Han (A.J.) Dolman

Han (A.J.) Dolman
  • Prof. dr.
  • Director at NIOZ Royal Netherlands Institute for Sea Research

About

593
Publications
166,909
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
49,141
Citations
Current institution
NIOZ Royal Netherlands Institute for Sea Research
Current position
  • Director
Additional affiliations
January 2015 - March 2017
Vrije Universiteit Amsterdam
Position
  • Professor
January 2004 - December 2012
Vrije Universiteit Amsterdam

Publications

Publications (593)
Article
Full-text available
The Arctic–Boreal Zone is rapidly warming, impacting its large soil carbon stocks. Here we use a new compilation of terrestrial ecosystem CO2 fluxes, geospatial datasets and random forest models to show that although the Arctic–Boreal Zone was overall an increasing terrestrial CO2 sink from 2001 to 2020 (mean ± standard deviation in net ecosystem e...
Article
Full-text available
Wetlands are the largest natural source of global atmospheric methane (CH4). Despite advances to our understanding of changes in temperature and precipitation extremes, their impacts on carbon‐rich ecosystems such as wetlands, remain significantly understudied. Here, we quantify the impacts of extreme temperature, precipitation, and dry events on w...
Article
Full-text available
Terrestrial gross primary productivity (GPP) is the largest carbon flux in the global carbon cycle and plays a crucial role in terrestrial carbon sequestration. However, historical and future global GPP estimates still vary markedly. In this study, we reduced uncertainties in global GPP estimates by employing an innovative emergent constraint metho...
Article
Full-text available
Tundra and boreal ecosystems encompass the northern circumpolar permafrost region and are experiencing rapid environmental change with important implications for the global carbon (C) budget. We analysed multi-decadal time series containing 302 annual estimates of carbon dioxide (CO2) flux across 70 permafrost and non-permafrost ecosystems, and 672...
Article
Full-text available
Despite covering only 3 % of the planet’s land surface, peatlands store 30 % of the planet’s terrestrial carbon. The net greenhouse gas (GHG) emissions from peatlands depend on many factors but primarily soil temperature, vegetation composition, water level and drainage, and land management. However, many peatland models rely on water levels to est...
Article
Full-text available
Thermokarst lakes are important conduits for organic carbon sequestration, soil organic matter (soil-OM) decomposition and release of atmospheric greenhouse gases in the Arctic. They can be classified as either floating-ice lakes, which sustain a zone of unfrozen sediment (talik) at the lakebed year-round, or as bedfast-ice lakes, which freeze all...
Article
Full-text available
The Earth climate system is out of energy balance, and heat has accumulated continuously over the past decades, warming the ocean, the land, the cryosphere, and the atmosphere. According to the Sixth Assessment Report by Working Group I of the Intergovernmental Panel on Climate Change, this planetary warming over multiple decades is human-driven an...
Preprint
Full-text available
Despite covering only 3 % of the planet’s land surface, peatlands store 30 % of the planet’s terrestrial carbon. The potential to both emit and drawdown CO2 and CH4, means that peatlands have a complex and multifaceted relationship with the global climate system. The net GHG emissions from peatlands depends on many factors but primarily vegetation...
Preprint
Full-text available
Thermokarst lakes are important conduits for organic carbon (OC) sequestration, soil organic matter (SOM) processing and atmospheric greenhouse gas (GHG) release in the Arctic. They can be classified as either floating-ice lakes, which sustain a zone of unfrozen sediment (talik) at the lakebed year-round, or as bedfast-ice lakes, which freeze all t...
Chapter
An improved understanding of the global carbon cycle is important to the success of efforts to mitigate climate change, such as agreed in the Paris meeting of the UN Conference of the Parties in 2016. Climate change mitigation and adaptation requires action by individual countries, municipalities, cities, and their citizens. These actions require a...
Preprint
Full-text available
Peatlands are the world’s largest terrestrial carbon store. Despite covering only 3 % of the planet’s land surface, peatlands store 30 % of the planet’s terrestrially available carbon. The Dutch government's 2019 National Climate Agreement committed to reduce the contribution of peatlands to total national Dutch greenhouse gas (GHG) emissions, by 1...
Article
Less than half of the anthropogenic carbon dioxide remains in the atmosphere to drive climate change. The rest is being removed by mysterious processes in the land, biosphere, and ocean.
Article
Full-text available
The greening of the Earth over the last decades is predominantly indicated by the enhancements of leaf area index (LAI). Quantifying the relative contribution of multiple determinants, especially changes in climate and in land management changes (LMC), remains an arduous challenge. To solve this problem, we develop a simple yet novel data‐driven me...
Article
Full-text available
Fossil fuel combustion, land use change and other human activities have increased the atmospheric carbon dioxide (CO2) abundance by about 50% since the beginning of the industrial age. The atmospheric CO2 growth rates would have been much larger if natural sinks in the land biosphere and ocean had not removed over half of this anthropogenic CO2. As...
Article
Full-text available
Climate change and human activities have significant impacts on terrestrial vegetation. Syria is a typical arid region with a water-limited ecosystem and has experienced severe social unrest over the last decades. In this study, changes in vegetation and potential drivers in Syria are investigated. By using an enhanced vegetation index (EVI), a gen...
Article
Full-text available
Past efforts to synthesize and quantify the magnitude and change in carbon dioxide (CO2) fluxes in terrestrial ecosystems across the rapidly warming Arctic–boreal zone (ABZ) have provided valuable information but were limited in their geographical and temporal coverage. Furthermore, these efforts have been based on data aggregated over varying time...
Article
Full-text available
Climate change affects the water cycle. Despite the improved accuracy of simulations of historical temperature, precipitation and runoff in the latest Coupled Model Intercomparison Project Phase 6 (CMIP6), the uncertainty of the future sensitivity of global runoff to temperature remains large. Here, we identify a statistical relationship at the glo...
Article
Full-text available
More than half of the solar energy absorbed by land surfaces is currently used to evaporate water 1. Climate change is expected to intensify the hydrological cycle 2 and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct o...
Article
Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal , and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regar...
Article
Full-text available
Northern latitude peatlands act as important carbon sources and sinks, but little is known about the greenhouse gas (GHG) budgets of peatlands that were submerged beneath the North Sea during the last glacial–interglacial transition. We found that whilst peat formation was diachronous, commencing between 13 680 and 8360 calibrated years before the...
Preprint
Full-text available
Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties throug...
Article
Full-text available
Significance Peatlands are sensitive ecosystems that store carbon and water and support biodiversity. Currently, European peatlands are threatened by climate change and exploitation. In this study, we show that many landscape settings may support both wetland ecosystems on thick peat soils and forest ecosystems on thin organic soils. Both ecosystem...
Article
Full-text available
Ice-ridge Yedoma terrain is susceptible to vertical surface displacements by thaw and refreeze of ground ice, and geomorphological processes of mass wasting, erosion and sedimentation. Here we explore the relation between a 3 year data set of InSAR measurements of vertical surface displacements during the thaw season, and geomorphological features...
Article
Full-text available
Large amounts of carbon flow through tropical ecosystems every year, from which a part is sequestered in biomass through tree growth. However, the effects of ongoing warming and drying on tree growth and carbon sequestration in tropical forest is still highly uncertain. Field observations are sparse and limited to a few sites, while remote sensing...
Article
Full-text available
Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions due to quasi-co...
Preprint
Full-text available
Past efforts to synthesize and quantify the magnitude and change in carbon dioxide (CO2) fluxes in terrestrial ecosystems across the rapidly warming Arctic-Boreal Zone (ABZ) have provided valuable information, but were limited in their geographical and temporal coverage. Furthermore, these efforts have been based on data aggregated over varying tim...
Preprint
Full-text available
Climate change and human activities have significant impacts on terrestrial vegetation. Syria is a typical arid region with a water-limited ecosystem and has experienced severe social unrest over the last decades. In this study, changes in vegetation and potential drivers in Syria are investigated. By using an enhanced vegetation index (EVI), a gen...
Article
Full-text available
Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top...
Article
Full-text available
Reliable quantification of the sources and sinks of atmospheric carbon dioxide (CO2), including that of their trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Kyoto Protocol and the Paris Agreement. This study provides a consolidated synthesis of estimates for all anthropogenic and na...
Article
Full-text available
Greenhouse gas (GHG) emission inventories represent the link between national and international political actions on climate change, and climate and environmental sciences. Inventory agencies need to include, in national GHG inventories, emission and removal estimates based on scientific data following specific reporting guidance under the United N...
Article
The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink‐source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different...
Article
Full-text available
Thermokarst lakes play an important role in permafrost environments by warming and insulating the underlying permafrost. As a result, thaw bulbs of unfrozen ground (taliks) are formed. Since these taliks remain perennially thawed, they are zones of increased degradation where microbial activity and geochemical processes can lead to increased greenh...
Article
Full-text available
p>The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the co...
Preprint
Full-text available
Large amounts of carbon flow through tropical ecosystems every year, from which a part is sequestered in biomass through tree growth. However, the effects of ongoing warming and drying on tree growth and carbon sequestration in tropical forest is still highly uncertain. Field observations are sparse and limited to a few sites while remote sensing a...
Article
Full-text available
The complete or partial collapse of the forests of Amazonia is consistently named as one of the top ten possible tipping points of Planet Earth in a changing climate. However, apart from a few observational studies that showed increased mortality after the severe droughts of 2005 and 2010, the evidence for such collapse depends primarily on modelli...
Article
Evapotranspiration (ET) is one of the most important variables in terrestrial ecosystems, linking the carbon-water-energy cycles. In this study, we first analyze the spatial patterns of annual ET changes during 1980-2010 across China using four ET products: (i) the Global Land Evaporation Amsterdam Model version 3.0a (GLEAMv3.0), (ii) the EartH2Obs...
Preprint
Full-text available
Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions, including thei...
Article
Full-text available
The Paris Agreement of 2015 established an enhanced transparency framework, in which parties of the agreement compile and provide their national greenhouse gas (GHG) inventories based on annual statistics of human activity. These are referred to as “bottom-up” estimates. However, only “top-down” atmospheric measurements can provide observation-base...
Preprint
Full-text available
Reliable quantification of the sources and sinks of atmospheric carbon dioxide (CO2), including that of their trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Kyoto Protocol and the Paris Agreement. This study provides a consolidated synthesis of estimates for all anthropogenic and na...
Article
Full-text available
Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top...
Preprint
Full-text available
Thermokarst lakes play an important role in permafrost environments by warming up and insulating the underlying permafrost. As a result, thaw bulbs of unfrozen ground (taliks) are formed. Since these taliks remain perennially thawed, they are zones of increased degradation where microbial activity and geochemical processes can lead to increased gre...
Conference Paper
Full-text available
Inland waters are an ubiquitous feature of Arctic landscapes, with carbon (C) and nutrient cycles that are closely coupled to terrestrial processes. They act as important conduits of terrestrial matter by not only transporting but also actively storing and processing it, subsequently emitting greenhouse gases (GHG) of carbon dioxide (CO2), methane...
Article
Full-text available
Methane emissions from natural wetlands tend to increase with temperature and therefore may lead to a positive feedback under future climate change. However, their temperature response includes confounding factors and appears to differ on different time scales. Observed methane emissions depend strongly on temperature on a seasonal basis, but if th...
Preprint
Full-text available
Northern latitude peatlands act as important carbon sources and sinks but little is known about the greenhouse gas (GHG) budget of peatlands submerged beneath the North Sea during the last glacial-interglacial transition. We found that whilst peat formation was diachronous, commencing between 13,680 and 8,360 calibrated years before the present, st...
Article
Full-text available
Evaporation is the phenomenon by which a substance is converted from its liquid into its vapor phase, independently of where it lies in nature. However, language is alive, and just like regular speech, scientific terminology changes. Frequently, those changes are grounded on a solid rationale, but sometimes these semantic transitions have a fragile...
Presentation
Full-text available
Economic development and rapid urbanization have increased the consumption of fossil fuel in megacities degrading the local air quality. Burning efficiency is a major factor determining the impact of fuel burning on the environment. It varies with environmental conditions and influences the ratio at which pollutants are emitted, as expressed by the...
Article
Full-text available
This study investigates the use of co-located nitrogen dioxide (NO2) and carbon monoxide (CO) retrievals from the TROPOMI satellite to improve the quantification of burning efficiency and emission factors (EFs) over the megacities of Tehran, Mexico City, Cairo, Riyadh, Lahore, and Los Angeles. Efficient combustion is characterized by high NOx (NO+N...
Article
Full-text available
The Sahel, a semi-arid climatic zone with highly seasonal and erratic rainfall, experienced severe droughts in the 1970s and 1980s. Based on remote sensing vegetation indices since early 1980, a clear greening trend is found, which can be attributed to the recovery of contemporaneous precipitation. Here, we present an analysis using long-term leaf...
Article
Full-text available
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their...
Article
Full-text available
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their...
Article
Full-text available
Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by...
Preprint
Evaporation is the phenomenon by which a substance is converted from its liquid into its vapor phase, independently of where it lies in nature. However, language is alive, and just like regular speech, scientific terminology changes. Frequently those changes are grounded on a solid rationale; but sometimes these semantic transitions have a fragile...
Article
Full-text available
The effects of future warming and drying on tropical forest functioning remain largely unresolved. Here, we conduct a meta-analysis of observed drought responses in Neotropical humid forests, focusing on carbon and water exchange. Measures of leaf-, tree- and ecosystem-scale performance were retrieved from 145 published studies conducted across 232...
Conference Paper
Full-text available
Inland waters can be significant sources of greenhouse gases (GHGs; CO 2 , CH 4 and N 2 O) to the atmosphere, yet they are often excluded from terrestrial GHG balances. Vast stocks of carbon stored in Arctic tundra permafrost soils are vulnerable to mobilisation due to permafrost thawing accelerated by the amplified effects of climate warming at hi...
Conference Paper
Full-text available
Inland waters (rivers, lakes and ponds) are important conduits for the emission of terrestrial carbon in Arctic permafrost landscapes. These emissions are driven by turnover of contemporary terrestrial carbon and additional "pre-aged" (Holocene and late-Pleistocene) carbon released from thawing permafrost soils, but the magnitude of these source co...
Conference Paper
Full-text available
Large quantities of carbon are stored in the terrestrial permafrost of the Arctic region where the rate of climate warming is two to three times more than the global mean and the largest temperature anomalies observed in autumn and winter. The quantification of the impact of climate warming on the degradation of permafrost and the associated potent...
Article
Full-text available
Emission of greenhouse gases (GHGs) and removals from land, including both anthropogenic and natural fluxes, require reliable quantification, including estimates of uncertainties, to support credible mitigation action under the Paris Agreement. This study provides a state-of-the-art scientific overview of bottom-up anthropogenic emissions data from...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Inland waters (rivers, lakes and ponds) are important conduits for the emission of terrestrial carbon in Arctic permafrost landscapes. These emissions are driven by turnover of contemporary terrestrial carbon and additional pre-aged (Holocene and late-Pleistocene) carbon released from thawing permafrost soils, but the magnitude of these source cont...
Article
Full-text available
The semi-arid and arid drylands of China, which are located in the inland region of Eurasia, have experienced rapid climate change. Some regions in particular, have shown upward trends in the observational records of precipitation. However, there is more to drying and wetting than just changes in precipitation which still have large uncertainties....
Article
Full-text available
Under the Paris Agreement progress of emission reduction efforts is tracked on the basis of regular updates to national Greenhouse Gas (GHG) inventories, referred to as bottom-up estimates. However, only top-down atmospheric measurements can provide observation-based evidence of emission trends. Today there is no internationally agreed, operational...
Preprint
Full-text available
Abstract. The effects of future warming and drying on tropical forest functioning remain largely unresolved. Here, we conduct a meta-analysis of observed drought responses in neotropical humid forests, focused on carbon and water exchange. Measures of leaf, tree and ecosystem scale performance were retrieved from 138 published studies conducted acr...
Preprint
Full-text available
This study investigates the use of co-located NO2 and CO retrievals from the TROPOMI satellite to improve the quantification of burning efficiency and emission factors over the mega-cities of Tehran, Mexico City, Cairo, Riyadh, Lahore and Los Angeles. Local enhancement of CO and NO2 above megacities are well captured by TROPOMI at relatively short...
Article
Full-text available
We investigate global trends in seasonal water discharge using data from 5668 hydrological stations in catchments whose total drainage area accounts for 2/3 of the Earth's total land area. Homogenization of water discharge, which occurs when the gap in water discharge between dry and flood seasons shrinks significantly, affects catchments occupying...
Article
Full-text available
25 Emission of greenhouse gases (GHG) and removals from land, including both anthropogenic and natural fluxes, require reliable quantification, along with estimates of their inherent uncertainties, in order to support credible mitigation action under the Paris Agreement. This study provides a state-of-the-art scientific overview of bottom-up anthro...
Article
Full-text available
Functional relationships between wood density and measures of xylem hydraulic safety and efficiency are ambiguous, especially in wet tropical forests. In this meta‐analysis, we move beyond wood density per se and identify relationships between xylem allocated to fibers, parenchyma and vessels and measures of hydraulic safety and efficiency. We anal...
Article
Full-text available
Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process (“bottom-up”) or inversion (“top-down”) models. However, estimates from these two types of models are not independent of each oth...
Article
The interaction between the land surface and the atmosphere is of significant importance in the climate system because it is a key driver of the exchanges of energy and water. Several important relations to heat waves, floods and droughts exist that are based on the interaction of soil moisture and for instance, air temperature and humidity. Our ab...
Chapter
This chapter reports the distinctive features of leaf-scale photosynthesis, soil respiration, and net ecosystem exchange (NEE) of CO2, mainly based on long-term (1998–2014) observations in larch forests and their comparison with results obtained for other boreal forests. During the short growing season in eastern Siberia, the growth and development...
Article
Full-text available
Nitrogen (N) and phosphorus (P) are two dominant nutrients regulating the productivity of most terrestrial ecosystems. The growing imbalance of anthropogenic N and P inputs into the future is estimated to exacerbate P limitation on land and limit the land carbon (C) sink, so that we hypothesized that P limitation will increasingly reduce C sequeste...
Article
Full-text available
Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are in the northern latitudes. These emissions are typically estimated using process (bottom-up) or inversion (top-down) models, yet the two are not independent of each other since the top-down estimates rely on the a pr...
Article
Full-text available
Thermodynamic optimality principles have been often used in Earth sciences to estimate model parameters or fluxes. Applications range from optimizing atmospheric meridional heat fluxes to sediment transport and from optimizing spatial flow patterns to dispersion coefficients for fresh and salt water mixing. However, it is not always clear what has...
Article
Full-text available
Inland waters are large contributors to global carbon dioxide (CO2) emissions, in part due to the vulnerability of dissolved organic matter (DOM) to microbial decomposition and respiration to CO2 during transport through aquatic systems. To assess the degree of this vulnerability, aquatic DOM is often incubated in standardized biolability assays. T...
Conference Paper
Full-text available
Radiocarbon (14C) is a key tracer for detecting the mobilization of previously stored terrestrial organic C into aquatic systems. But despite the presence of substantial old organic C (C >1,000 y B.P.) in peatland catchments, the 14C age of dissolved organic C (DOC) in peatland streams (the main form of lateral C export in these systems) is predomi...
Article
Full-text available
In 2017, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-reached new record highs. The annual global average carbon dioxide concentration at Earth's surface for 2017 was 405.0 ± 0.1 ppm, 2.2 ppm greater than for 2016 and the highest in the modern atmospheric measurement record and in ice cor...
Preprint
Full-text available
Inland waters are large contributors to global carbon dioxide (CO2) emissions, in part due to the vulnerability of dissolved organic matter (DOM) to microbial decomposition and respiration to CO2 during transport through aquatic systems. To assess the degree of this vulnerability, aquatic DOM is often incubated in standardized "biolability" assays....
Article
Full-text available
The carbon balance of the Amazon depends on a complex interplay between climate, soil and tree behaviour. Land surface models have difficulty in reproducing the observed biomass distribution and relationships between net productivity and biomass. A new model representing in more detail the effect of different succession stages is capable of observi...
Poster
Full-text available
EUROCOM is a Franco-Swedish project aims to exploit the dense atmospheric observation network over Europe, by performing mesoscale atmospheric inversions over the period 2006-2015, and to foster collaboration between European scale inverse modellers. This will improve our understanding of estimates of the CO2 system at continental and regional scal...
Article
Full-text available
Methane (CH4) is produced in many natural systems that are vulnerable to change under a warming climate, yet current CH4 budgets, as well as future shifts in CH4 emissions, have high uncertainties. Climate change has the potential to increase CH4 emissions from critical systems such as wetlands, marine and freshwater systems, permafrost, and methan...
Article
Full-text available
The land surface controls the partitioning of water and energy fluxes and therefore plays a crucial role in the climate system. The coupling between soil moisture and air temperature, in particular, has been shown to affect the severity and occurrence of temperature extremes and heat waves. Here, we study soil moisture–temperature coupling in five...
Article
Full-text available
As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land-cover change to more sophisticat...
Conference Paper
Full-text available
Permafrost covers 24% of Northern Hemisphere land surface and contains 50% of global belowground organic C stocks. IPCC models estimate up to an 8 °C rise in mean annual temperature in Polar Regions by 2100 due to climate change leading to increased permafrost thaw and thermokarst formation. Climate change can alter organic matter decomposition rat...
Article
Full-text available
Ch 7. Regional Climates: f. Europe and the Middle East

Network

Cited By