Hanna Virpiranta

Hanna Virpiranta
University of Oulu · Chemical Process Engineering

MSc (Tech) in Process Engineering

About

6
Publications
1,173
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
40
Citations
Citations since 2017
6 Research Items
40 Citations
20172018201920202021202220230510152025
20172018201920202021202220230510152025
20172018201920202021202220230510152025
20172018201920202021202220230510152025

Publications

Publications (6)
Article
Full-text available
Ion exchange technology removes ionic compounds from waters effectively but treatment of the spent regenerant is expensive. The bioregeneration of sulfate-laden strong base anion exchange resin was successfully tested using both pure and mixed sulfate-reducing bacterial cultures. The resin was first used for removal of sulfate from neutral (pH 6.7...
Article
Full-text available
The aim of this study was to develop a biological method for the simultaneous removal of sulfate and metals from acidic low-temperature mining effluents. A mixed consortium of cold-tolerant sulfate-reducing bacteria (SRB) and other microorganisms was immobilized on glass beads and exploited in an up-flow biofilm reactor for the continuous treatment...
Article
Full-text available
The main goal of this study was to develop a cost-efficient biological method for the removal of sulfate from mining effluents in cold conditions. A consortium of cold-tolerant sulfate-reducing bacteria (SRB) was tested at 6 °C regarding the utilization of economically viable, low-cost carbon sources, i.e., whey, conditioned sewage sludge, and peat...
Article
Full-text available
Boreal peatlands with low iron availability are a potential, but rarely studied, source for the isolation of bacteria for applications in metal sorption. The present research focused on the isolation and identification of Actinobacteria from northern Finland, which can produce siderophores for metal capture. The 16S rDNA analysis showed that isolat...
Article
Full-text available
Biological sulfate removal is challenging in cold climates due to the slower metabolism of mesophilic bacteria; however, cold conditions also offer the possibility to isolate bacteria that have adapted to low temperatures. The present research focused on the cold acclimation and characterization of sulfate-reducing bacterial (SRB) consortia enriche...

Network

Cited By

Projects

Projects (2)
Project
Supporting Environmental Economic and Social Impacts of Mining Activity (SEESIMA). Gather, generate and share knowledge on processing efficiency and environmental impact improvements for mining activity in NW Europe.
Project
Removal of sulfate from cold mining waters