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Abstract
Network traffic has recently known tremendous growth, and it is set to explode over the next few years. Alongside the increase 
in traffic, network attacks have become more complex, advanced, and efficient. Therefore, intrusion detection systems (IDS), 
among other countermeasures, must be adapted accordingly to the development of new threats, which implies the design of 
new detection methods with better accuracy and adaptability characteristics. Furthermore, methods training and validation 
can be conducted only on the grounds of adequate datasets. Therefore, using updated datasets and efficient classifiers are key 
factors. In this paper, we introduce a new Deep Neural Network (DNN) based IDS model for network traffic classification. 
Experimental analysis is carried out using both the CICIDS2017 dataset, which contains many new and up-to-date attacks 
alongside the well-known NSL-KDD dataset. The results are analyzed based on different performance metrics. The proposed 
model proves an accuracy of 99.43% and 99.63% using CICIDS2017 and NSL-KDD datasets, respectively. Furthermore, the 
performance of the proposed DNN model has been compared with the most recent schemes and higher accuracy is achieved.

Keywords  Intrusion detection system · CICIDS2017 dataset · Deep neural network · Deep learning · NSL-KDD dataset

1  Introduction

During the last few decades, network attacks became com-
plicated phenomena, which most systems suffer from fre-
quently. These attacks keep evolving on an almost daily basis 
calling for continuous researches over different mechanisms 
against them. One widely known approach is to deploy a 
Network Intrusion Detection System (NIDS) to analyze, 
classify, and detect malicious traffic from normal traffic.

Network-based intrusion detection (NIDS) monitor and 
analyze network traffic by sniffing all inbound and out-
bound packets and searches for any suspicious traffic such as 
denial-of-service attacks, port scans, etc. This task is accom-
plished using either signature-based detection (Kumar 2012) 
or anomaly-based detection methods (Jyothsna et al. 2011).

The first category of NIDS is a signature-based intru-
sion detection system. This system can detect attacks by 
looking for specific patterns (signatures) (Kumar 2012). It 
can effectively detect previously known intrusions,SNORT 
is one famous light-weighted signature-based IDS (Zhou 
et al. 2010). This approach does not report a high false alarm 
rate because it uses pre-defined rules to identify recognized 
attacks (Gogoi et al. 2014), but still, it fails to detect zero-
day attacks with unknown signatures. On the other hand, 
anomaly-based IDS, which is our interest in this paper, uses 
machine learning to train a model with normal and any 
other abnormal traffic, then, predict new behavior against 
this model (Jyothsna et al. 2011). This approach allows the 
detection of both known and new attacks.

Developing an accurate IDS model and validating it is a 
challenge and requires another important task, namely the 
selection of a training dataset. Only a few of them avail-
able for public use and they tend to be unbalanced. Another 
constraint regarding these datasets is that many of them are 
not very diversified, not sufficient, or may not reflect the 
actual status of cyber-attacks at any given time. Most recent 
researches are validated using the KDD-99 dataset (Tav-
allaee et al. 2009), NSL-KDD (Dhanabal and Shanthara-
jah 2015), and since network threats evolve quickly, these 
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datasets may not cover modern attacks and they may be con-
sidered as outdated datasets. These challenges produce the 
need for an up-to-date dataset constantly.

Previous works on IDS (Subba et al. 2016; Kim and Gof-
man 2018; Almi’ani et al. 2018; Chiba et al. 2018) used 
different machine learning methods, such as K-NN, SVM, 
C4.5, and shallow neural networks (ANN) on KDD’99 and 
NSL-KDD datasets. These studies encounter limits when 
it comes to proving the performance of the model against 
modern attacks. One of the most up-to-date datasets is CIC-
IDS2017 (Sharafaldin et al. 2018) that contains records of 
benign traffic along with seven common network attack 
instances, which satisfies real-world criteria. Besides, 
authors from Kim and Gofman (2018) concluded that a deep 
neural network performs poorly as IDS classifiers. However, 
we prove that this is not the case for all datasets (Wolpert 
and Macready 1997).

In this paper, we propose an IDS model based on Deep 
Neural Network (DNN) with four layers then we compare 
its results against shallow neural networks and other classic 
machine learning approaches. Our model architecture was 
the result of building and comparing 36 model combinations 
with different hyper-parameters. We evaluated the perfor-
mance of our model using the CICIDS2017 dataset, which 
gives our study more reliability. Moreover, to enrich our 
study more and make the comparison more objective with 
previous researches, we conducted the same experiments 
using the well-known NSL-KDD dataset.

The main contributions of this paper are:

•	 We introduce a new DNN-based IDS model architecture 
that is very effective against almost all network attacks.

•	 We performed extensive experimental analysis using 
the CICIDS2017 and NSL-KDD datasets to train and 
validate the proposed model against state-of-the-art IDS 
models.

The rest of the paper is organized as follows. Section 2 
discusses recent related work. Section  3 presents CIC-
IDS2017 and its properties. Section 4 describes the proposed 
deep neural network-based IDS model. Section 5 provides 
the experimental results. Finally, conclusions and future 
works are presented in Sect. 6.

2 � Related work

Subba et al. (2016) proposed an intrusion detection sys-
tem based on a three-layered ANN model. They evalu-
ated their model using the NSL-KDD dataset. They used 
feature selection methods to reduce the feature vector to 
36 features. After, they normalized the numeric attributes 
using the mean normalization method before feeding it to 

the model. Authors aimed to classify normal traffic versus 
four different attacks (Probe, DoS, U2R, and R2L). They 
reported a resulted accuracy of 95.05% for multi-classifi-
cation using their model, and 98.86% correct classification 
in case of two-class (normal and attack) NSL-KDD.

As a comparison between shallow and deep neural 
networks for intrusion detection, Kim et al. (2018) tested 
a variety of shallow and deep neural network models on 
a preprocessed NSL-KDD dataset containing 148,000 
instances of 41 features and 22 attacks. They reported that 
shallow neural network models perform better than deep 
models in case of intrusion detection. The authors reported 
98.50% accuracy using a shallow model with one hidden 
layer of 17 nodes and 48.30% accuracy at best using deep 
models.

The intrusion detection system using a clustered ver-
sion of Self-Organized Map (SOM) network is proposed in 
Almi’ani et al. (2018). Their system consists of two stages, 
SOM network and hierarchical agglomerative clustering 
using k-means applied on SOM neurons. The proposed work 
was demonstrated using the NSL-KDD benchmark dataset 
after min–max normalization, where they reported accuracy 
of 96.66% of binary classification, attack/normal connection 
instances.

Chiba et al. (2018) have developed an Anomaly Network 
Intrusion Detection System (ANIDS) based on Back Propa-
gation Neural Network (BPNN). They performed a series 
of experiments in five working phases. The first phase is the 
determination of the parameters for ANIDS. Next, selec-
tion of a set of relevant values for intrusion detection for 
each parameter. In the third phase, they generate all possible 
combinations of values of these parameters. Finally, build-
ing the IDSs corresponding to all these combinations and 
realizing a comparison of the performance of twelve IDSs. 
The authors used KDD CUP 99 dataset to evaluate their 
approach, they reported accuracy of 99.10%. They come 
to conclude the best number of nodes for the hidden layer 
(H = 0.75 × Input + Output) for their adopted architecture.

Based on a study by Sharafaldin et  al. (2018) over 
eleven datasets since 1998 (DARPA98, KDD99, ISC2012, 
ADFA13, etc.). It has been found that most of these datasets 
are outdated and suffer from a lack of traffic diversity. This 
drove them toward generating a new dataset, CICIDS2017. 
In their paper, they evaluated the performance of CIC-
IDS2017 using seven common machine-learning algorithms, 
which are KNN, Random Forest, ID3, Adaboost, MLP, 
Naive-Bayes, and QDA. The best results (accuracy) they 
reported were given by Random Forest 98%, also they used 
a Multilayer perceptron (MLP) but it didn’t give a promising 
result (77.00%) comparing to other classifiers.

ANN Based Hybrid NIDS also showed impressive 
results, Chandrashekhar and Raghuveer (2014) applied dif-
ferent linear and non-linear data normalization methods on 
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KDDCup’99, then it has been given as input to network 
hybrid-IDS which consists of three layers, Fuzzy C-Means 
Clustering, ANN and Support Vector Machine.

(SVM). They compared the output results to determine 
the more relevant normalization technique for the intrusion 
detection dataset. From the analysis of the result, it is proved 
that Z-score (98.46%), Logarithmic (97.84%), and Decimal 
Scaling (97.08%) normalization techniques gave a better 
detection rate.

Bayesian networks event binary classification scheme has 
been proposed in Kruegel et al. (2003) to overcome a large 
number of false alarms and the lack of integration of addi-
tional information into the decision process by improving 
and the aggregation of different model outputs and allow 
one to seamlessly incorporate additional data. The authors 
achieved a significant reduction of false alarms as shown in 
their experimental results.

In Abdulhammed et al. (2019), the authors used two fea-
ture dimensionality reduction approaches, Auto-Encoder 
(AE) and Principle Component Analysis (PCA) to reduce 
CICIDS2017 dataset’s features dimension from 81 down to 
10. The resulting low-dimensional features are used to build 
various classifiers such as Random Forest (RF), Bayesian 
Network, Linear Discriminant Analysis (LDA), and Quad-
ratic Discriminant Analysis (QDA) for designing an IDS. 
the accuracy is wobbling between 66% with 10 features 
and 96.7% with 60 features. For LDA with 10 and 40 fea-
tures, the accuracy is fluctuating between 85% and 96.6%, 
respectively.

The authors in Yulianto (2019) used Synthetic Minor-
ity Oversampling Technique (SMOTE), PCA, and Ensem-
ble Feature Selection (EFS) to improve the performance 
of AdaBoost-based IDS on CICIDS-2017 Dataset. The 
evaluation results show that the proposed AdaBoost classi-
fier using EFS and SMOTE produces accuracy, precision, 
recall, and F1-Score of 81.83%, 81.83%, 100%, and 90.01% 
respectively.

Ahmim et al. (2019) proposed a novel hierarchical IDS 
combining different classifier approaches based on decision 
trees and rules-based concepts. They evaluated the proposed 
system using the CICIDS2017 dataset to classify the net-
work traffic as Attack/Benign. The authors reported an accu-
racy of 99,665% with a detection rate of 94.457%.

3 � CICIDS2017 dataset

As network modern attacks evolve on a daily basis, the use 
of old datasets may not lead to desired and objective results. 
Thus, we opted for using one of the most recently published 
IDS datasets, which is the CICIDS2017 dataset.

To overcome older datasets and meets real-world criteria, 
Canadian Institute for Cyber-security has created, among 

other newer datasets, the CICIDS2017 dataset among other 
newer ones (Sharafaldin et al. 2018). Some old datasets suf-
fer from lack of traffic diversity, features set, metadata, and 
volumes. Some of them do not take into account the diver-
sity of attacks, others anonymize traffic and ignore mean-
ingful data payload. It is the most complete and up to date 
dataset according to Sharafaldin et al. (2018). CICIDS2017 
meets all eleven criteria that must be considered to build 
an accurate benchmark dataset (Gharib et al. 2016) with 
updated attacks such as DoS, DDoS, Brute Force, XSS, SQL 
Injection, Infiltration, Portscan and Botnet.

CICIDS2017 was collected during 5 days under complete 
network configuration which includes a variety of network 
devices such as Modem, Firewall, and Routers…etc., and 
the presence of a variety of operating systems. Collecting 
realistic traffic was performed by profiling the behavior of 
human interactions and generating naturalistic benign back-
ground traffic. Besides, it covers six attack profiles: Brute 
Force Attack, Heartbleed Attack, Botnet, DoS Attack, DDoS 
Attack, Web Attack, and Infiltration Attack, these attacks 
are represented by 85 numeric and nominal features (Ring 
et al. 2019).

A recent study by Boukhamla and Coronel (2018) 
improved the performance of the classification process over 
CICIDS2017 by selecting the features that were more rep-
resentative accurately, using Principal Component Analysis 
(PCA) procedure to end up with only 36 relevant features 
(75% of total features). The new PCA-dataset has been eval-
uated using three well-known classifiers.

3.1 � Dataset preprocessing

Dataset preprocessing is an indispensable step, therefore, 
we needed to filter and clear out the CICIDS2017 dataset 
and select the most relevant features. It contains redundant 
records, irrelevant features, null values in all instances, and 
unknown/infinity values to be processed. From a total num-
ber of 85 features, we removed network-related features such 
as IP address, Flow ID and Timestamp, etc. Moreover, by 
removing zero-valued features we ended up with only 68 
features.

Due to an enormous number of connection instances 
(2,299,308 records) and the lack of compatibility between 
instances numbers of some attacks compared to the rest, 
we decided to work on a custom subset of 356,510 records 
(about 15% of the original dataset) instead of the whole data-
set. Also, we have replaced all unknown values with zeroes 
and infinities with a max positive number, as it is far greater 
than the maximum value of all features.

As shown in Table 1, some connection types (Benign, 
DoS, and PortScan) have an enormous number of records 
compared to others. Hence, we tried to equilibrate instances 
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numbers by choosing a custom subset of data by downsiz-
ing Benign, DDoS, DoS, and PortScan instances randomly.

3.2 � Data normalization

Some inputs to ANN might not have a naturally defined 
range of values. In such a case, feeding these raw values 
into our network will not work very well. As the network 
has learned to work on values from the lower part of the 
range, while the actual inputs will be from the higher part 
of this range and possibly above range. However, a vari-
ety of practical studies proves that normalizing the inputs 
enhance the reliability of the trained network, make train-
ing faster and reduce the chances of being stuck in local 
optima (Chandrashekhar and Raghuveer 2014; Jayalak-
shmi and Santhakumaran 2011). We have been interested 
in two methods, Z-score normalization and Min–Max 
normalization following the formulas in Eqs. (1) and (2), 
respectively.

where μ is the mean, and σ is the standard deviation.

3.3 � Performance assessment with k‑fold 
cross‑validation

To assess how the result of our model will generalize 
and estimate its skill we used cross-validation with four-
folds. Cross-validation is a resampling procedure, which 
has one parameter k that refers to the number of groups 
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that a given dataset to be split into. And such, as we used 
fourfolds cross-validation, we divided each attack of the 
dataset into 4 groups, after, we merged three randomly 
chosen groups of each attack into one training sub-dataset 
to make sure that this training dataset has a fair share of 
all attack types.

4 � Proposed model

Artificial Neural Network (ANN) is an information process-
ing approach that tries to imitate the human brain. It consists 
of interconnected neurons collaborating to perform tasks. 
Generally, such a system learns to solve tasks by consider-
ing examples (training data) without using any task-specific 
rules. Deep Neural Network (DNN) is an artificial neural 
network with multiple layers between the input and output 
layer, which can model complex non-linear relationships.

In intrusion detection, DNN learns to recognize attacks 
(as DDoS attack), by analyzing a large enough set of labeled 
examples, then the model is used to identify new DDoS 
attack instances.

We used four-layers DNN with two hidden layers of 136 
neurons with ReLu as an activation function. Table 2 shows 
the architecture of this network. The total number of train-
able parameters is 29240.

Getting to this DNN model was not coincidental; our 
work is based on previous work (Sen et al. 2015; Lokeswari 
and Rao 2016; Gaidhane et al. 2014; Shah and Trivedi 2012; 
Kumar and Yadav 2014; Ghosh et al. 2015; Mukhopadhyay 
et al. 2011; Karsoliya 2012) where the efficiency of ANN 
models and their hyper-parameters have been discussed. 
We performed a series of experiments using several hyper-
parameters combinations and ANN models, both deep 
and shallow. First, we selected the most relevant param-
eters used to construct ANN models, which are detailed in 
Table 3. After that, we ended up with 36 combinations of 
DNN models, constructing and testing these combinations 
gave us different results. After comparing model combina-
tions we found that the best model to work with is the one 
described in Table 3, and as normalization method, we used 
Min–Max, this method proved its efficiency in most previ-
ous works (Chiba et al. 2018). Besides, we found that the 

Table 1   Data distribution of original and custom cicids2017 dataset

Traffic type CICIDS2017 CUSTOM CIC-
IDS2017

Instances Percentage (%) Instances Percentage

BENIGN 1,743,153 75.81 100,000 28.04%
DDoS 128,027 5.56 80,000 22.43%
DoS 252,661 10.98 80,000 22.43%
PortScan 158,957 6.91 80,000 22.43%
Botnet 1966 0.085 1966 0.55%
BruteForce 13,835 0.60 13,835 3.88%
SQLInjection 21 0.0009 21 0.0058%
XSS 652 028 652 0.1828%
Infiltration 36 0.0015 36 0.01ù
Total 2,299,308 100 56,510 100%

Table 2   Proposed deep neural network model

Layer Neurons number Activation function

Input 68 None
Hidden #1 Input * 2 ReLu
Hidden #2 Input * 2 ReLu
Output 9 Softmax
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Adam optimizer algorithm performed much better and there 
is no need to fix a learning rate in this case as it is adaptable 
according to features.

Choosing an activation function will affect the perfor-
mance and speed of any neural network, which is why it is 
inevitable to use an activation function that will perform 
efficiently in an acceptable time. However, in the intrusion 
detection case, we ignored the speed criteria of this hyper-
parameter, because overall, the calculation is not that com-
plicated as it is in deep neural networks and we are dealing 
with shallow networks. As a result, we found that ReLu 
(Rectified Linear Units) performed better and faster than 
Sigmoid and Tanh as an activation function.

We used Accuracy, Detection Rate, and False alarm rate 
to measure the performance of DNN models. Accuracy is 
defined as the percentage of correct prediction, it is the frac-
tion of elements correctly classified out of all the elements 
classified as positive. Whereas Detection Rate is the frac-
tion of attacks detected by the system out of all positive 
detected elements. False alarm rate represents the ratio of 
instances misclassified as attacks by the benign instances in 
the dataset.

5 � Experimental results

We implemented all machine learning techniques, candi-
date neural network-based IDS, and the proposed one using 
Python with the TensorFlow library (Abadi et al. 2016) 
on a machine with Intel I5-3210 (2.5 GHz) CPU and 8 G 
Memory.

5.1 � Experiment #1 (using CICIDS2017 dataset)

For model analysis, we used the custom subset of the CIC-
IDS2017 dataset (Sharafaldin et al. 2018) consisting of 
normal and attack instances as shown in Table 4. After the 
features selection stage, we found that six features had zeros 
as constant values, so they will not affect the classification 

Table 3   Hyper-parameters combinations

Parameter Combinations

Normalization method Z-Score
Min–Max

Activation function Sigmoid
ReLu
Tanh

Number of neurons in hid-
den layers

2 * Input (Novel rule)
0.75 * Input + Output (Chiba et al. 2018)
(Input + Output)/2 (Gaidhane et al. 

2014) (Arithmetic mean)
Optimization algorithm Stochastic gradient descent

Adam optimizer
Loss function Categorical cross-entropy

Table 4   Train/test split of the custom CICIDS2017 dataset

Class Train set Test set

BENIGN 75,000 25,000
DDoS 60,000 20,000
DoS 60,000 20,000
PortScan 60,000 20,000
Botnet 1475 491
BruteForce 10,377 3458
SQL injection 16 5
XSS 489 163
Infiltration 27 9

Table 5   The comparison of the proposed approach with other representative approaches

Publications Model Dataset Type Accuracy (%) DR (%) FPR (%)

Subba et al. (2016) ANN NSL-KDD Multi-class 95.05 95.05 – 
Kim and Gofman (2018) ANN NSL-KDD Multi-class 98.50 – 1.40
Almi’ani et al. (2018) Self-Organized Map Network NSL-KDD Binary-classification 83.46 96.66 0.279
Chiba et al. (2018) BPNN KDD-CUP99 Binary-classification 99.10 99.33 1.60
Sharafaldin et al. (2018) Multi-Layer perceptron CICIDS2017 Multi-class – 77.00 –
Sharafaldin et al. (2018) Random Forest CICIDS2017 Multi-class – 98.00 –-
Abdulhammed et al. (2019) Auto-Encoder CICIDS2017 Multi-class – 98.90 0.001
Yulianto et al. (2019) AdaBoost CICIDS2017 Multi-class 81.83 81.83 –
Hosseini (2020) GSPSO-ANN NSL-KDD

KDD Cup99
Multi-class
Multi-class

–
–

94.40
96.80

–
–

This paper DNN NSL-KDD Multi-class 99.63 86.50 0.0011
This paper DNN CICIDS 2017 Multi-class 99.43 80.33 0.0007
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process and they were excluded. This left 68 features to deal 
with. Table 5 shows the training/test data distribution of all 
attack types.

The class labels were numbered from zero to eight, label 
(0) is benign traffic. Thus, the output layer consists of nine 
nodes; each node represents a class label. The number of 
nodes in the input layer is set to 68, which is the number of 
features.

As each neural network has the best set of hyper-param-
eters to be chosen, which will lead to maximum accuracy, 
hyper-parameters tuning must be used to determine this 
set. It is the process of selecting the best values to initial-
ize that leads to the best accuracy. We performed a series 
of experiments on 36 combinations to determine the best 
model architecture along with many other hyper-parameters 
like the optimizer used, loss function, normalization method, 
and the activation function. One last hyper-parameter we did 
not talk about, it is the number of epochs to train, for that, 
we observed training/testing accuracy development over 
epochs. We found that our DNN model shows maximum 
accuracy almost around epoch #30 on the CICIDS2017 data-
set. Figure 1 shows that test accuracy is greater than training 

accuracy and this confirms the good generalization ability 
of the proposed ANN model.

After setting up hyper-parameters, we used cross-valida-
tion with four rounds to assess how our model will general-
ize different train/test dataset splitting. We ran our model 
four times using different train/test sets each round, then we 
average results. The average accuracy we obtained is 99.43% 
with a low standard deviation σ = 0.0033.

Figure 2 shows detection rate of each attack type, we 
notice high detection rate for Benign, DDoS, DoS, PortS-
can, brute force and XSS traffic (98.82%, 99.29%, 99.89%, 
99.93%, 99.55%, and 97.54% respectively) with very low 
false alarm rate as shown in Fig. 4. False alarm rate is low 
for all attacks as shown in Fig. 3, it is only 0.00279% for 
benign traffic which is the highest false-positive rate. PortS-
can and DoS have a very low false alarm rate of 0.00028% 
and 0.00003% respectively. Bot attack’s detection rate is 
only 72.96%, which is considered low against other types.

SQL injection and infiltration attacks have 25.00% and 
29.37% detection rate which are very low compared to 
other types. This is due to the small number of connection 
instances of these attacks (Only 21 and 36 records respec-
tively), we expect a higher detection rate in case of enough 
data.

5.2 � Experiment #2 (using NSL‑KDD dataset)

The NSL-KDD dataset solved some of the problems of the 
KDDCUP’99 (Boukhamla and Coronel 2018; UNB 2020). 
This dataset has been used in much previous research. 
Therefore, we performed the same experiment we did use 
CICIDS2017 on the NSL-KDD dataset. This makes it pos-
sible to compare our results with previous proposals. NSL-
KDD dataset includes 41 features, 125,973 instances, and 
has four classes as shown in Table 5.

This dataset has nominal features (Protocol_type, Ser-
vice, Flag), and they cannot be handled by DNN directly, 

Fig. 1   DNN training/testing accuracy over epochs using the CIC-
IDS2017 dataset

Fig. 2   The detection rate of the 
CICIDS2017 dataset
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so we converted all these nominal attributes into binary 
numeric attributes, this gave us a new dataset with 122 
features. Then, we used a fourfold cross-validation. As an 
evaluation metric, we also used accuracy, detection rate, 
and false alarm rate. The average accuracy we obtained is 
99.63% (σ = 0.002). Figure 4 shows the detection rate of 
the attacks.

Figures 4 and 5 shows that normal, DoS, and Probe 
instances have a very high detection rate and low false alarm 
rate as expected. The low detection rate of U2R and R2L is 
due to a lack of data (52 and 995 instances respectively).

Most existing researches on intrusion detection have been 
performed on older datasets. Table 5 summarizes a compari-
son between our approach and the most recent similar works 

Fig. 3   The detection rate of the 
CICIDS2017 dataset

Fig. 4   Attacks detection rate of 
NSL-KDD dataset

Fig. 5   False alarm rate of NSL-
KDD dataset
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that focus on intrusion detection using both Artificial Neural 
Networks other machine learning. The nearest result to ours 
is presented by the work of Chiba et al. (2018) with an accu-
racy of 99.10%, but still, this study was performed on KDD-
CUP’99 with binary classification, normal/attack classifica-
tion. Sharafaldin et al. (2018) evaluated the performance 
of CICIDS2017 using a Multi-Layer perceptron (MLP) and 
reported a detection rate of 77.00%. Unfortunately, they did 
not provide much detail about the model’s architecture nor 
its properties. On the other hand, the relatively low average 
detection rate is due to the small number of instances of SQL 
Injection and Infiltration attacks, only 43 records for both in 
the CICIDS2017 dataset. For the NSL-KDD dataset, the low 
number of U2R attack instances of only 11 records reduced 
the average detection rate.

6 � Conclusion

With the rapid growth of network traffic and the advance-
ment of cyber-attacks as well, the need to use more effective 
and accurate IDS has become more urgent. A new model 
based on Deep Neural Networks has been proposed in this 
paper. This model is composed of four layers, and by using 
hyper-parameters tuning on 36 model combinations, we 
arrived to choose a set of hyper-parameters that delivered 
the best result.

The experiments were conducted using the CICIDS2017 
dataset that overcomes old datasets and contains many 
updated attack instances to cover most of the modern attack. 
Besides, to give our work more reliability for the sake of 
comparison, we perform the same experiments on the well-
known NSL-KDD dataset that has been used by most of 
the previous works. The performance of our DNN model 
achieved an average accuracy of 99.43% (σ = 0.0033) and 
99.63% (σ = 0.002) using CICIDS2017 and NSL-KDD data-
set respectively.

For our future work, we intend to extend the range of 
hyper-parameters and examine deeper neural networks to 
further enhance our model.
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