , 70 ], reflecting the dietary preferences.
Calcium-containing phosphate binders are an important source
of calcium in patients with CKD G4–5D and can constitute up to
70% of the overall calcium intake [ 29 , 53 , 66 , 67 ]. 

Many direct and indirect methods may be used to evaluate
calcium bioavailability [ 74 ]. They have inherent limitations, and
results obtained with different methods are not interchange-
able and need to be interpreted cautiously. Furthermore, charac-
teristics of the study population (age, sex, habitual dietary cal-
cium intake) [ 36 , 75 ] and of the test meal (composition, calcium
content, extrinsically or intrinsically labeled, tracer carrier com-
pound) may cause variability. Single and double stable or ra-
dioisotope tracer techniques are most often used in clinical re-
search studies and inform on the apparent fractional absorption;
analysis of concomitant stool collections allow for the calcula-
tion of net fractional absorption. Acknowledging that results have
not been unequivocal, available clinical evidence indicate that
calcium bioavailability by gastro-intestinal absorption decreases
along the progression of CKD, with the apparent fractional absorp-
tion averaging 15% in the CKD population as a whole, i.e. about
half the value obtained in healthy controls [ 76 –78 ]. Reasons for
this decreased calcium bioavailability in CKD may include altered 
gut physiology, hypovitaminosis D, vitamin D hyporesponsiveness,
hypogonadism or combinations thereof, as detailed below. 

Gastric acid secretion may be impaired in CKD, both by idio-
pathic and iatrogenic mechanisms [ 79 ]. Reduced expression or 
dysfunction of the calcium-sensing receptor is a common find- 
ing in CKD [ 80 ], and based on recent experimental data, asso-
ciates with impaired H 

+ -ATPase-mediated gastric acid secretion 
[ 81 ]. In addition, up to 90% of patients with CKD are treated
with PPIs [ 82 ], which are potent blockers of the H 

+ -K 

+ -ATPase.
Thus, multiple factors leading to gastric acid secretion blockade 
may account for pronounced hypochlorhydria, if not achlorhy- 
dria, in patients with CKD. Given that a low gastric pH is crit-
ical for solubilization and ionization of calcium salts present 
in foods (discussed above), uremic and iatrogenic hypo- and 
achlorhydria may be an important factor contributing to calcium 

malabsorption. 
CKD associates with low circulating levels of 1,25 dihydroxy 

vitamin D, which is known to enhance transepithelial calcium 

transport. Active vitamin D derivatives increase, but do not 
normalize, calcium absorption in patients receiving hemodial- 
ysis [ 83 ]. Conversely, nutritional vitamin D supplements fail to 
improve calcium absorption, both in healthy controls [ 84 , 85 ]
and in patients with CKD [ 86 ]. These findings challenge the
importance of nutritional vitamin D in intestinal calcium ab- 
sorption. Most likely, nutritional vitamin D supplementation 
only has a clinically meaningful positive impact on calcium 

absorption when vitamin D is severely depleted and calcium 

intake is low [ 10 , 87 ]. Rather than increased gastrointestinal
absorption, an increased renal tubular calcium reabsorption 
and/or skeletal calcium release may be hypothesized to explain 
the increased calcium levels in individuals treated with active 
vitamin D derivatives. 

Most of the dietary calcium is absorbed in the small intes- 
tine, while the large intestine accounts for only 6%–10% of the 
total calcium absorbed. Carbohydrate fermentation may fos- 
ter colonic calcium absorption, but may be very low in CKD
given a restricted intake of potassium-rich fruit and vegeta- 
bles, which have a high content of dietary fiber and fermentable 
carbohydrates. 

Calcium losses in CKD 

Key evidence point 
• Urinary calcium excretion decreases early in the course of 

CKD prior to homeostatic hormonal changes and parallels 
kidney function decline, to average 40 mg/day at CKD G3.

• Endogenous fecal calcium losses are estimated at 
100–200 mg/day.

Background and rationale 
In patients with CKD G2–5 not yet on dialysis, whole-body cal- 
cium efflux occurs through urinary and fecal losses, with small 
amounts also lost through the skin, hair and nails (limited to 
∼40–60 mg/day, and probably not affected by CKD). The 24-h uri- 
nary calcium losses show a stepwise decline across CKD stages,
reaching amounts as low as 22 mg/day in patients with CKD G4
[ 53 , 88 , 89 ]. A low degree of calciuria is seen even in CKD G2–
3, before any changes in regulatory calciotrophic hormones are 
detected. This observation points to a decreased filtered calcium 

load as a main driver of low calciuria. The fractional urinary 
excretion of calcium also decreases with CKD severity. Urinary 
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Table 2: Comparison of some practical dietary assessment methods. 

Method Description Advantages Disadvantages 

Diet history/recall 
(retrospective) 

● Individual recalls recent usual 
food and drink intake 

● Face to face or indirectly by 
telephone 

● Reports usual intake 
● Minimal participant burden 
● No literacy skills required 
● Able to estimate portion size and 

frequency 
● Can describe cooking methods 

and cultural eating habits 
● Allows classification of nutrient 

intake into broad categories (low, 
medium, high) 

● Relies on accurate recall 
● Underreporting or recall bias 
● Interview can be time consuming 
● Method not standardized 
● Trained interviewer required 
● Interviewer bias 
● Inaccurate estimation of portion 

size 

FFQ (retrospective); includes 
semi-quantitative FFQ if 
portion estimated 
included and short 
frequency questionnaires 

● Report of frequency of 
consumption of specific food and 
drink from a list over a given 
period 

● Can be adapted to include 
portion sizes 

● Uses closed questions 

● Can be tailored to assess specific 
food groups or nutrients 

● Provides information on food 
consumption patterns 

● Can be adapted to be 
population/culture specific 

● FFQs can be self-completed 
(depending on complexity) 

● Relies on accurate recall 
● Time consuming depending on 

number of food items included 
● Literacy and numeracy skills 

required 
● Tailored software programs 

required for processing data 
● Historically method of choice for 

epidemiologic studies [ 250 ] ● Simple FFQs impose a low 

respondent burden 
● Users can take photographs to 

record portion sizes 
● Easy to collect and assess 
● Reliable tool for micronutrient 

assessment [ 251 ] 

Diet diary/food intake 
record (current) 

● Record of all food and drink 
consumed over a specified period 
(3–7 days) 

● No recall required 
● Minimizes analysis error if 

recipes and product labels 
included 

● Reproducible 
● “Gold standard” against which 

other dietary assessment 
methods are compared [ 252 ] 

● Reliable tool for assessment of 
micronutrient intake [ 49 ] 

● High participant burden 
● Incomplete/selective recording 
● Literacy skills required 
● Interpretation bias 
● Can alter usual food intake 

● Intake can be weighed, described 
or photographed 

● Can include product labels 
● Can either be used to reflect 

usual intake or include special 
events 

● Data are analyzed by reference to 
food composition tables (or data 
analysis software) 

FFQ, food frequency questionnaire. 
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alcium losses in patients with CKD G3–4 average 40 mg/day [ 90 ].
t is debatable whether this low degree of calciuria is maladap-
ive or homeostatic. In healthy, middle-aged women, a urinary
alcium < 40 mg/day is indicative of either calcium malabsorp-
ion, very low calcium intake, excessive digestive juice secretion
r bone hunger (e.g. from osteoblastic metastases) [ 91 ]. Prelimi-
ary data from stable isotope studies indicate that even in chil-
ren and young adults with CKD, bone resorption prevails [ 92 ].
he low urinary calcium in CKD patients could therefore suggest
 low intestinal calcium absorption, even to such a degree that en-
ogenous losses exceed intestinal absorption, at least in a subset
f patients. 
Fecal calcium losses include malabsorbed calcium and en-

ogenous intestinal losses originating from sloughed epithelial
ells and digestive juice secretion. The latter losses are esti-
ated at 100–200 mg/day [ 93 , 94 ]. Determinants remain poorly
efined [ 93 ]. It is probable that endogenous fecal calcium loss is
 largely unregulated drain on the calcium economy [ 91 ]. Data
d  
n endogenous intestinal calcium losses in CKD are very limited
 94 ]. 

ialytic calcium mass transfer in CKD G5D 

ey evidence points 
• In addition to the calcium load from diet and medications,

dialytic calcium mass transfer must be considered when as-
sessing calcium balance in maintenance dialysis patients.

• Dialytic calcium mass transfer is determined by plasma-to-
dialysis fluid ionized calcium gradient, dialysis session dura-
tion, ultrafiltration rate and skeletal remodeling rate.

ackground and rationale 
n patients receiving maintenance dialysis therapy, calcium
alance is more complex; in addition to calcium contributed
rom diet and medications, dialytic calcium mass transfer
ust be considered. Major determinants include plasma-to-
ialysis fluid ionized calcium gradient, dialysis session duration,
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Figure 3: Reported dietary intake of calcium in patients with CKD. 
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ultrafiltration rate and the state of bone turnover [ 95 ]. It should
be acknowledged that the ionized (free) dialysis fluid calcium
concentration is only 80%–95% of the calcium concentration in-
dicated on the label, and even lower when using citrate as an
acid buffer [ 96 –98 ]. Compared with acetate-based dialysis fluid,
citrate-based dialysis fluids reduce serum calcium [ 99 ], and this
effect may be exaggerated in online hemodiafiltration [ 100 ]. Of
note, the balance of serum ionized to complexed calcium is af-
fected by pH, which can be modified by the buffer concentra-
tion in the dialysis fluid; decreasing the bicarbonate content
may decrease calcium mass transfer by reducing the patient
plasma-to-dialysis fluid ionized calcium gradient. A dialysis fluid
calcium of 1.25 mmol/L (2.5 mEq/L) associates with a neutral
[ 101 ], if not negative [ 102 , 103 ], dialytic calcium mass trans-
fer in hemodialysis patients. In peritoneal dialysis patients, di-
alytic calcium mass transfer is generally neutral with a dialy-
sis fluid calcium of 1.25 mmol/L, depending upon ultrafiltration
[ 104 , 105 ], with higher likelihood of a positive mass transfer when
the peritoneal dialysis program includes icodextrin exchanges
(dialysis fluid calcium 1.75 mmol/L, or 3.5 mEq/L) and when ul-
trafiltration is low [ 105 ]. Taken together, a dialysis fluid calcium of
1.25–1.50 mmol/L (2.5–3.0 mEq/L) should achieve a near-neutral
calcium transfer during dialysis in most patients. 

It is unclear whether hemodiafiltration results in a greater cal-
cium efflux through convective clearance and a larger fluid ex-
change compared with hemodialysis for a given dialysis fluid cal-
cium concentrations. Studies suggest that post-dilution hemodi-
afiltration shows similar results on calcium balance as hemodial-
ysis [ 96 , 106 ]. However, pre-dilution hemodiafiltration, achieving
even larger volumes of fluid exchange and convective clearance,
may result in greater shifts in calcium, depending on the calcium
and bicarbonate concentrations of the dialysis fluid [ 98 ]. It has
been demonstrated that PTH decreases, and ionized calcium in-
creases, when bicarbonate is used as the dialysate buffer, whereas
the opposite is seen with acetate [ 99 ]. Patients on long hours of
daily or nocturnal hemodialysis are prone to hypocalcaemia and
may need a higher dialysis fluid calcium concentration: a random-
ized study in patients on nocturnal hemodialysis who received ei-
ther “normal” (1.3 mmol/L, n = 24) or high (1.6 or 1.75 mmol/L,
n = 26) calcium in the dialysis fluid for 1 year showed a significant
decrease in serum calcium and increase in PTH in the low calcium
group, with no change in the abdominal aortic calcification score
in either group [ 107 ]. 
QUESTION 3: WHAT IS THE RECOMMENDED 

DAILY INTAKE OF CALCIUM IN PATIENTS 

WITH CKD ACROSS STAGES AND AGE/SEX 

CATEGORIES? 
Recommended daily intake of calcium in CKD 

Key evidence points 
• Whole-body calcium balance studies, although difficult to 

perform, are essential to make conclusive recommendations 
for calcium intake from diet or medications.

• Whole-body calcium balance is unrelated to (soft or bone) tis- 
sue calcium balance. Skeletal demineralization may maintain 
serum calcium levels within a normal range, but this internal 
shift of calcium would not be reflected in whole-body calcium 

balance studies.

Clinical practice points 
• In children with CKD, we suggest a total elemental calcium 

intake within the age-appropriate normal range.
• In adults with CKD, we suggest a minimum total elemental 

calcium intake of 800–1000 mg/day to maintain a neutral cal- 
cium balance.

• In adults with CKD, we suggest not to exceed a total elemental
calcium intake of 1500 mg/day to avoid hypercalcemia and 
risk of vascular calcification.

• In children or adults with CKD, a higher calcium intake may 
be appropriate in special circumstances such as for patients 
with re-mineralization of the skeleton (“hungry bone syn- 
drome”), those on intensified dialysis regimens or in physio- 
logical conditions requiring additional calcium supply (rapid 
growth in infancy or adolescence and during pregnancy and 
lactation).

Background and rationale 
A careful medical and nutritional history may provide some in- 
sight into the adequacy of calcium intake. However, due to the 
multifactorial nature of dysregulated calcium homeostasis in 
CKD, determining the optimal dietary calcium requirement is 
challenging and depends on the investigation of calcium balance.

Formal balance studies are the gold standard to evaluate the 
calcium balance but are complex and difficult to conduct. They 
require timed collections of urine and feces, often combined with 
isotope techniques to assess kinetics, and should be performed 
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Table 3: An example of the factorial approach to recommended daily calcium intake—a estimation of calcium losses based on available 
evidence and a calculation of the intake of calcium that would be needed to counteract these losses. 

Skeletal Ca 
accretion Urinary Ca, mg 

Endogenous 
intestinal Ca, mg Dermal Ca, mg 

Total Ca loss, 
mg FACa, % 

Recommended 
daily intake, mg 

Adult, non-CKD 0 –120 –100 –50 –270 30% 900 
Adult CKD 0 –40 –100 –50 –190 20% 950 
Adult CKD 0 –40 –100 –50 –190 15% 1250 
Adult CKD 0 –40 –200 –50 –290 20% 1450 
Adult CKD 0 0 –200 –50 –250 15% 1650 

Ca, calcium; FA, fractional absorption. 
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can occur through diet, medications, mass transfer during dialysis—or 
as an internal shift from the skeleton due to bone resorption. 
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n steady state to allow for proper interpretation. Formal balance
tudies are thus cumbersome and limited to only two studies in
atients with CKD [ 94 , 108 ]. In a crossover study, six patients with
KD G3–4 consumed controlled high- (2000 mg/day) or low-to-
ormal calcium diets (800 mg/day) for 9 days. Calcium balance
as slightly negative to neutral in both patients and healthy con-
rols on the low-calcium diet ( −91 ± 113 vs −144 ± 174 mg/day,
 > .05) and more positive in patients than in controls on the high-
alcium diet (759 ± 120 vs 464 ± 225 mg/day, P < .05). Serum cal-
ium and phosphate concentrations were unchanged, and intact
TH and 1,25 dihydroxy vitamin D levels decreased in subjects on
he high-calcium diet [ 108 ]. A further study examined eight pa-
ients with CKD G3–4 in a 3-week crossover trial. Patients were
andomly assigned to a controlled calcium intake of 2457 mg/day
1500 mg of elemental calcium from calcium carbonate used as
hosphate binder + 957 mg/day of dietary calcium) or placebo
957 mg/day of dietary calcium). Calcium balance was neutral in
he placebo group and positive in the calcium carbonate group
61 vs 508 mg/day, P = .002). Serum calcium, phosphate and in-
act PTH concentrations were unchanged in both groups [ 94 ]. 
Despite major limitations including small sample size, ques-

ionable steady state conditions and analytical shortcomings,
hese balance studies represent the highest level of evidence cur-
ently available. In aggregate, they indicate that a dietary calcium
ntake of 800–1000 mg/day may be adequate to maintain calcium
alance in patients with CKD G3–4 who are not receiving active
itamin D derivatives. These values are identical to the estimated
equirement for healthy adults > 25 years of age and to the rec-
mmendation by the 2020 KDOQI clinical practice guidelines on
utrition [ 109 ]. 
At a calcium intake of 1500–2000 mg/day, calcium balance

urns positive. Given the huge burden of vascular and soft tissue
alcification in CKD, it is tempting to speculate that extraosseous
ites are the primary repository for excess exogenous calcium.
owever, there is no conclusive evidence to support this assump-
ion, and it should be considered whether (re)-mineralization of
one occurs initially, or in parallel. It could be hypothesized that
he risk of vascular calcification is highest when the skeletal com-
artment is “saturated” or unresponsive, fostered by (episodic) hy-
ercalcemia [ 110 ]. 
While children and young adults require a positive calcium bal-

nce to mineralize the growing skeleton, a neutral calcium bal-
nce should be aimed for in mature adults after the peak bone
ass is achieved in the mid-30s. This implies that the rate of cal-
ium absorption from the gastrointestinal tract should match the
ate of losses from the body through the bowel, kidneys, skin, hair
nd nails. Whole-body calcium balance studies and factorial iter-
tion may help to define the recommended daily calcium intake.
n the latter approach, the recommended elemental calcium in-
ake is calculated by imputing estimated average losses model-
ng different scenarios. Using this approach, an estimated recom-
ended daily intake of elemental calcium would be in the range
f 950 to 1650 mg/day in patients with CKD (Table 3 ). These fig-
res should be interpreted cautiously, considering the multiple
ssumptions. 
Importantly, whole-body calcium balance needs to be dis-

inguished from tissue calcium balance (Fig. 4 ). Bone mineral
ensity (BMD) is lower in patients with CKD as compared with
ge- and sex-matched healthy individuals [ 111 , 112 ]. Along with
ecent data from stable isotope studies [ 92 ], this points to a nega-
ive skeletal calcium balance in CKD. Skeletal calcium efflux, me-
iated by osteoclastic bone resorption, may be crucial to main-
ain normocalcemia in patients with CKD, as illustrated by the
apid drop of serum calcium in a substantial proportion of pa-
ients following potent antiresorptive therapy [ 113 ]. Conversely,
rogression of vascular calcification paralleling the decline of
idney function denotes a positive vascular calcium balance in
KD. Of interest, bone demineralization and vascular calcifica-
ion are closely linked and referred to as the calcification para-
ox of CKD [ 114 , 115 ]. It may be speculated that internal calcium
hifts from bone to vasculature, rather than exogenous calcium
oading account for the huge vascular calcification burden in CKD.
A mere handful of studies have investigated the effect of

alcium supplementation against placebo or no treatment in
KD, all of them small, of short duration ( < 6 months) and fo-
used on mineral metabolism parameters [ 116 –119 ]. Addition-
lly, three studies of calcium vs non-calcium based phosphate
inders included a placebo or dietary intervention group, allow-
ng for a comparison of calcium vs control [ 120 –122 ]. These stud-
es all show that calcium supplementation ameliorates secondary
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hyperparathyroidism and decreases the prevalence of hypocal-
cemia, at the cost of an increased risk of hypercalcemia. 

A number of studies have compared calcium- and non-
calcium-containing phosphate binders, most of which focused
on safety outcomes, i.e. vascular calcification progression
(Table 4 ). No increased risk of vascular calcification progression
seems to be present with elemental calcium supplementation
< 1000 mg/day [ 120 , 122 –124 ]. At elemental calcium supplemen-
tation > 1200 mg/day, that is, on top of dietary calcium intake, 9
out of 10 studies found an increased risk of vascular calcifica-
tion progression with calcium supplementation, along with an
increased risk of hypercalcemia. 

For hard endpoints, two larger studies failed to demonstrate
a survival benefit of non-calcium- vs calcium-containing phos-
phate binders [ 125 , 126 ]. In the Dialysis Clinical Outcomes Re-
visited (DCOR) trial study, 2103 US patients receiving hemodial-
ysis were randomized to sevelamer vs calcium-containing phos-
phate binders in the form of calcium acetate (70%; mean ele-
mental calcium 1325 mg/day) or calcium carbonate (30%; mean
elemental calcium 1960 mg/day), and 1068 patients completed
the study with a median follow-up of 20 months. There were no
differences in all-cause or cardiovascular mortality in the over-
all cohort, but patients > 65 years had a lower mortality rate
with sevelamer [ 125 ]. In the recently published Outcome Study
of Lanthanum Carbonate Compared With Calcium Carbonate in
Hemodialysis Patients (LANDMARK) Study, 2374 Japanese patients
receiving hemodialysis, with more than one risk factor for car-
diovascular disease, were randomized to lanthanum or calcium
carbonate (median elemental calcium 600 mg/day), and 1851 pa-
tients completed the trial with a median 3.2 years of follow-
up. There was no difference in all-cause mortality, but patients
treated with lanthanum carbonate had increased risk of cardio-
vascular death, i.e. challenging the initial hypothesis [ 126 ]. Sys-
tematic reviews and meta-analyses differ in their conclusions re-
garding any survival benefit of non-calcium vs calcium containing
phosphate binders (Table 5 ) [ 127 –132 ]. The most consistent find-
ing, in both CKD G3–5 and CKD G5D, is a survival benefit with seve-
lamer use [ 128 , 129 , 131 ]. 

Limitations of these studies should be acknowledged. Informa-
tion on dietary calcium intake is generally not included, prevent-
ing an evaluation of total calcium exposure. Furthermore, there
is evidence of pleiotropic benefits of sevelamer (lowering lipids,
advanced glycation end-products and inflammatory parameters)
which could contribute to the survival benefit with this specific
binder. Interestingly, in the Calcium Acetate Renagel Evaluation-
2 (CARE-2) Study, the addition of a statin to control low-density
lipoprotein cholesterol resulted in no difference in the progres-
sion of vascular calcification between patients receiving calcium
acetate (1375 mg/day elemental calcium) vs sevelamer [ 133 ]. 

Overall, these studies focused on safety outcomes and did not
assess skeletal endpoints. Calcium supplementation consistently
decreases PTH to a greater degree than non-calcium containing
phosphate binders despite similar control of phosphate [ 122 , 125 ,
126 , 134 –141 ] and also lowers bone turnover, both as assessed by
bone biopsy [ 142 –145 ] and by biomarkers [ 138 , 146 , 147 ]. Although
this effect is most consistent in studies with higher doses of sup-
plemented calcium, it is also reported with lower doses and with-
out overt hypercalcemia [ 122 ]. Reduced severity of secondary hy-
perparathyroidism may explain the increase in BMD seen in some
studies [ 117 , 121 ], though this is not a consistent finding [ 124 , 146 ,
148 ]. In the LANDMARK trial [ 126 ], supplementation with 600–
1200 mg/day of elemental calcium did not decrease the risk of
hip fractures in Japanese patients receiving hemodialysis [ 126 ]; no
other studies investigating fracture endpoints are currently avail- 
able. 

In aggregate, clinical trials indicate excess risk with elemental 
calcium supplementation > 1200 mg/day added to the dietary cal- 
cium intake (which averages 400–900 mg/day), and calcium bal- 
ance studies demonstrate a positive calcium balance with total 
elemental calcium intake > 1500 mg/day in patients with CKD.
We consider 1500 mg/day to be the safe upper limit of daily cal-
cium intake. Of note, this is lower than the safe upper limit of
2000 mg/day set by the 2003 KDOQI guidelines [ 8 ]. 

Recommended daily calcium intake in children and young 
adults with CKD 

As with healthy children, children with CKD require adequate cal- 
cium for skeletal mineralization, particularly during periods of 
active growth. Mineralization defects are more commonly seen 
in children than adults with CKD and strongly correlate with the 
CKD grade and calcium status: by bone histology studies 90% of 
children on peritoneal dialysis have deficient bone mineralization 
[ 149 ], and mineralization defects are noted even in very early CKD
G2 before changes in serum calcium, phosphate or PTH are de- 
tected [ 150 ]. On imaging studies, a lower tibial cortical BMD was
associated with low serum calcium and high PTH level, particu- 
larly in growing children [ 151 ] and this correlated with a higher
fracture risk. Conversely, vascular calcification, with its associ- 
ated high cardiovascular morbidity and mortality, is also seen in 
children and young adults, and has been associated with a high
calcium intake [ 152 –155 ] as well as CKD grade [ 153 , 154 , 156 ]. In
young adults on dialysis, the coronary artery calcification score 
was shown to double within 20 months [ 157 ], and worsening of the
calcification score was associated with a higher serum calcium 

and prescription of calcium-containing phosphate binders [ 157 ,
158 ]. In a recent study including 100 children and young adults
with CKD G4–5D, vascular calcification was noted even as BMD in-
creased, although a presumed buffering capacity of the growing 
skeleton may offer some protection against extraosseous calcifi- 
cation [ 13 ]. 

There are no studies to indicate the appropriate amount of cal- 
cium for a child with CKD, and calcium requirements need to be
individualized depending on the patient’s age, growth and rate 
of bone turnover. Importantly, extrapolation of data from adult 
studies is not appropriate, as the growing skeleton of children has 
significantly higher calcium requirements than a mature, possi- 
bly osteoporotic, adult skeleton. In the absence of evidence-based 
studies, it would be reasonable to provide children with CKD a 
comparable calcium intake (including calcium from diet, phos- 
phate binders and supplements) to their healthy peers. These con- 
cepts have been discussed at length by the Paediatric Renal Nu- 
trition Taskforce [ 14 ]. 

Recommended dialysis fluid calcium 

concentrations 
Clinical practice points 
• We suggest using a dialysis fluid calcium concentration of 

1.25–1.50 mmol/L (2.5–3.0 mEq/L) in peritoneal dialysis and 
hemodialysis to maintain a neutral calcium mass transfer 
during dialysis.

• We suggest that a dialysis fluid calcium concentration of 
1.75 mmol/L (3.5 mEq/L) be restricted to situations where a 
positive calcium balance is intended.
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Table 5: Systematic reviews and meta-analyses investigating survival benefit of non-calcium vs calcium containing phosphate binders. 

Study Population Design N Interventions Conclusions 

2013 Jamal [ 127 ] CKD 3–5D Meta-analysis 15 trials, 
N = 4622 

Ca vs non-Ca containing 
phosphate binders 

Reduced risk of all-cause mortality with 
non-Ca vs Ca containing phosphate 
binders 

2016 Palmer [ 128 ] CKD 3–5D Meta-analysis 77 trials, 
N = 12 562 

Any phosphate binder Reduced risk of all-cause mortality with 
Sevelamer, but not Lanthanum, 
compared with Ca containing 
phosphate binders 

2016 Patel [ 129 ] CKD 3–5D Meta-analysis 25 trials, 
N = 4770 

Sevelamer vs Ca 
containing phosphate 
binder 

Reduced risk of all-cause, but not CV 
mortality with Sevelamer compared 
with Ca containing phosphate binders 

2016 Sekercioglu 
[ 130 ] 

CKD 3–5D Meta-analysis 28 trials, 
N = 8335 

Ca vs non-Ca containing 
phosphate binders 

Reduced risk of all-cause mortality with 
non-Ca vs Ca containing phosphate 
binders (network analysis); no 
difference with conventional analysis 

2018 Ruospo 
[ 131 ] 

CKD 3–5D Cochrane review 104 trials, 
N = 13 744 

Any phosphate binder Reduced risk of all-cause, but not CV, 
mortality with Sevelamer compared 
with Ca containing phosphate binders 

2022 Lioufas [ 132 ] CKD 3–5 Meta-analysis 20 trials, 
N = 2498 

Ca vs non-Ca containing 
phosphate binders 

No clear conclusions on risk of all-cause 
mortality or CV events 

Ca, calcium; CV, cardiovascular. 
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Background and rationale 
Calcium transfer during dialysis is an important contributor to
overall calcium balance in CKD G5D (see Question 2). Originally,
the standard dialysate calcium was designed to match patients’
serum ionized calcium levels, i.e. a dialysate calcium concen-
tration of 1.25 mmol/L (2.5 mEq/L) was preferred. Later, the use
of higher dialysate calcium was advocated to control secondary
hyperparathyroidism. Following the introduction of calcium-
containing phosphate binders and active vitamin D derivatives,
the combined use of these medical therapies and a high dialysate
calcium often led to hypercalcemia. The KDOQI guidelines there-
fore recommended a dialysate calcium of 1.25 mmol/L as the “cur-
rently most convenient” standard, allowing for simultaneous use
of the above-mentioned therapy. The KDOQI guidelines stressed
that there were no data to document that any particular calcium
dialysate was safer, more effective or associated with fewer com-
plications. Though interventional studies investigating the effect
of different dialysate calcium on outcomes existed at this time, it
was considered impossible to draw firm conclusions from these
data, due to the marked changes in the medical treatment of
mineral metabolism that had occurred in this time period [ 7 , 8 ,
11 ]. The later KDIGO guidelines also recommended a lower cal-
cium concentration in the dialysate as standard, to avoid calcium
loading [ 7 ]. 

A dialysis fluid calcium concentration of 1.25–1.50 mmol/L (2.5–
3.0 mEq/L) should ensure a near-neutral calcium transfer during
dialysis, as detailed in Question 2. A lower dialysis fluid calcium
concentration ( < 1.25 mmol/L) may increase skeletal calcium ef-
flux and also the risk of hemodynamic instability [ 159 ]. Two RCTs
reported reduced progression of vascular calcification with dialy-
sis fluid calcium 1.25 vs 1.50 mmol/L [ 160 , 161 ], while others re-
ported no difference when comparing these two calcium concen-
trations [ 162 , 163 ]. No survival benefit was observed when dial-
ysis fluid calcium was lowered from 1.50 to 1.25 mmol/L [ 164 ,
165 ]. A retrospective study comparing hemodialysis facilities that
switched the standard dialysis fluid calcium concentration from
1.25 mmol/L to < 1.25 mmol/L observed greater rates of intradi-
alytic hypotension and hospitalization for heart failure with the
lower dialysis fluid calcium [ 166 ]. Levels of PTH and phosphate
increased, as did the use of phosphate binders, active vitamin D 

derivatives, and calcimimetics in centers converting to dialysis 
fluid calcium < 1.25 mmol/L. There was no difference in all-cause 
mortality; thus, there seem to be little benefit in reducing dialysis
fluid calcium concentrations below 1.25 mmol/L [ 166 ]. 

Use of a higher dialysis fluid calcium (1.75 mmol/L; 3.5 mEq/L) 
has been associated with increased all-cause mortality [ 167 , 168 ]
and progression of vascular calcification [ 169 ]. In an RCT by Ok
et al., 425 patients with PTH levels < 300 pg/mL were randomized to
dialysis fluid calcium 1.25 vs 1.75 mmol/L for 2 years. During this
time, coronary artery calcification score by computed tomography 
increased in both groups, but the rate of progression was greater 
with use of dialysis fluid calcium of 1.75 mmol/L [ 169 ]. 

Altogether, it is reasonable to assume that a dialysis fluid cal- 
cium concentration of 1.75 mmol/L will lead to a positive calcium 

mass transfer during dialysis, which may contribute to progres- 
sion of vascular calcification. A benefit of reducing calcium con- 
centration in the dialysis fluid from 1.50 to 1.25 mmol/L seems un-
certain, and dialysis fluid calcium < 1.25 mmol/L may cause harm 

due to cardiovascular instability. 
Theoretically, optimal dialysis fluid calcium concentration 

could contribute to better control of secondary hyperparathy- 
roidism and to maintenance of bone health. Increased levels of 
PTH are a consistent finding when reducing calcium concentra- 
tion in the dialysis fluid [ 107 , 163 , 166 ] and may be accompanied
by increases in bone turnover markers [ 170 , 171 ]. On the other
hand, lowering dialysis fluid calcium decreases the prevalence of 
low bone turnover on bone biopsies [ 169 ]. Thus, it could be argued
that dialysis fluid calcium concentration should be individualized 
for optimal calcium balance. 

Assessing an individual’s calcium requirements 
in clinical practice 

Key evidence points 
• A serum calcium level does not reflect calcium balance as it 

is tightly controlled through hormonal regulation.
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Bone turnover 
markers

Diet

Bone imagingBiomarkers

Calcium status

Dietary survey/
calculator

Ca-containing
phosphate-binders 

or supplements

Assessment

Intervention

Ca transfer
during dialysis
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Figure 5: Assessment of calcium status in patients with CKD. Total calcium intake, including both dietary intake and contributions from medications 
or supplements, should be assessed. For patients on kidney replacement therapy, calcium mass transfer during dialysis must be considered. High bone 
biomarkers and low bone density may indicate calcium efflux from the skeleton, which should be addressed. If a calcium deficit is revealed, dietary 
intervention is preferred, and any supplementation should be by calcium-containing phosphate binders if phosphorus is high. 
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• Serum PTH level is a poor biomarker of bone turnover status
and calcium homeostasis as PTH lacks specificity and shows
high biological and inter-assay variability.

linical practice points 
• We recommend that patients with CKD receive individualized

dietary counseling, preferably by a qualified dietitian.
• In children with CKD, we suggest that the diet is regularly as-

sessed for total calcium content. The frequency of assessment
is based on the child’s age, CKD grade and trends in serum cal-
cium, phosphorus and PTH.

• In adults with CKD, we suggest assessing calcium status rou-
tinely at first presentation, every 12 months, and when clini-
cally indicated (unexplained hypo- and hypercalcemia, prior
to initiating or adjusting therapy for secondary hyperparathy-
roidism or osteoporosis).

• The following groups of patients are at greater risk of cal-
cium deficiency or reduced calcium absorption and require
close monitoring of their calcium intake: children during pe-
riods of rapid growth, elderly patients, patients with spe-
cific dietary preferences (vegans, vegetarians), patients in CKD
G5-5D, patients on phosphate-restricted diets, patients with
malabsorption or on PPIs and patients with severe vitamin D
deficiency.

• Treatment decisions should be based on trends in serum cal-
cium, phosphate, PTH, alkaline phosphatase and 25 dihydroxy
vitamin D, considered together.

• The whole-body calcium status of an individual may be es-
timated by evaluating the calcium intake (from diet and
calcium-containing medications) and calcium mass trans- 
fer from dialysis, together with biomarkers of mineral
metabolism and bone turnover, and bone imaging.

ackground and rationale 
n clinical practice, dietary surveys, biochemical parameters and
maging techniques, preferentially in concert, may help to esti-
ate the calcium status and balance in the individual patient

Fig. 5 ). Given the complex inter-dependency of these CKD-MBD
easures, it is important to consider trends in levels rather than
 single value, as suggested in the KDIGO CKD-MBD recommenda-
ions [ 7 ]. Obviously, one size does not fit all also applies to calcium
anagement of patients with CKD across stages of disease. 
Daily calcium intake, both from diet and supplements can

e estimated by means of formal dietary history/recall (see
uestion 1, Estimating an individual’s calcium intake) or ques-
ionnaires, including user-friendly online calculators, simple vali-
ated score systems and more extensive food frequency question-
aires [ 172 , 173 ]. The estimation of calcium intake should become
ommon practice in the work-up of CKD-MBD at first presenta-
ion, and when indicated, e.g. in patients with unexplained hypo-
r hypercalcemia, and prior to initiating or adjusting therapy in
atients with secondary hyperparathyroidism and osteoporosis. 
Serum calcium levels are strictly maintained through hor-
onal control. They do not reflect overall body calcium balance
nd may not be very informative except at extremes. Using serum
alcium levels as a proxy of calcium balance may lead to inad-
quate, and sometimes deleterious, clinical decisions [ 174 ]. Fur-
hermore, only the “free” or unbound calcium is biologically ac-
ive, and so albumin-corrected calcium and total calcium levels
o not necessarily reflect the correct serum calcium, particularly
n CKD patients with alterations in pH, anion gap and circulat-
ng plasma proteins [ 175 –177 ]. Not surprisingly, true hypo- and
ypercalcemia (by ionized calcium levels) are associated with in-
reased risk of all-cause mortality in patients with apparent nor-
ocalcemia based on total or albumin-corrected calcium levels

 178 , 179 ]. 
Exogenous calcium deprivation triggers PTH synthesis and se-

retion, rendering PTH a candidate biomarker of calcium bal-
nce. Circulating levels of biointact PTH in CKD, however, are
etermined by many factors beyond calcium status, most no-
ably phosphate levels [ 180 , 181 ]. Further, there is end-organ hypo-
esponsiveness to PTH in CKD, leading to a reduced calcemic re-
ponse [ 182 –184 ]. PTH as a biomarker is fraught with limitations,
ncluding high biological variability and variable retention of PTH
ragments [ 185 ]. PTH, therefore, is a poor biomarker of calcium
tatus. 
Shifts of calcium from the skeletal store can be assessed by

onsidering skeletal remodeling rates and bone demineraliza-
ion. Skeletal remodeling can be determined by bone histomor-
hometry or estimated by circulating bone turnover markers.
 high bone turnover assists in maintaining calcium levels by
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Table 6: Elemental calcium content and phosphorus binding capacity of commonly used calcium salts. 

Dosage 
Elemental 
calcium (%) 

Phosphorus 
binding (mg/g) 

Calcium 

absorption (%) Comments 

Phosphate 
binders 

Calcium 

carbonate 
[ 199 –201 ] 

Tablets, 500 mg 40 19 39 Dependent on acidity for 
dissolution. Inexpensive. 

Calcium acetate 
[ 199 –201 ] 

Tablets, 667 mg 25 50 32 Less dependent on acidity. 
Inexpensive. 

Calcium 

ketoglutarate 
[ 257 ] 

Tablets, 1000 mg 21 ∼CaCO < CaCO Less dependent on acidity. 
Gastro-intestinal side effects 
common. 

Calcium lactate 
[ 258 ] 

Tablets. 325 mg 13 ∼CaCO 32 Rarely used 

Supplements Calcium citrate Tablets, 1000 mg 21 poor 30 Increases absorption of trace 
elements, including aluminum 

Calcium 

gluconate 
Tablets, 500, 648, 

972 mg 
9 poor 27 Rarely used 

CaCO = calcium carbonate. 
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increasing skeletal calcium efflux in the event of low exogenous
calcium supply. High levels of bone turnover markers are thus in-
dicative of current skeletal calcium efflux. Low BMD by imaging
techniques such as dual-energy X-ray absorptiometry or quanti-
tative computed tomography reflect calcium drain from the skele-
ton over a longer time period (years). High levels of bone turnover
markers associate with increased risk of fractures [ 186 –188 ] and
all-cause and cardiovascular mortality [ 188 –190 ] in the short-
term, and low BMD associates with poor overall long-term out-
comes in CKD [ 187 , 191 –194 ]. 

Preferred calcium source and intake conditions 
Clinical practice points 
• In patients with CKD we recommend optimizing calcium in-

take through the diet, rather than with supplements.
• Advice on dietary calcium intake should consider calcium

content and bioavailability, as well as adhering to dietary
phosphate restrictions, if required, and ensuring an adequate
protein intake. Adapt the dietary intake to respect planetary
health whenever possible.

• Calcium supplementation should be individualized, with con-
sideration of calcium content and bioavailability, phosphate
binding capacity and personal preferences.

• In individuals who require a phosphate binder, consider using
a calcium-based phosphate binder, as opposed to a calcium
supplement, if dietary calcium intake is low.

• For efficient phosphate binding, calcium salts (and other
phosphate binding medications) must be given with meals.

• Avoid combination of calcium citrate with aluminum contain-
ing medications.

Background and rationale 
Dairy may be the preferred source of calcium. In addition to a
high calcium content and bioavailability, dairy products are rich
in high quality protein. Dairy products, however, are also rich in
phosphate. The recommendation to increase the consumption of
dairy may thus conflict with the recommendation to restrict di-
etary phosphate. It should, however, be acknowledged that the
latter recommendation is increasingly debated and that recent
studies have identified phosphate additives as the main contribu- 
tor to hyperphosphatemia. Plant-based alternatives to dairy may 
be considered [ 195 ], not only because of their lower phosphate
bioavailability, but also from a global “one health” perspective [ 34 ].

Calcium supplements, preferably given as a phosphate binder,
may be necessary when the dietary phosphate intake exceeds 
recommended limits so that the dietary intake of calcium can- 
not be readily increased. Calcium supplements vary in calcium 

content and bioavailability and in their phosphorus-binding ca- 
pacity (Table 6 ) [ 196 , 197 ]. All calcium salts should be given with
meals, if used as phosphate binders. Calcium carbonate should 
also preferentially be given with meals if used as a supplement,
as dissolution is dependent on acidity [ 36 ], while calcium uptake
of other calcium salts may be greater if given in-between meals 
[ 198 ]. Of the two most commonly used calcium-containing phos- 
phate binders, calcium carbonate is less efficient in binding phos- 
phorus compared with calcium acetate, thus requiring a higher 
dose and resulting in a greater elemental calcium load to achieve
a similar phosphate control [ 199 –201 ]. 

QUESTION 4: WHAT IS THE APPROACH TO 

HYPO- AND HYPERCALCEMIA? 
Clinical practice points 
• We recommend to avoid hypercalcemia in children and adults 

with CKD.
• In cases of hypercalcemia, investigate and treat iatrogenic 

causes first, by reducing calcium-containing medications, ac- 
tive vitamin D derivatives and/or dialysis fluid calcium.

• Once iatrogenic causes of hypercalcemia have been ad- 
dressed, investigate and treat pathological conditions associ- 
ated with hypercalcemia such as sarcoidosis or malignancy.

• We suggest treating acute, iatrogenic hypocalcemia (as seen 
after surgical parathyroidectomy, anti-resorptive therapies or 
calcimimetic use) with calcium supplementation, active vi- 
tamin D derivatives and/or temporary increase of dialysate 
calcium to 1.75 mmol/L, under careful monitoring.

• We suggest pre-treatment with calcium-containing medica- 
tions and active vitamin D derivatives in situations where 
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Table 7: Observational studies on risk of hard endpoints with deviations in serum calcium. 

Study Population N Follow-up Exposure 
Cutoffs, mg/dL 

[mmol/L] Risk Outcome 

2004 Block [ 202 ] CKD5D (HD) 40 538 1–2 years Alb.corr (Ionized) 8.0; 11.0 [2.00; 2.75] Linear All-cause and CV mortality 

2005 Young [ 203 ] CKD5D (HD) 17 236 ? Alb.corr 7.8; 11.4 [1.95; 2.84] Linear All-cause and CV mortality 

2006 Kalantar-Zadeh [ 204 ] CKD5D (HD) 58 058 2 years Alb.corr 8.0; 11.0 [2.00; 2.75] J-shaped All-cause mortality 

2008 Tentori [ 205 ] CKD5D (HD) 25 588 10 years Alb.corr 7.6; 12.0 [1.90;2.99] U-shaped All-cause mortality 

2008 Wald [ 206 ] CKD5D (HD) 1846 4.5 years Alb.corr 8.0; 11.0 [2.00; 2.75] Linear All-cause mortality and CV 
hospitalization 

2011 Floege [ 207 ] CKD5D (HD) 7970 2 years Total 8.4; 11.0 [2.10; 2.75] U-shaped All-cause mortality 

2011 Naves-Diaz [ 208 ] CKD5D (HD) 14 125 4.5 years Alb.corr 8.5; 11.0 [2.14; 2.75] U-shaped All-cause and CV mortality 

2013 Fouque [ 209 ] CKD5D (HD) 7700 2.5 years Total 6.0; 12.0 [1.50, 2.99] U-shaped All-cause mortality 

2014 Fukagawa [ 210 ] CKD5D (HD) 8229 3 years Alb.corr 8.0; 11.0 [2.00; 2.75] J-shaped All-cause mortality 

2015 Fernandez- Martin [ 211 ] CKD5D (HD) 6797 3 years Total 6.0; 12.0 [1.50; 2.99] U-shaped All-cause mortality 

2015 Rivara [ 212 ] CKD5D (HD + PD) 129 076 < 5 years Total, Alb.corr 7.5; 10.5 [1.87; 2.62] J-shaped All-cause mortality 

2017 Liu [ 213 ] CKD5D (PD) 12 116 8 years Alb.corr 8.1; 10,5 [2.14; 2.62] J-shaped All-cause mortality 

2017 Wang [ 259 ] CKD5D (HD) 35 114 2 years Alb.corr 8.4; 9.6 [2.10; 2.40] Linear All-cause mortality 

2019 Wakasugi [ 214 ] CKD5D (HD) 220 054 1 year Alb.corr 8.4; 11.0 [2.10; 2.75] Linear All-cause mortality 

2020 Lamina [ 215 ] CKD5D (HD) 8817 3 years Total 6.4; 14.0 [1.60; 3.50] J-shaped All-cause mortality 

2023 Yoshida [ 216 ] CKD5D (HD) 2135 3 years Alb.corr 7.0; 11.0 [1.75; 2.75] U-shaped All-cause mortality 

CV = cardiovascular, HD = hemodialysis, PD = peritoneal dialysis. 
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iatrogenic hypocalcemia can be anticipated (parathyroidec-
tomy, anti-resorptive treatment and calcimimetics).

• We suggest assessing calcium status in CKD patients with
chronic hypocalcemia.

ackground and rationale 
erum calcium is under strict hormonal control, and deviations
rom normal should be a cause for concern. Epidemiological stud-
es in CKD show survival benefit when calcium is in the nor-
al range [ 202 –216 ]. The evidence is strongest for hypercalcemia,
ith the risk curve often reported as linear or J-shaped; though
he expected U-shape appears when a wider range of calcium is
onsidered (Table 7 ). In addition, case-mix, assays used, variables
ccounted for in adjusted analyses and statistical modeling ap-
lied are likely sources of variability. For trends in serum calcium,
hanges out of the normal range, in either direction, increase mor-
ality risk [ 215 , 217 ]. 
Hypercalcemia should be considered a pathological condition.

ommon causes of hypercalcemia in CKD are iatrogenic (calcium
upplements, calcium-containing phosphate binders, active vita- 
in D derivatives, high calcium in the dialysis fluid) and the devel-
pment of tertiary hyperparathyroidism [ 218 ]. Additional causes
f hypercalcemia include malignancy, granulomatous disease (e.g.
arcoidosis), thyroid disease and immobilization [ 219 ]. In cases
f hypercalcemia, the underlying cause should always be inves-
igated, with iatrogenic causes identified and corrected first. De-
elopment of tertiary hyperparathyroidism is suspected if hyper-
alcemia occurs concurrently with inappropriately elevated PTH
evels. Further evaluations should be carried out as necessary to
ule out other pathologies, particularly in cases of adequately sup-
ressed PTH. 
Hypocalcemia can be a life-threatening condition. Acute, se-

ere and/or symptomatic hypocalcemia should be promptly cor-
ected using calcium-supplementation (often intravenous), active
itamin D derivatives and, in patients with CKD G5D receiving
ialysis, by temporarily increasing the calcium concentration in
he dialysis fluid to 1.75 mmol/L. 
Common iatrogenic causes if hypocalcemia in CKD are surgi-

al parathyroidectomy, anti-resorptive therapy and calcimimetic
se. In the “hungry bone syndrome” following parathyroidectomy,
he sudden reduction in PTH levels leads to unopposed calcium
nflux into bone due to widespread bone (re-)mineralization [ 220 ].
his can cause severe and life-threatening hypocalcemia, requir-
ng large amounts of calcium supplementation post-operatively
 221 ]. Hungry bone syndrome occurs in approximately 25% of pa-
ients with CKD G5D after parathyroidectomy [ 222 , 223 ]. Lower
alcium levels, higher PTH levels and higher bone turnover mark-
rs prior to surgery predict the severity and duration of hypocal-
emia [ 224 ]. As the risk of hungry bone is linked to the severity of
yperparathyroid bone disease, optimization of medical therapy
eems a logical preventative strategy. Initiation of calcium supple-
entation and active vitamin D derivatives pre-operatively [ 225 ]
r immediately post-operatively [ 226 ] may limit the risk of severe
ypocalcemia. Treatment with the short-acting bisphosphonate
amidronate prior to surgery has also been shown to reduce the
isk of hypocalcemia and shorten the duration of hospitalization
ompared with historical controls [ 227 ]. However, this strategy
ay seem counterintuitive as it would block (re-)mineralization of
one that is recovering from hyperparathyroid bone disease, and
ndeed, BMD increase was less marked in patients treated with
amidronate in the abovementioned study [ 227 ]. 
With potent anti-resorptives such as denosumab, calcium ef-

ux from bone is abruptly reduced, due to osteoclast activity be-
ng completely blocked [ 228 ]. This hypocalcemia could be consid-
red an unmasking of an ongoing negative calcium balance—a
ependency on calcium efflux from the skeleton to maintain low-
ormal serum calcium levels. Skeletal calcium influx may also
ccur, similar to hungry bone syndrome after parathyroidectomy,
xplaining the substantial increases in BMD that can be seen in
atients with CKD treated with denosumab. Consistent with this,
igh levels of bone turnover markers, indicative of hyperparathy-
oid bone disease, prior to denosumab treatment predict the risk
nd severity of hypocalcemia [ 113 ]. 
The risk of hypocalcemia after bisphosphonate use is low,

ut still substantially higher in patients with CKD when com-
ared with others with normal kidney function. In a retrospective
opulation-based cohort study from Canada, patients with CKD
5–5D had a 24% risk of mild (ionized calcium < 1.0 mmol/L) and
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15% risk of severe (ionized calcium < 0.9 mmol/L) hypocalcemia
in the 6 months following initiation of denosumab therapy, com-
pared with < 1% risk of both in those with an estimated glomerular
filtration rate (eGFR) > 60 mL/min/1.73 m 

2 . For bisphosphonates,
the risk was 2.4% for mild and 0.1% for severe hypocalcemia in
patients with CKD G5–5D, compared with < 0.1% for both in those
with an eGFR > 60 mL/min/1.73 m 

2 [ 229 ]. 
Treatment with calcimimetics often results in a reduction in

serum calcium levels. In the Evaluation of Cinacalcet Hydrochlo-
ride Therapy to Lower Cardiovascular Events (EVOLVE) trial
( N = 3861 patients with CKD G5D receiving hemodialysis), 58% of
cinacalcet treated patients experienced hypocalcemia after treat-
ment initiation, compared with 15% in the placebo arm. Severe
hypocalcemia ( < 7.5 mg/dL or 1.87 mmol/L) was seen in 18% with
cinacalcet treatment vs 4% of controls and associated with higher
PTH, higher bone turnover markers and lower calcium levels at
baseline, consistent with hypocalcemia resulting from reduced
calcium efflux from the skeleton [ 230 ]. In a European hemodialy-
sis cohort ( N = 905), all normocalcemic at baseline, two-thirds de-
veloped hypocalcemia during 12 months of cinacalcet therapy—
severe hypocalcemia was seen in 9% [ 231 ]. Of note, neither
of these trials found an association between treatment-related
hypocalcemia and risk of hard outcomes (cardiovascular events
and/or all-cause mortality). In a comparative meta-analysis,
hypocalcemia was more common with use of the intravenous
etelcalcetide than cinacalcet or evocalcet—most likely due to a
greater efficacy in lowering PTH levels [ 232 ]. Hypocalcemia related
to the use of calcimimetics is often reported to be transient and
self-limiting, and whether calcium supplementation would be in-
dicated in this situation is debated [ 233 ]. In the trials already men-
tioned, hypocalcemic episodes lead to minimal changes in medi-
cal therapy [ 230 , 231 ]. However, hypocalcemia-related symptoms
such as muscle cramps and paresthesia are reported to be twice
as common with calcimimetics compared with placebo [ 234 ]. One
RCT in children with CKD was terminated early due to a fatality
linked to severe hypocalcemia in the cinacalcet arm [ 235 ]. Thus,
it seems prudent to evaluate calcium status, and consider the
need for calcium supplementation, prior to initiating calcimimet-
ics. Children can be more prone to life-threatening seizures or ar-
rhythmias, and a higher threshold of serum calcium levels has
been suggested before initiating cinacalcet treatment [ 236 ]. 

With persistent hypocalcemia, an assessment of calcium sta-
tus should be performed, to address potential deficits, as detailed
in Question 2. The total intake of calcium (diet + medications)
should be assessed, and for patients on kidney replacement ther-
apy, calcium mass transfer during dialysis also needs to be consid-
ered. Although the recommended intake of calcium is not affected
by the presence or severity of vascular calcification or osteoporo-
sis, a negative calcium balance will exacerbate secondary hyper-
parathyroidism, leading to bone resorption and demineralization.
High levels of bone turnover markers, or decreases in bone min-
eral density on bone imaging, indicate shifts of calcium from the
skeletal store, which may also need to be addressed (Fig. 5 ). 

RESULTS OF THE DELPHI SURVEY 

Of the 28 clinical practice points, all statements achieved an
agreement higher than the pre-defined cut-off of 70% from the
respondents, with over 90% agreement for all but one statement.
Analyzing the level of agreement for each statement, an overall
83% consensus was achieved with a “strongly agree or agree” re-
sponse and a 12% “neutral” response, largely reflecting the wide
variations in practice in the absence of robust evidence. The
highest “disagree or strongly disagree” rate (18%) was in response 
to a statement under Question 3, “Preferred calcium source and 
intake conditions” on the timing of administration of calcium 

containing medications with or without food. Given that the ab- 
sorption of elemental calcium from different calcium salts varies 
widely, with some requiring an acidic pH for dissolution, and that 
the binding of calcium to dietary phosphate will reduce its absorp- 
tion, we modified this statement and added further explanations 
for the rationale in the text. Based on comments from Delphi re-
spondents, additional clarification to the text was also provided in 
some sections. 

FUTURE RESEARCH 

We recommend the following areas of research to provide further 
evidence for optimal calcium balance in adults and children with 
CKD G2–G5D: 

(i) Data on habitual calcium intake in children and adults with 
CKD are sparse and fragmentary. Additional large epidemi- 
ological studies are required to define calcium intake across 
stages of CKD and to identify determinants.

(ii) Additional calcium balance studies across CKD G2–G5 
should be performed to determine calcium requirements 
at different ages and stages of CKD.

(iii) Future calcium balance studies should include the evalua- 
tion of internal shifts in calcium, most notably skeletal cal- 
cium balance.

(iv) Calcium absorption in children and adults at different CKD 

grades should be determined, using double-tracer labeled 
calcium isotope studies.

(v) The interaction between common nutritional and pharma- 
cological therapies (dietary fiber supplements, PPIs, etc.) 
and calcium absorption, and potential effects of such thera- 
pies on CKD-MBD-related outcomes, should be investigated.

(vi) Whole-body calcium balance studies at different ages and 
grades of CKD should be performed, including patients 
treated with dialysis, across modalities.

(vii) The effect of different dietary calcium intakes on bone 
turnover and mineralization should be investigated both in 
children and in adults, across different grades of CKD.

(viii) The evolution of bone demineralization and vascular cal- 
cification in CKD patients who are calcium and vitamin D 

deficient vs those with an adequate dietary calcium and vi- 
tamin D intake should be investigated.

(ix) The effect of calcium supplementation on relevant hard 
outcomes such as fractures, cardiovascular events and all- 
cause mortality, should be investigated by RCTs.
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